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Metal-insulator transition in the two-dimensional Hubbard model:
Dual fermion approach with Lanczos exact diagonalization
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In this study, the metal-insulator transition in the square-lattice Hubbard model at half-filling is revisited
in relation to the DOS and spectral functions by means of the ladder dual fermion approximation (LDFA).
For this purpose, a new expression of the two-body Green’s function in the form of resolvents is proposed,
which provides tractable and efficient means to calculate the local vertex function with the Lanczos exact
diagonalization (ED) method. This makes it possible to use the Lanczos ED method as a solver of the effective
impurity Anderson model for LDFA, opening up the way to access low temperatures for these perturbative
extensions of the dynamical mean-field theory and to obtain accurate DOS and spectral functions on the real
frequency axis by a new variant of the maximum entropy method. It is found that for U � 3.5t , as temperature
decreases, the pseudogap formation due to antiferromagnetic correlations in the quasiparticle peak of the
spectral function occurs at the X point [k = (π, 0)], spreads through the Fermi surface and ends at the M2

point [k = (π/2, π/2)]. The almost simultaneous creation of the pseudogap and the loss of the Fermi liquid
feature is consistent with that expected in the Slater regime. Although the pseudogap still appears in the
quasi-particle-like single peak for U � 4.0t , the Fermi-liquid feature is partially lost on the Fermi surface already
at higher temperatures as expected in the Mott-Heisenberg regime, in which local spins are preformed at high
temperatures. A sharp crossover from a pseudogap phase to a Mott insulator at finite U ∗ ≈ 4.7t is found to
occur below the temperature of the pseudogap formation similar to a previous study with the nonlinear σ model
approach.
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I. INTRODUCTION

Nowadays the dynamical mean-field theory (DMFT) [1]
is one of the most powerful methods to describe electronic
properties in strongly correlated electron systems. Although
DMFT is exact in infinite dimension [2], spatial correlation
effects, which are absence in DMFT similar to the ordinary
mean-field theory, play crucial roles in finite dimensions in
some fascinating cases, such as criticality due to thermal or
quantum fluctuations, unconventional superconductors, and
metal-insulator transitions (MIT) in low dimensions. In recent
years, to include spatial correlations, numerous extensions
of DMFT have been developed. In DMFT, the problem of
electrons on the lattice is mapped to the effective impurity
Anderson model (IAM), where the interaction is explicitly
considered on one of the sites (the impurity site) and rest of
the sites are replaced by an effective medium. In the cluster
extensions of DMFT such as the cellular DMFT (CDMFT) or
the dynamical cluster approximation (DCA) [3], the impurity
site is replaced by a cluster and spatial correlations within the
cluster are considered.

Other attempts to include spatial correlations are perturba-
tive extensions of DMFT [4] and among of them, there is a
class of methods in which the local vertex functions instead
of the bare interaction are used as the diagrammatic elements
of the perturbation. Those in this category are, for example,
the pioneering work of Kusunose [5], the dynamical vertex
approximation (D�A) [6], the dual fermion approximation
(DFA) [7,8], the dual boson approximation (DBA) [9], the

one-particle irreducible approach (1PI) [10], the DMFT to
functional renormalization group approach (DMFT2RG) [11],
and the triply irreducible local expansion (TRILEX) [12].

To solve the effective IAM for DMFT, various numerical
methods have been developed. In the perturbative extensions
of DMFT mentioned above, the two-body Green’s function
of the effective IAM is further required to obtain the local
four-point vertex function. Efficient schemes to calculate the
two-body Green’s function have already been developed and
applied to DFA and D�A with the continuous-time quantum
Monte Carlo (QMC) [13–16] and the ordinary exact diago-
nalization (ED) [6,17–20] methods. The QMC methods have
difficulty in accuracy particularly in low temperatures because
of the statical errors. On the other hand, for the ordinary
ED technique, the method so far proposed is that with the
Lehmann representation and as will be discussed later, it has
problem in efficiency and the limitation of the number of the
many-body basis functions.

One of the purposes of this paper is to present a new for-
mula for the two-body Green’s function. This renders efficient
and accurate means to calculate the local vertex function and
makes it possible to use the Lanczos ED technique [1,21] as
a solver of the effective IAM required for DFA and similar
perturbative extensions of DMFT.

The MIT in the two-dimensional (2D) Hubbard model at
half filling still remains to be a subject of debate even after
decades of extensive studies [22–31]. Although it is well
established that the ground state of the half-filled 2D Hubbard
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model on a square lattice has long-range antiferromagnetic
(AFM) order [32,33], the difficulty mainly arises from the
fact that long-range AFM order cannot be stable at finite tem-
peratures in two dimension because of the Mermin-Wagner
theorem [34]. The MIT has been discussed in relation to the
Slater and Mott-Heisenberg mechanisms. In the Slater regime,
the gap formation is essentially that of one-body picture,
i.e., the Brillouin zone folding caused by the AFM ordering.
Hence, the spin and charge degrees of freedom are entwined
and both the spin and charge excitations have the same energy
scale. In contrast, in the Mott-Heisenberg regime, localized
spins preformed at high temperatures and AFM ordering
occurs through the exchange coupling between these local
spins. Since this picture is essentially based on many-body
theories, the energy scale of the charge excitation ≈U and
the spin excitation ≈4t2/U are generally different. In a study
with the nonlinear σ model approach [30,31], the pseudogap
is formed at low temperatures. While a clear insulating gap
opens in the Mott-Heisenberg regime, the DOS at the Fermi
level remains finite for T > 0 in the Slater regime and thus
the MIT point Uc ≈ 4.2t is expected to be positioned at the
boundary between these two regimes. On the other hand,
Anderson has proposed that whole low-temperature physics
of the 2D Hubbard model is mapped onto the 2D Heisenberg
model and a Mott gap opens for all U > 0 [26].

DMFT predicts the first-order Mott MIT at finite tempera-
tures with a second-order critical endpoint Uc ≈ 10t at T = 0
when the paramagnetic (PM) state is assumed [1], which is
essentially the same to the MIT in infinite dimension. CDMFT
[35,36], the variational cluster approximation (VCA) [37] and
the second-order DFA [18,38], which are only capable for
short-range spatial correlations within the cluster, also find
the first-order MIT at finite temperatures similar to DMFT
but with substantially smaller critical values Uc ≈ 6t . In these
theories, however, the AFM insulating state have finite Néel
temperatures and the region where the first-order MIT line
presence in the U -T phase diagram is replaced by the AFM
insulating phase when the solutions are not constrained to the
PM state [36].

In the studies by means of D�A and extrapolated lat-
tice QMC [37,39], the ladder dual fermion approximation
(LDFA) [4], and the two-particle self-consistent approxima-
tion (TPSC) [24,25], which incorporate the effects of long-
range correlations and fulfill the Mermin-Wagner theorem,
the MIT occurs at much smaller U compared to the CDMFT
results. In the QMC calculations of finite-size clusters [40]
has also found the pseudogap at least U � 2.0t . Schëfer et al.
suggest in their combined study of D�A and lattice QMC [37]
that Uc = 0 for T → 0 and thus no MIT occurs at any U > 0
similar to the 1D Hubbard model [41].

However, the formation of the pseudogap does not neces-
sarily indicate insulating behavior in low temperatures and
examination of subtle changes in states inside the gap as a
function of temperature is required to verify whether Uc stays
finite or Uc = 0 [31]. For this reason, it is essential to obtain
precise information of the DOS and spectral function in the
vicinity of the Fermi level to understand the MIT in the 2D
Hubbard model. Although there are already several LDFA
works [42–45] and that with the diagrammatic Mote Carlo

approach [46,47] on the 2D Hubbard model at half filling,
detailed investigation on the DOS and spectral function with
LDFA at low temperatures is still lacking.

In addition to a new formula for the two-body Green’s
function, the other purpose of this paper is to investigate
the DOS and spectral function of the square-lattice Hubbard
model at half filling by means of LDFA to elucidate the
behavior and origin of the MIT. In particular, utilizing the
newly developed Lanczos ED scheme to calculate the two-
body Green’s function as the solver of the effective IAM for
LDFA, it is possible to access large U and low-temperature
region of the U -T phase diagram where previous studies
still have not reached and obtain results with unprecedented
accuracy. It is found that a sharp crossover from a pseudogap
phase to a Mott insulator around U ∗ ≈ 4.7t occurs below the
temperature of the pseudogap formation.

The rest of this paper is structured as follows. In Sec. II,
a short explanation on the U -T phase diagram of the 2D
Hubbard model obtained in this study is given. In Sec. III,
the new formula of two-body Green’s function is presented.
Section IV describes how to calculate the two-body Green’s
function approximately with the Lanczos algorithm with the
new formula. In Sec. V, a brief overview of LDFA is given and
some technical points specific to the Lanczos ED method are
presented. In Sec. VI, a detailed description of the maximum
entropy method used in this study is given. In Sec. VII,
results of LDFA calculations of the 2D Hubbard model are
presented. The paper is closed with a discussion in Sec. VIII
and a brief summary in Sec. IX. Derivations of the new
formula in Sec. III and the update formula of the hybridization
function in Sec. VII are deferred to Appendices A and B. The
convergence of the vertex function of IAM with the Lanczos
ED method is discussed in Appendix C and the DOS of
the 2D Hubbard model inferred by the present and standard
maximum entropy methods are compared in Appendix D.

II. U -T PHASE DIAGRAM OF THE 2D HUBBARD MODEL

Before embarking on rather lengthy explanation of the
present computational scheme, here, we give a succinct ac-
count on the U -T phase diagram of the 2D Hubbard model
obtained in this study. Figure 1 shows U -T phase diagram
for the half-filled Hubbard model on a square lattice obtained
with LDFA. As will be discussed in Sec. VII E, a metallic to
pseudogap phase crossover is found to occur with decreasing
temperature: the pseudogap is first formed in the quasiparti-
cle peak of the spectral function at the X point k = (π, 0)
(shown by the closed tip-up triangles) and the formation
spreads through the Fermi surface and ends at the M2 point
k = (π/2, π/2) (closed tip-down triangles). The results are
consistent with the previous D�A and lattice QMC study [37]
(also indicated in Fig. 1).

However, the characteristic of the pseudogap formation
changes depending on the size of U . For U � 3.5t , the pseu-
dogap formation and the loss of the Fermi-liquid feature occur
simultaneously and below the temperature of the pseudogap
formation at the M2 point, the Fermi surface is totally lost
and the system enters the pseudogap phase. These results
for U � 3.5t are consistent with those expected in the Slater
regime.
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FIG. 1. U -T phase diagram for the half-filled Hubbard model
on a square lattice obtained with LDFA. Temperatures where the
double occupancy D has the local maximum (closed diamonds), the
pseudogap formation occur at the X (closed tip-up triangles) and M2

(closed tip-down triangles) points in the spectral function Ak(ω) and
the DOS at the Fermi level is ρ(ω = 0) = 10−7 for U � 4.8t (closed
circles) are shown. The vertical line at U = 4.7t is the crossover
line from the pseudogap phase to the Mott insulator. For references,
the DMFT Néel temperature T DMFT

N (crosses) in Ref. [44] and the
pseudogap formation temperatures at the X (open tip-up triangles)
and M2 (open tip-down triangles) points in the combined study of
D�A and lattice QMC [39] are also presented.

On the other hand, for larger U , although the formation
of the pseudogap still occurs in the quasi-particle-like single
peak at the Fermi level accompanied by prominent shoulder
structures at ω ≈ ±U/2, the Fermi-liquid feature is partially
lost around the X point already at higher temperatures above
the DMFT Néel temperature T DMFT

N for U = 4.0t and totally
lost for U � 5.5t . These results for U � 4.0t is consistent
with those expected in the Mott-Heisenberg regime, in which
local spins are preformed above the temperature where AFM
correlations start to develop.

As will be discussed in Sec. VII D, a sharp crossover from
the pseudogap phase to the Mott insulator around U ∗ ≈ 4.7t
is found to occur below the temperature of the pseudogap
formation. For U < U ∗, the DOS at the Fermi level is reduced
with decreasing temperature but persists even at low temper-
atures. In contrast, for U > U ∗, the reduction is much rapid
and clear gap opening occurs at certain temperature. The value
of U ∗ ≈ 4.7t coincides with the boundary between the Slater
and Mott-Heisenberg regimes defined by the inflection point
of the double occupancy D curve as a function of U as will be
discussed in Sec. VII B. These low-energy behavior of DOS in
the vicinity of the Fermi level is consistent with the previous
study with the nonlinear σ model approach [31].

III. EXPRESSION OF TWO-BODY GREEN’S FUNCTION
IN THE FORM OF RESOLVENTS

As an expression for two-body Green’s function, the
Lehmann representation has been used for the ordinary ED

technique [6,17,18]. However, the structure of the formula
is not suitable for the Lanczos exact diagonalization method.
The expression has terms like

∑
lmnk

(e−βEl /Z )〈k|c2|l〉〈l|c1|m〉〈m|c†
3|n〉〈n|c†

4|k〉
(Ek − El + iω1)(El − Em + iω2)(Em − En − iω3)

, (1)

where |l〉 and El are the lth lowest eigenvalue and corre-
sponding eigenvector of the Hamiltonian; c†

i and ci represent
creation and annihilation operators of an electron on the
impurity site, respectively and index i (i = 1, 2, 3) of these
operators and also those of g12 and χ1234 later appeared in
this section are shorthand notation of combined index for the
spin σi and orbital oi degree of freedom, e.g., c1 ≡ cσ1,o1 ;
ωi denote the fermionic Matsubara frequency: ωi = π (2ni +
1)/β. Since these terms contain the factors in the denominator
with the difference of two eigenvalues, e.g., Em − En, terms
with nearly degenerated two high-energy eigenvectors Em and
En can have large contribution [18]. Therefore the precise
eigenvalues of whole energy range are necessary. Since the
Lanczos ED is accurate only for low-energy eigenvectors, an
alternative expression for the two-body Green’s function is
desired.

On the other hands, for the Fourier transform of the
one-body Green’s function g12(τ ) ≡ −〈T [c1(τ )c†

2(0)]〉 the
expression with resolvents

g12(iω) = 1

Z

∑
l,m

e−βEl

{ 〈l|c1|m〉〈m|c†
2|l〉

iω + El − Em

+ 〈l|c†
2|m〉〈m|c1|l〉

iω + Em − El

}
(2)

= 1

Z

∑
l

e−βEl

{
〈l|c1

1

iω + El − Hc†
2|l〉

− 〈l|c†
2

1

−iω + El − Hc1|l〉
}

(3)

is applicable to the Lanczos ED technique and has already
adopted in the DMFT studies [1,48]. Since eigenvector |l〉
only within the energy range of the thermal excitation con-
tribute due to the presence of the Boltzmann factor e−βEl , |l〉
and El can be accurately calculated at low temperatures with
the Lanczos ED technique. The resolvents in Eq. (3) can be
transformed into continued fractions using the Lanczos algo-
rithm and this continued fraction can be terminated typically
several hundreds floors to obtain accurate results even for
systems with ∼107 basis functions. This technique is called
the recursion method [49]. The procedure is also equivalent
to replacing Em and |m〉 in Eq. (2) by those approximately
obtained within a subspace spanned by the Lanczos vectors,
i.e., the Krylov subspace [21].

The expression of the Fourier transform of the two-body
Green’s function

χ1234(τ1, τ2; τ3, τ4) ≡ 〈T [c1(τ1)c2(τ2)c†
3(τ3)c†

4(τ4)]〉, (4)

presented here consists of terms each of which has three or
two resolvents in the form 1/(iω + El − H) and the factor
e−βEl sharing the same eigenvalue El . Because of this feature,
only terms with El within the energy range of the thermal
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excitation contribute similar to Eq. (3) of the one-body
Green’s function. Therefore, unlike the Lehmann representa-
tion, the denominators of these terms are always large with
the high-energy eigenvectors of H and thus no significant
contribution of high-energy eigenvectors is expected. This
makes it possible to approximate the eigenvectors of H by
those calculated within the Krylov subspace constructed by
the Lanczos algorithm, which is less accurate in high-energy
eigenvectors.

The detailed derivation of the expression is in Appendix A.
The expression can be separated into three components in
terms of the similarity to the three scattering channels: those
of the horizontal χph and vertical χph particle-hole, and the
particle-particle χpp types:

χ1234 = χ
ph
1234 + χ

ph
1234 + χ

pp
1234. (5)

Each of the components can be given as

χ
ph
1234(iω1, iω2; iω3, iω4)

= − 1

Z

∑
l

e−βEl 〈l|((c1‖c†
4)El +iω1 − (c†

4‖c1)El −iω4‖(c2‖c†
3)El +iω3 − (c†

3‖c2)El −iω2 )El −i(ω2−ω3 )|l〉

− 1

Z

∑
l

e−βEl 〈l|((c2‖c†
3)El +iω2 − (c†

3‖c2)El −iω3‖(c1‖c†
4)El +iω4 − (c†

4‖c1)El −iω1 )El +i(ω2−ω3 )|l〉

+ 1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1‖c†
4)El +iω1 − (c†

4‖c1)El −iω4 ]|m〉〈m|[(c2
c†
3)El + iω2

El + iω3

− (c†
3
c2)El − iω3

El − iω2

]|l〉

+ 1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1
c†
4)El + iω1

El + iω4

− (c†
4
c1)El − iω4

El − iω1

]|m〉〈m|[(c2‖c†
3)El +iω2 − (c†

3‖c2)El −iω3 ]|l〉

+βδω1,ω4

1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1‖c†
4)El +iω1 − (c†

4‖c1)El −iω1 ]|m〉〈m|[(c2‖c†
3)El +iω2 − (c†

3‖c2)El −iω2 ]|l〉, (6)

χ
ph
1234(iω1, iω2; iω3, iω4)

= + 1

Z

∑
l

e−βEl 〈l|((c1‖c†
3)El +iω1 − (c†

3‖c1)El −iω3‖(c2‖c†
4)El +iω4 − (c†

4‖c2)El −iω2 )El +i(ω1−ω3 )|l〉

+ 1

Z

∑
l

e−βEl 〈l|((c2‖c†
4)El +iω2 − (c†

4‖c2)El −iω4‖(c1‖c†
3)El +iω3 − (c†

3‖c1)El −iω1 )El −i(ω1−ω3 )|l〉

− 1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1‖c†
3)El +iω1 − (c†

3‖c1)El −iω3 ]|m〉〈m|[(c2
c†
4)El + iω2

El + iω4

− (c†
4
c2)El − iω4

El − iω2

]|l〉

− 1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1
c†
3)El + iω1

El + iω3

− (c†
3
c1)El − iω3

El − iω1

]|m〉〈m|[(c2‖c†
4)El +iω2 − (c†

4‖c2)El −iω4 ]|l〉

−βδω1,ω3

1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1‖c†
3)El +iω1 − (c†

3‖c1)El −iω1 ]|m〉〈m|[(c2‖c†
4)El +iω2 − (c†

4‖c2)El −iω2 ]|l〉, (7)

χ
pp
1234(iω1, iω2; iω3, iω4)

= − 1

Z

∑
l

e−βEl 〈l|((c1‖c2)El +iω1 − (c2‖c1)El +iω2‖(c†
3‖c†

4)El +iω4 − (c†
4‖c†

3)El +iω3 )El +i(ω1+ω2 )|l〉

− 1

Z

∑
l

e−βEl 〈l|((c†
3‖c†

4)El −iω3 − (c†
4‖c†

3)El −iω4‖(c1‖c2)El −iω2 − (c2‖c1)El −iω1 )El −i(ω1+ω2 )|l〉

+ 1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1‖c2)El +iω1 − (c2‖c1)El +iω2 ]|m〉〈m|[(c†
3
c†

4)El − iω3
El + iω4

− (c†
4
c†

3)El − iω4
El + iω3

]|l〉

+ 1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1
c2)El + iω1
El − iω2

− (c2
c1)El + iω2
El − iω1

]|m〉〈m|[(c†
3‖c†

4)El −iω3 − (c†
4‖c†

3)El −iω4 ]|l〉

+βδω1,−ω2

1

Z

∑
l,m

δEl ,Em e−βEl 〈l|[(c1‖c2)El +iω1 − (c2‖c1)El −iω1 ]|m〉〈m|[(c†
3‖c†

4)El −iω3 − (c†
4‖c†

3)El +iω3 ]|l〉, (8)
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where the operators in the form of (A||B)z and (A
B) z
z′

are the abbreviations of those contain one and two resolvents,

respectively, and are defined as

(A||B)z ≡ A 1

z − H′B, (9)

(A
B) z
z′

≡ A 1

z − H
1

z′ − HB. (10)

The resolvent with the Hamiltonian H′ in the denominator of Eq. (9) is the same to that of H except that all the eigenvectors |l〉
whose eigenvalue El are equal to the real part of z are projected out as

(A||B)z =
∑

l,El �=Re z

A|l〉 1

z − El
〈l|B. (11)

The first two lines of the right-hand side of each of Eqs. (6)–(8) contain eight terms with three resolvents such as

−
∑

l

e−βEl

Z
〈l|((c1‖c†

4)El +iω1‖(c2‖c†
3)El +iω3 )El −i(ω2−ω3 )|l〉

= −
∑

l

e−βEl

Z
〈l|c1

1

iω1 + El − Hc†
4

1

i(ω3 − ω2) + El − H′ c2
1

iω3 + El − Hc†
3|l〉. (12)

In total 4! (=24) of terms of this kind exist and we call them the major terms. Each term contains a resolvent with a bosonic
Matsubara frequency, e.g., that with i(ω3 − ω2) in Eq. (12), and for this resolvent, eigenvectors with eigenvalue El are projected
out to avoid divergence at zero frequency. The proper treatment of these special cases further requires 36 counter terms (for
details, see Appendix A) and there are two kinds of them: one is those consist of products of two factors containing one and two
resolvents as ∑

l, m
El = Em

e−βEl

Z
〈l|(c1‖c†

4)El +iω1 |m〉〈m|(c2
c†
3)El + iω2

El + iω3

|l〉

=
∑
l, m

El = Em

e−βEl

Z
〈l|c1

1

iω1 + El − Hc†
4|m〉〈m|c2

1

iω2 + El − H
1

iω3 + El − Hc†
3|l〉, (13)

and the other kind of the counter terms have the form

βδω1,ω4

∑
l, m

El = Em

e−βEl

Z
〈l|(c1‖c†

4)El +iω1 |m〉〈m|(c2‖c†
3)El +iω2 |l〉

= βδω1,ω4

∑
l, m

El = Em

e−βEl

Z
〈l|c1

1

iω1 + El − Hc†
4|m〉〈m|c2

1

iω2 + El − Hc†
3|l〉. (14)

Note that if the eigenenergies of wave functions with different
electron numbers are degenerated, the counter terms in Eq. (8)
can have nonzero values even without finite superconducting
order parameter. This can happen if the system possesses the
electron-hole symmetry, e.g., half-filled square-lattice Hub-
bard model with the nearest-neighbor hopping in this study.

IV. APPROXIMATION OF TWO-BODY GREEN’S
FUNCTION WITH LANCZOS ALGORITHM

Having the new expression in hand, in this section, we
discuss how to calculate the two-body Green’s function ap-
proximately with the Lanczos algorithm [21]. The Lanc-
zos algorithm is a unitary transformation, which converts a

symmetric or Hermitian matrix H into a tridiagonal form:

T (n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1 0 · · · 0

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. . .

. . .
. . . bn−1

0 · · · 0 bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Starting from a properly chosen initial vector |v1〉, it creates
one of the orthonormal basis vector |vn〉 in every iteration step,
and at nth step these basis vectors span the Krylov subspace
Kn(|v1〉,H)=span{|v1〉, H|v1〉, H2|v1〉, . . . , Hn−1|v1〉}. In
practice, because of round off error, the orthogonality of the
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vectors |vn〉 breaks midway through the iteration. This occurs
as soon as the lowest eigenvector converges and one may set
the criterion to terminate the iteration when this convergence
is reached:

|bn−1s1,n| < εlan, (16)

where si, j is the jth component of the eigenvector of T (n) with
the ith lowest eigenvalue θi, i.e., T (n)|si〉 = θi|si〉. In this study,
the threshold εlan = αlan

√
Nsysε is assumed, where Nsys is the

order of matrix H, ε denotes the machine accuracy ε = 10−15

and αlan = 10. The ith lowest eigenvalue Ei and corresponding
eigenvector |i〉 of H can be approximated as

|i〉 ≈
n∑

j=1

si, j |v j〉, Ei ≈ θi.

High accuracy (typically more than 10 digits) can be expected
for the eigenvector |1〉 of the lowest eigenvalue E1 and the rest
of them are less accurate.

Now, let us consider the major term with the form∑
l

e−βEl

Z
〈l|O1

1

iω + El − HO2

× 1

iν + El − H′O3
1

iω′ + El − HO4|l〉, (17)

where each Oi (i = 1, 2, 3, 4) is one of c1, c2, c†
3, or c†

4 and
ν is the bosonic and ω, and ω′ are the fermionic Matsubara
frequencies. The eigenvectors |l〉 need to be included in the
calculations are limited to those of low energies by the Boltz-
mann factor e−βEl . Note that high accuracy is particularly
needed for El and |l〉 since it affects later calculations. There-
fore, instead of calculating all the El and |l〉 required at a time
by the Lanczos algorithm describe above, it is preferable to
use the so called restart Lanczos method [21], where only one
lowest eigenvector is calculated at a time and repeat the same
Lanczos procedure except in each step |vn〉 is orthogonalized
to all the previously obtained eigenvectors. In this way, all the
required El and |l〉 can be calculated with high precision.

One of the three resolvents in Eq. (17) on the left can
be obtained approximately using NL eigenvalues EL

m and
eigenvectors |mL〉 generated by combined use of the restart
Lanczos method for low lying eigenvectors within the reach of
the thermal excitation and the ordinary Lanczos method with
the initial vector O†

1|l〉 for rest of high-energy eigenvectors as

1

iω + El − H ≈
NL∑

m=1

|mL〉 1

iω + El − EL
m

〈mL|. (18)

The same can be done for the resolvent on the right using
NR eigenvalues ER

m and eigenvectors |mR〉 generated by these
Lanczos methods with the initial vector O4|l〉. Although the
high-energy eigenvectors obtained with the ordinary Lanc-
zos method are less accurate compared to the low-energy
eigenvectors calculated with the restart Lanczos method, the
resultant left and right resolvents have proper asymptotic
behavior. For instance,

1

z − HO4|l〉 =
∞∑

n=0

1

zn+1
HnO4|l〉 (19)

for the right resolvent. Obviously the expansion is correct up
to the NRth order, since their coefficients belong to the Krylov
space KNR (O4|l〉,H).

For the resolvent in the center, excitations through the left
and right resolvents with different energy scales are required
to be considered. To do so, vectors which represent excitation
at the left |vL

α〉 and right |vR
α 〉 resolvents with the energy �α

and an artificial lifetime width γα are introduced as

∣∣vL
α

〉 =
NL∑

m=1

O†
2|mL〉 〈mL|O†

1|l〉(
�α + El − EL

m

)2 + γ 2
α

,

∣∣vR
α

〉 =
NR∑

m=1

O3|mR〉 〈mR|O4|l〉(
�α + El − ER

m

)2 + γ 2
α

. (20)

We use these vectors with a finite number of reference energy
points �α (α = 1, 2, . . . , Nα) as the initial vectors of the band
Lanczos method [21], which is an extension of the Lanczos
method with multiple initial vectors, to generate the basis
set to construct approximated resolvent. The Lanczos vectors
need to be orthogonalized to the eigenvector |l〉 and, if exist,
all the degenerated eigenvectors with the eigenvalue El [see
Eq. (11)]. It is, however, recommendable to calculate the low-
energy eigenvectors within the reach of the thermal excitation
by the restart Lanczos method and use the band Lanczos
method to generate high-energy eigenvectors by orthogonaliz-
ing its initial and Lanczos vectors to the former. It is essential
to choose one of �α to be �α � Emax − El to make χ1234

have proper asymptotic behavior, where Emax is the maximum
eigenvalue of H.

As demonstrated in Appendix C, the resultant χ1234 (or
the vertex function) converges rapidly as the number of the
reference energy points �α increases. In the calculations
of the 2D Hubbard model in this study, we adopted four
reference energy points �1 = 0, �2 = 0.02W , �3 = 0.04W ,
and �4 = 4W with all γα = 0.1W , where the effective band
width W is defined as

W ≡
√

U 2 + 64t2. (21)

To further reduce the burden of the computational tasks, the
initial vectors |vL

α〉 and |vR
α 〉 of the four major terms in each

of the first two lines on the right side of Eqs. (6)–(8) can
be combined (they are not necessarily linearly independent
and the number of required initial vectors is smaller than it
appears) and the basis set generated by the band Lanczos
method with the combined initial vectors can be shared in the
calculation of these four major terms.

Once NC eigenvalues EC
n and eigenvectors |nC〉 are ob-

tained with the band Lanczos method, we can approximate
the major term in the form of Eq. (17) as

1

Z

NI∑
l=1

NL∑
m=1

NC∑
n=1

NR∑
m′=1

e−βEl

× 〈l|O1|mL〉〈mL|O2|nC〉〈nC|O3|m′R〉〈m′R|O4|l〉(
iω + El − EL

m

)(
iν + El − EC

n

)(
iω′ + El − ER

m′
) , (22)

which bears a resemblance to Eq. (1) but all the three fac-
tors in the denominator and e−βEl shares the same El . This
makes terms with all the eigenvalues El , EL

m , EC
n , and ER

m′
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being within the energy range of thermal excitation mostly
contribute and for these terms, one can use the restart Lanczos
method to obtain accurate eigenvectors and eigenvalues. For
the rest of terms with high-energy excitations, the combined
use of the ordinary and band Lanczos methods as described
ensures accurate asymptotic behavior. Since the typical num-
ber of the Lanczos vectors, NL, NC, and NR, is several hun-
dreds even for 106 actual basis functions, the method proposed
here renders drastic reduction of computational workload over
ordinary ED method.

The counter terms, such as Eqs. (13) and (14) can be
calculated in the similar way. For instance, the second factor
with two resolvents in Eq. (13) can be approximated using NR

eigenvalues ER
n and eigenvectors |nR〉 generated from the band

Lanczos algorithm with the initial vectors c†
3|l〉 and c†

2|m〉 for
all the degenerated eigenvectors |l〉 and |m〉 (El = Em) as

NR∑
n=1

〈m|c2|nR〉〈nR|c†
3|l〉(

iω2 + El − ER
n

)(
iω3 + El − ER

n

) . (23)

V. LADDER DUAL FERMION APPROXIMATION

In this section, a brief overview of LDFA [7,8,42] and some
technical points specific to the present calculation scheme
are provided. The action for the 2D Hubbard model on
the square lattice with the nearest-neighbor hopping integral
t and the on-site Coulomb interaction U is

S[c, c] = −
∑
kωσ

ckωσ (iω + μ − εk)ckωσ

+ U
∑

i

∫ β

0
dτ ciτ↑ciτ↑ciτ↓ciτ↓, (24)

where ckωσ (ckωσ ) and ciτσ (ciτσ ) are the fermionic Grass-
mann fields corresponding to the creation (annihilation) op-
erators c†

kσ
(ckσ ) and c†

iσ (ciσ ), respectively; ω represents
the fermionic Matsubara frequency, μ denotes the chemical
potential, and εk = −2t (cos kx + cos ky).

The IAM at site i can be written as

Simp[ci, ci] = −
∑
ωσ

ciωσ (iω + μ − �ω )ciωσ

+ U
∫ β

0
dτ ciτ↑ciτ↑ciτ↓ciτ↓, (25)

where �ω denotes the hybridization function, which is ar-
bitrary at this point. The lattice action in Eq. (24) can be
represented by the action of the IAM for each site i plus a
correction term:

S[c, c] =
∑

i

Simp[ci, ci] +
∑
kωσ

ckωσ (εk − �ω )ckωσ . (26)

Instead of directly performing the perturbative calculations
with Eq. (26), a new fermionic auxiliary field, which is
called the dual fermion, fkωσ is introduced using a Hubbard-
Stratonovich transformation [7,8]. The original action can be
mapped onto that of the dual fermion by integrating out the
real electron field ckωσ . In this way, one can separate the
problem of solving the IAM to obtain the local approximation
and the perturbative corrections for the spatial correlations,

avoiding the double counting of local contributions. The ac-
tion of fkωσ within the fourth order is

Sd [ f , f ] = −
∑
kωσ

f kωσ

[
Gd,0

kω

]−1
fkωσ

− 1

4

∑
1234

i

γ
(4)

1234 f i1 f i2 fi3 fi4, (27)

where shorthand notations such as 1 ≡ (ω1, σ1) are used for
the indices; Gd,0

kω
denotes noninteracting dual-fermion one-

body Green’s function, and γ
(4)

1234 represents the reducible
four-point vertex function of the impurity site for original
electrons and they are defined using the local one-body gω

and two-body χ1234 Green’s functions of the impurity site for
original electrons as

Gd,0
kω

= −gω + [
g−1

ω + �ω − εk
]−1

, (28)

γ
(4)

1234 = g−1
1 g−1

2 [χ1234 − β(δ14δ23 − δ13δ24)g1g2]g−1
3 g−1

4 .

(29)

Note that diagrams containing the six-point vertex function
give a negligible contribution [42]. For the sake of conve-
nience, we use notation

γ
σ1σ2σ3σ4
ωω′;� ≡ γ

(4)
(ω,σ1 ),(ω′+�,σ2 ),(ω′,σ3 ),(ω+�,σ4 ). (30)

Since we are dealing with the PM state, the system has spin
rotational symmetry and the vertex function can be diagonal-
ized with respect to the spin indices and separated into the
charge (S = 0) and spin (S = 1) components:

γ
(ch)
ωω′;� = γ

↑↑↑↑
ωω′;� + γ

↑↓↓↑
ωω′;�, (31)

γ
(sp)
ωω′;� = γ

↑↑↑↑
ωω′;� − γ

↑↓↓↑
ωω′;� = γ

↑↓↑↓
ωω′;� = γ

↓↑↓↑
ωω′;�. (32)

To include effects of long-range spin fluctuations, the
ladder diagram of the particle-hole channel is taken into
account, which is considered to be the dominant correction
to DMFT for the spatial fluctuations in low temperatures at
half filling. The Bethe-Salpeter equation of the dual fermion
for the charge (α = ch) and spin (α = sp) components are

�
(α)
ωω′;q� = γ

(α)
ωω′;� + 1

β

∑
ω′′

γ
(α)
ωω′′;�χd,0

qω′′��
(α)
ω′′ω′;q�, (33)

where

χd,0
qω� = − 1

N

∑
k

Gd
kωGd

k+q,ω+�. (34)

We define the effective interaction of each component α as

V (α)
ω;q� = 1

2β

∑
ω′

γ
(α)
ωω′;�χd,0

qω′�

(
�

(α)
ω′ω;q� − 1

2
γ

(α)
ω′ω;�

)
(35)

and the self-energy for the dual fermion can be written as

�d
kω = −1

βN

∑
qω′

γ
(ch)
ωω′;0Gd

qω′

+ 1

βN

∑
q�

(
V (ch)

ω;q� + 3V (sp)
ω;q�

)
Gd

k+q,ω+�. (36)
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The Green’s function of the dual fermion is obtained from
Dyson’s equation[

Gd
kω

]−1 = [
Gd,0

kω

]−1 − �d
kω. (37)

The electron Green’s function can be obtained from its dual
counterpart as

Gkω = [εk − �ω]−1g−1
ω Gd

kωg−1
ω [εk − �ω]−1

− [εk − �ω]−1. (38)

There is also similar one-to-one correspondence between
electrons and their dual counterparts for the higher-order
correlation functions [8,50].

The local corrections can be efficiently included in the
impurity problem with a proper choice of �ω. For the purpose,
the condition 〈Gd

kω〉k = 0, with which diagrams containing
a local loop vanish, is commonly used, where 〈· · · 〉k =
(1/N )

∑
k · · · . This condition is reduced to the self-consistent

condition of DMFT for the noninteracting dual fermions and
therefore DMFT can be regarded as the lowest order in DFA
[8]. The nonlocal corrections can be included in �d

kω by
higher orders of dual fermion perturbation theory as already
discussed.

In the calculations of the dual fermionic quantities in
Eqs. (33)–(37), the frequency cutoff −Nω + 1 � n � Nω is
set for the variables with the fermionic Matsubara frequency
ωn = (2n − 1)π/β and |m| � 2Nω − 1 for those with the
bosonic Matsubara frequency �m = 2mπ/β. Choosing Nω ≈
W β/π is found to be sufficient to obtain accurate results,
where W is the effective band width in Eq. (21).

In the ED method, the conduction band of the effective
IAM is replaced by discretized Nb energy levels (or bath sites)
l with energy εb

l and hybridization strength Vl to the impurity
orbital. The Hamiltonian can be written as

Himp =
∑
lσ

{
εb

l a†
lσ alσ + Vl (a

†
lσ cσ + H.c.)

} + Un↑n↓, (39)

where c†
σ (cσ ) and a†

lσ (alσ ) are the creation (annihilation)
operators of an electron on the impurity site and bath site
l , respectively, and nσ ≡ c†

σ cσ . All the effects of the lattice
and interaction except for the impurity site are encoded in the
parameter set {εb

l ,Vl} or the hybridization function

�
(
z;

{
εb

l ,Vl
}) =

Nb∑
l=1

|Vl |2
z − εb

l

. (40)

The outline of the computational procedure of LDFA is as
follows. The one-body Green’s function gω at the impurity site
can be obtained by the Lanczos ED method utilizing Eq. (3).
The two-body Green’s function χ1234 at the impurity site
can be calculated using Eqs. (4)–(8) and the prescription in
Sec. IV. Once gω and χ1234 are obtained, the self-energy �d

kω

and Green’s function Gd
kω of the dual fermion are calculated

within the ladder approximation in the particle-hole channel
using Eqs. (28)–(37). �d

kω and Gd
kω must be calculated itera-

tively until self-consistency is reached in the same manner to
the fluctuation exchange approximation [51] (the inner loop in
Fig. 2). More technical details can be found in Refs. [18,44].
The modified Broyden’s method is applied to accelerate the
convergence of the self-consistency loop of �d

kω [52].

Δ Outer loop
Δnew=〈Gk

d[Gk
d,0]-1gk〉k

-1〈Gk
d[Gk

d,0]-1gkεk〉k

g,γ(4) Gk
d

Σk
d

Dual fermion

Inner loop

Effective IAM

FIG. 2. Illustration of the computational procedure of LDFA.

We further require the parameter set {εb
l ,Vl} of the effective

IAM to fulfill the condition 〈Gd
kω〉k = 0. To this end, we first

choose the initial guess of the parameter set {εb
l ,Vl}, e.g., that

of DMFT, and calculate Gd
kω. We update the parameter set,

calculate Gd
kω again and repeat this procedure until 〈Gd

kω〉k = 0
is fulfilled (the outer loop in Fig. 2).

For the update of the hybridization function, we use

�new
ω = 〈

Gd
kω

[
Gd,0

kω

]−1
gkω

〉−1
k

〈
Gd

kω

[
Gd,0

kω

]−1
gkωεk

〉
k. (41)

The detailed derivation of Eq. (41) can be found in Ap-
pendix B. Once the new hybridization function is obtained,
the parameter set {εb

l ,Vl} for the next iteration is determined
by minimizing the distant function defined as

d =
2Nω∑
p=1

1

|zp|
∣∣�new(zp) − �

(
zp;

{
εb

l ,Vl
})∣∣2

, (42)

where the set of 2Nω points {zp} on the complex plane with
Im zp > 0 consists of Nω points on the imaginary axis at
the fermionic Matsubara frequencies and Nω equally spaced
points on a circle with the radius R = π (2Nω + 5)/β. This
choice of data points alleviates the problems in the accuracy of
the results and the stability of the convergence encountered in
the above mentioned iteration process. The similar technique
is also used in the analytic continuation with MEM in Sec. VI.
To find the optimal solution of the parameter set {εb

l ,Vl} is not
a straightforward task because of the presence of numerous
solutions with nearly the same distance. A genetic algorithm
is applied in combination with the conjugate gradient method
to improve the slow convergence of the solution.

VI. MAXIMUM ENTROPY METHOD

Since the perturbative calculations are performed with the
Matsubara frequency in the present formalism for LDFA,
the analytic continuation is required to convert the results
as functions of the real frequency. For the spectral function
A(ω) ≡ −(1/π )Im G(ω), the relation to the Green’s function
at an arbitrary complex number z

G(z) =
∫ ∞

−∞

1

z − ω
A(ω) dω (43)

can be utilized. If a set of NG data of the Green’s function
G ≡ (G(z1), G(z2), · · · ) is given as input, one may obtain
approximately a set of NA discretized data of spectral function
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A ≡ (A(ω1)�ω, A(ω2)�ω, · · · ) by solving the linear equa-
tion

G = KA, (44)

where K denotes the NG × NA matrix with Ki j ≡ 1/(zi − ω j ).
Solving Eq. (44) is known to be severely ill-posed problem
and the effective number of constraints imposed to A by the
equation is far less than NG within the practical numerical
precision. To extract the limited information about A properly,
the maximum entropy method based on Bayesian inference is
employed [53], where the entropic prior as a means of the
regularization is introduced to circumvent the problem of the
overfitting.

The joint probability of A and hyperparameters αχ and αS

for given G is described by using Bayes’s theorem as

P(A, αχ , αS|G) = P(G|A, αχ )P(A|αS )P(αχ )P(αS )/P(G).

(45)

The distribution of the sum of squared relative errors

χ2 ≡
NG∑
i=1

∣∣Gi − ∑
j Ki jA j

∣∣2

|Gi|2 (46)

is assumed to be represented as a Gaussian function

P(G|A, αχ ) = αNG/2
χ

(2π )NG/2
∏

i |Gi| exp(−αχχ2/2). (47)

Here, αχ is also optimized as a hyperparameter, since the stan-
dard deviation σ = 1/

√
αχ for the spectral function Ak(ω)

inferred by MEM from the LDFA Green’s function of the 2D
Hubbard model has strong momentum k dependence: while
the values of σ at k points on the Fermi surface, i.e., the X−M2

line in Fig. 9(d), range from σ = 5 × 10−7 to 2 × 10−6,
those at k = (0, 0) are from σ = 3 × 10−5 to 4 × 10−4. The
entropic prior is given as

P(A|αS ) ≈ α
NA/2
S

(2π )NA/2
∏

i m1/2
i

exp(αSS), (48)

where S is the relative entropy between A and the default
model m ≡ (m1, m2, . . . ), and is defined as

S =
NA∑
i=1

[Ai − mi − Ai ln(Ai/mi )]. (49)

The uniform distribution is adopted for the default model:
mi = 1/NA. The prior probabilities for hyperparameters P(αχ )
and P(αS ) are assumed to be constants and P(G) is the
normalization factor.

The joint probability of the hyperparameters αχ and αS

can be obtained inserting Eqs. (46)–(49) into Eq. (45) and
integrated it over A within the Gaussian approximation:

ln P(αχ, αS|G) ≈ const. + NG

2
ln αχ + 1

2

NA∑
i=1

ln
αSAmax

i

αχλi + αS

− αχ

2
χ2(Amax) + αSS(Amax), (50)

where Amax denotes A at which P(A, αχ , αS|G) is the max-
imum with given values of αχ and αS . λi represents ith

Re

Im

O

RR

W

FIG. 3. Schematic representation of the data points on the com-
plex plane used for MEM. In addition to the data at the fermionic
Matsubara frequencies zn = i(2n − 1)π/β (n = 1, 2, . . . , Nω) de-
picted as the crosses on the imaginary axis, the equally spaced points
represented as the dots on the curve consisting of two quarter circle
arcs with the radius R connected by the straight line with the length
W in Eq. (21) are included in this study.

eigenvalue of the matrix �:

�i j =
NG∑
l=1

(
Amax

i

)1/2
K∗

liKl j
(
Amax

j

)1/2
/|Gl |2. (51)

Our problem of the analytic continuation is now reduced
to find the set of A, αχ and αS which is at the maximum
of P(A, αχ , αS|G). To do so, we first set guess values of αχ

and αS and maximize P(A, αχ , αS|G) with respect to A. This
is equivalent to minimizing Q(A) ≡ αχχ2(A)/2 − αSS(A),
which can be achieved using the Newton-Raphson method.
The calculations are repeated with different values of αS to
find the maximum of P(αχ, αS|G) in Eq. (50) with respect to
αS with fixed value of αχ . The golden section search method
is applied for this optimization of αS . To find the maximum of
P(αχ, αS|G) in Eq. (50) with respect to αχ ,

∂

∂αχ

P(αχ, αS|G) = 0 (52)

is calculated assuming the αχ dependence of Amax is negligi-
ble. The resultant equation for the optimal αχ is

αχ = 1

χ2(Amax)

(
NG −

NA∑
i=1

λi

λi + αS/αχ

)
. (53)

This can be solved iteratively by inserting previously obtained
value of αχ repeatedly on the right-hand side of the equation.
After solving Eq. (53), the optimization of A and αS follows
with this new value of αχ and again solving Eq. (53). This
process is repeated until convergence is reached.

In the LDFA calculations, the Nω data of G(zn) at the
fermionic Matsubara frequencies, i.e., zn = i(2n − 1)π/β

(n = 1, 2, . . . , Nω) on the imaginary axis are adopted. For
the rest of the data, instead of taking them on the Matsubara
frequencies, a set of data points placed at the same distance
R from the nearest pole of G(z) on the real axis is chosen:
equally spaced points on the curve consisting of two quarter
circle arcs with the radius R connected by a straight line with
the length W in Eq. (21) as shown in Fig. 3. This choice of
data points ameliorates the difficulty of solving Eq. (44) and
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the accuracy of A(ω) obtained is improved, particularly in
structures away from the Fermi level. The value of R adopted
in this study is R = 2.7W except for U = 3.0, for which
R = 1.8W is used and the number of these additional points
is NR ≈ Rβ.

Note that altering the default model other than the uniform
distribution scarcely affects the results. What is even more
important is the model for χ2 in Eq. (46), where the square
sum of the relative errors is assumed instead of the absolute
errors as in the previous studies and the data points are chosen
as in Fig. 3. This is probably due to the different quality of
the data we obtained here, where the main source of errors
comes from arithmetic operations and statistical errors are
absence unlike previous studies with QMC [53]. The DOS of
the 2D Hubbard model inferred by the present and standard
maximum entropy methods are compared in Appendix D.

VII. 2D HUBBARD MODEL

A. Accuracy of the results and bench mark

Before discussing the LDFA results of the 2D Hubbard
model obtained with the new Lanczos ED method in de-
tail, here, we evaluate the accuracy of the results and make
comparisons with results of other methods. We first check
the accuracy of the four-point vertex function in Eq. (29).
Since we are dealing with the PM state, the spin rotational
symmetry can be verified. To do this, the difference between
the horizontal-spin γ ↑↑↑↑ − γ ↑↓↓↑ and vertical-spin γ ↑↓↑↓
components, which should be zero for the exact calculations,
are examined with respect to � as

ε(�) =
∑

ω,ω′ |γ ↑↑↑↑
ωω′;� − γ

↑↓↓↑
ωω′;� − γ

↑↓↑↓
ωω′;�|∑

ω,ω′ {|γ ↑↑↑↑
ωω′;�| + |γ ↑↓↓↑

ωω′;�| + |γ ↑↓↑↓
ωω′;�|} . (54)

It is found that ε(�) ∼ 10−5 for the lowest � ∼ 0 and the
highest � = 4Nω ∼ 4W frequencies and less accurate ε(�) ∼
10−4 for intermediate frequencies � ∼ 2W . This is expected
from the approximation made in the Lanczos ED method,
which is accurate in low-energy excitations and asymptotic
behavior as mentioned in Sec. IV.

Similarly, the accuracy of the LDFA results can be assessed
by calculating the same quantity with different directions of
spin for the PM state. The accuracy is typically about six
digits for values such as the double occupancy D ≡ 〈ni↑ni↓〉
calculated using the Migdal-Galitskii formula [58]. At low
temperatures, however, because of the divergent property of
the spin susceptibility χsp ∼ e�/T as T → 0 [59,60], the
Bethe-Salpeter equation in Eq. (33) is unstable when χ−1

sp ∝
1 − λsp ≈ e−�/T is too small 1 − λsp � 10−3, where λsp is the
maximum eigenvalue of a 2Nω × 2Nω matrix

Mω,ω′ ≡ 1

β
γ

(sp)
ω,ω′;0χ

d,0
(π,π ),ω′,0. (55)

Although the problem can be partly avoided by using tech-
nique in Ref. [44], obtained results are less accurate.

As mention before, in the ED method the conduction band
is replaced by a finite number of the bath energy levels in the
effective IAM. While the accuracy of the results is expected
to increase as the number of the bath levels Nb increases,
numerical errors introduce by the Lanczos algorithm, where

high-energy excitations are omitted, would increase as the
number of basis function increases. To check the convergence
of the results as a function of Nb, the values of D obtained with
Nb = 3, 5, and 7 have been compared. Note that one of the
bath level is required to be placed at the Fermi level to describe
a metallic state and thus Nb needs to be an odd number for
the half-filled square-lattice Hubbard model because of the
electron-hole symmetry [18]. Whereas considerable differ-
ence |DNb=3 − DNb=5|/DNb=5 ∼ 10−3 between those obtained
with Nb = 3 and 5 is found for U = 4.0 at low temperatures,
the discrepancy between those obtained with Nb = 5 and 7 is
already within 2 × 10−5.

The deviations from the hybridization sum rule [61], which
relates the hybridization strength of the effective IAM and the
lattice hopping integrals, have also been examined. The sum
rule for the square-lattice Hubbard model with the nearest-
neighbor hopping is

Nb∑
l=1

V 2
l = 4t2. (56)

The deviation is rapidly reduced with increasing Nb: the rela-
tive errors ε = |(∑l V 2

l )1/2 − 2t |/2t are utmost ε = 0.15, 6 ×
10−3, and 6 × 10−5 for Nb = 3, 5, and 7, respectively. These
findings indicate that well converged values can be obtained
with Nb = 7. Hence, all results presented in the rest of the
paper were calculated with Nb = 7. The number of discretized
momentum points in the Brillouin zone of the square lattice
used in the calculations is 64 × 64. For simplicity, we set the
value of the hopping integral t = 1.

In Fig. 4, the imaginary part of the self-energy Im �k(iωn)
on the imaginary axis at momenta k = (π/2, π/2) and k =
(π, 0) for U = 8.0 and β = 2.0 obtained with various meth-
ods are compared. The differences are mainly found at the
lowest Matsubara frequency, i.e., ω1 ≡ π/β. The LDFA val-
ues of Im �k(iωn) are substantially reduced from that of
DMFT at ω1 and are in good agreements with the DCA result
for k = (π, 0) in Ref. [62]. Our LDFA results are also in good
agreement with the previous LDFA results with the diagram-
matic QMC method in Ref. [39]. On the other hand, the D�A
values are placed between those of DMFT and LDFA. The
D�A values at ω1 considerably deviate from that of DCA.

B. Energetics

It has been a long-standing debate over where and how
the crossover or transition from the Slater to Mott-Heisenberg
regime occurs as U increases in the 2D Hubbard model
[26,30,36,37,43,54–57]. In the Slater regime electrons are
delocalized at high temperatures. In the weak coupling limit,
the potential energy decreases in the presence of AFM correla-
tions and therefore the stabilization of AFM order is expected
to be mainly driven by the potential energy in the Slater
regime. On the other hand, in the Mott-Heisenberg regime the
localization of electrons already occurs at high temperatures
and local spins are formed. In the strong coupling limit, the
AFM coupling between the localized spins can be regarded
as a virtual process through the electron hopping and the
stabilization of AFM order is, therefore, expected to be mainly
driven by the kinetic energy in the Mott-Heisenberg regime.
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FIG. 4. Comparison of the imaginary part of the self-energies
Im �k(iωn) on the imaginary axis at momenta k = (π/2, π/2) (up-
per panel) and k = (π, 0) (lower panel) for U = 8.0 and β = 2.0
obtained with various methods. Those of LDFA (open circles) and
DMFT (open squares) are the results of this study. The DCA data
(closed diamonds) are reproduced from Ref. [62] and the D�A data
(closed triangles) from Ref. [39]. The LDFA with the diagrammatic
QMC results (crosses) are taken from Ref. [47] (only data with the
Matsubara frequency of ω1 = π/β are available).

In this section, we discuss the temperature and U dependence
of the double occupancy and the kinetic energy obtained with
LDFA.

Figure 5 shows temperature dependence of the double oc-
cupancy D ≡ 〈ni↑ni↓〉 for various values of U calculated using
the Migdal-Galitskii formula [58]. For U � 5.0 at high tem-
perature, D increases with decreasing temperature, reaches its
local maximum, and then decreases. The local maximum is
positioned just above the DMFT Néel temperature T DMFT

N in-
dicated by the vertical arrows. Although no long-range AFM
order is presence in LDFA in finite temperatures, which abides
by the Mermin-Wagner theorem, the connection between the
local maximum of D found at temperature near T DMFT

N for
U � 5.0 and AFM correlations is apparent. The presence of
the local maximum is also found in DCA study for U =
4.0 in Ref. [62] as indicated by the diamonds in Fig. 5(c).
The temperature dependence of D for U � 5.0 is consistent
with what expected in the Slater regime; in high-temperature
metallic state, because of the Fermi degeneracy, D increases
with decreasing temperature and D decreases as AFM cor-
relations develop below T DMFT

N , where electrons efficiently
avoid in each other. These findings are also consistent with
the previous LDFA study, where the reduction of the potential
energy due to nonlocal AFM correlations found in a range
1.0 � U � 4.0 [43].

To elucidate the relation between the AFM correlation
and the temperature dependence of D more in detail, in
Fig. 6, the imaginary part of the self-energy Im �k(iωn) for
U = 4.0 at momenta on the Fermi surface k = (π, 0) (the
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T
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0.085 (e) U=6.0
0.1
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0.2 (a) U=2.0

FIG. 5. Temperature dependence of the double occupancy D for
U = 2.0 (a), 3.0 (b), 4.0 (c), 5.0 (d), and 6.0 (e). The local maxima
are shown by the triangles in (a)–(d). In each panel, the arrow
indicates T DMFT

N taken from Fig. 1 in Ref. [44]. For comparison, the
values of D calculated with DCA in Ref. [62] are also represented by
the diamonds in (a), (c), and (e).

X point) and k = (π/2, π/2) (the M2 point) are shown for
various values of β in panels (a) and (b), respectively. For
a noncorrelated metal, Im �k(iωn) at the lowest Matsubara
frequency ω1 = π/β is expected to increase as temperature
is lowered, because of the reduction of thermal fluctuations.
Hence, the reduction of Im �k(iπ/β ) found in Fig. 6 indicates
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FIG. 6. The imaginary part of the self-energy Im �k(iωn) for
U = 4.0 with various values of β at momenta on the Fermi surface
(a) k = (π, 0) (the X point) and (b) k = (π/2, π/2) (the M2 point).
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FIG. 7. (a) Comparison between the U dependence of the double
occupancy D at β = 5.0 (open tip-up triangles) and β = 8.0 (closed
tip-down triangles); The inset shows the values of D at β = 5.0
subtracted from that of β = 8.0 Dβ=8.0 − Dβ=5.0 in a range from
U = 4.0 to 5.6. (b) ∂2D/∂U 2 as a function of U for various values
of β.

the increase of AFM fluctuations and the temperature where
Im �k(iπ/β ) takes the local maximum would be regarded
as the onset temperature of AFM correlations. Indeed, the
local maximum Im �k(iπ/β ) temperature of the M2 point
coincides with T DMFT

N within the deviation of 0.01 in the range
of U = 2.0 to 6.0. It is also found in the previous LDFA study
that the maximum of the uniform spin susceptibility for U =
2.0, 3.0, and 4.0 is located at temperatures close to T DMFT

N
[43]. On the other hand, the local maximum temperature of
Im �k(iπ/β ) of the X point is placed higher than T DMFT

N and
roughly follows the local maximum temperature of D.

In contrast, for U = 6.0, no local maximum can be found
in D below T = 0.5 in Fig. 5(e): D monotonically decreases
around T DMFT

N with decreasing temperature and increases at
much lower temperature (T < 0.17). As can be seen Figs. 5(d)
and 5(e), the increase of D with decreasing temperature occurs
much lower temperature than T DMFT

N for U � 5.0 and the
relation between the onset of the short-range AFM order
and the temperature dependence of D is less clear for U �
5.0. The lack of local maximum of D for U � 5.5 below
T = 0.5 coincides with the absence of the local maximum
Im �k(iπ/β ) of the X point and indicates non-Fermi-liquid
or “bad metallic” behavior at high temperatures. The fact is
consistent with the Mott-Heisenberg regime, where local spins
are expected to be preformed above the onset temperature of
AFM correlations, i.e., T DMFT

N .
To clarify where the crossover from the Slater to Mott-

Heisenberg regime occurs, in Fig. 7(a), D as a function of U
are plotted for β = 5.0 and 8.0. As can be seen in the D curve
of β = 5.0, D decreases linearly with increasing U at high
temperatures. However, at low temperatures, the decrease of
D does not evenly happen as can be observed in the D curve of
β = 8.0: the faster (slower) reduction of D for U < 4.7 (U >

4.7) causes the formation of the concave (convex) in the D
curve. This variation of D at low temperatures is in accordance
with the crossover from the Slater to Mott-Heisenberg regime

0 0.2 0.4 0.6
T
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E K
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U

-0.1

0

FIG. 8. Kinetic energy EK as functions of temperature T for
various values of U . The arrows indicate T DMFT

N taken from Fig. 1
in Ref. [44]. The inset shows �EK for various U .

with increasing U and thus one can regard the inflection point
of the D curve as a boundary between the two regimes. To
examine the inflection point of D curve more in detail, in
Fig. 7(b), ∂2D/∂U 2 as a function of U is shown for various
values of β. For β = 4.0, there is no inflection point in the
D curve in a range from U = 4.1 to 5.5. As temperature
decreases, however, ∂2D/∂U 2 as a function of U rapidly
converges into a curve, which intersects the ∂2D/∂U 2=0 line
at U ≈ 4.7, and changes its sign from positive to negative at
U ≈ 4.7. These results indicates that the crossover from the
Slater to Mott-Heisenberg regime occurs around U ∗ ≈ 4.7.
Similar crossover from the Slater to Mott-Heisenberg regime
has been also found in the AFM phase in the CDMFT [36]
and variational QMC [57] studies.

Figure 8 shows temperature dependence of the kinetic
energy EK for various values of U . For small U , the inclination
of EK is reduced with decreasing temperature and no clear
change of this tendency at T DMFT

N is found. In contrast, for
U > 4.5, the inclination of EK increases with decreasing
temperature particularly for T < T DMFT

N resulting in steep
precipitation of EK below T DMFT

N . This tendency becomes
more clear as U increases. To make a rough estimation of the
lowering of EK caused by the AFM correlation, we assume EK

without the AFM correlation can be approximated by a linear
function of T below T DMFT

N and subtract this approximated
value from EK at the lowest temperature TL available as

�EK ≡ EK(TL) − EK
(
T DMFT

N

)
− ∂EK

∂T

∣∣∣∣
T =T DMFT

N

(
TL − T DMFT

N

)
. (57)

The result is presented in the inset of Fig. 8. Whereas �EK

remains small |�EK| < 10−2 for U � 4.5, �EK rapidly de-
creases with increasing U for U > 5.0. This fact is consistent
with the crossover behavior of D from the Slater to Mott-
Heisenberg regime around U ∗ ≈ 4.7, since in the latter the
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FIG. 9. DOS ρ(ω) (top) and the spectral functions Ak(ω) with momenta k along the symmetry lines �-X , X -M, and M-� (bottom) for
U = 4.0 calculated by means of LDFA with β = 8.0 (a), LDFA with β = 5.0 (b) and CPT with a 4 × 4 cluster (c). In (d), the Brillouin zone
of the square lattice and the symmetry lines and points are depicted; the dashed line represents the Fermi surface at half filling for U = 0.

stabilization of the short-range AFM order is expected to be
driven by the kinetic energy.

C. Structures of DOS and the spectral function

Figure 9 shows LDFA results of DOSs and the spectral
functions Ak(ω) with momenta k along the symmetry lines
�-X , X -M, and M-� for U = 4.0 with β = 8.0 in panel (a)
and with β = 5.0 in panel (b). For comparison those obtained
with the cluster perturbation theory (CPT) [63,64] with a
4 × 4 cluster are also presented in panel (c). Although the
pseudogap already exists in DOS with β = 5.0, which is also
found in the previous LDFA studies [18,43], one can see the
prominent development of the pseudogap DOS for β = 8.0.
Such drastic development in the pseudogap with decreasing
temperature is consistent with exponential growth of the AFM
correlation length with decreasing temperature discussed in
the D�A [37] and LDFA [45] studies. The formation of the
pseudogap in DOS is found to start at the temperature close to
T DMFT

N .
The formation of the pseudogap is also found in the quasi-

particle peaks at the Fermi level in Ak(ω) with k = (π, 0)
(the X point) and k = (π/2, π/2) (the M2 point) for β = 8.0.
The pseudogap opening along the �-X and X -M lines in the
vicinity of the X point is also seen along with the peaks
corresponding to the shadow band (indicated by the arrows),
which is the reminiscence of the Brillouin zone folding caused
by the long-range AFM order. On the other hand, for β = 5.0,
although the incipience of pseudogap formation, e.g., the
flattening of the quasiparticle peak top, can be observed at
the X point, still no such indication found in the peak at the
M2 point. The formation of the pseudogap occurs first at the
X point, spreads through the Fermi surface and ends at the

M2 point with decreasing temperature. The same trends in
the temperature and momentum dependence in the pseudogap
formation is found in the previous works with TPSC [27],
D�A [65], and the QMC calculations of finite-size clusters
[40]. More details of the momentum dependence of the pseu-
dogap formation will be discussed in Sec. VII E. Although the
structures of the LDFA spectral functions of the momenta near
the � point are blurred because of inaccuracy of the data and
the size of the pseudogap in the vicinity of the Fermi level
is substantially smaller compared to those of CPT, reasonable
agreements can be found between those obtained with LDFA
in panel (a) and CPT in panel (c).

D. Gap formation in DOS

Although the investigation on spin susceptibility and spin
correlation length in the previous works with D�A [37,65]
and LDFA [44,45] have already revealed that the low-
temperature behavior of the spin fluctuations of the half-filled
Hubbard model on a square lattice is consistent with the non-
linear σ model, the connection between the spin fluctuation
and the pseudogap formation is still not well understood. In
the previous study with the nonlinear σ model approach [31],
it is argued that there is a finite critical value of U (Uc ≈ 4.25)
which separates a pseudogap phase and a Mott insulating
phase. In the pseudogap phase, finite ρ(ω = 0) lingers at
finite temperature, whereas clear gap opening occurs in the
Mott insulating phase. The purpose of this section is to verify
whether such abrupt change in the temperature dependence of
ρ(ω = 0) occurs at a finite U or not.

To see the temperature dependence of DOS, in Fig. 10
those with various values of β for U = 4.5 and 5.0 are de-
picted in panels (a) and (b), respectively. Each of these DOSs
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FIG. 10. ρ(ω) for U = 4.5 (a) and 5.0 (b) with various values
of β.

consists of a peak at the Fermi level flanked by the shoulder
structures corresponding to the lower- and upper-Hubbard
bands at high temperatures. The pseudogap appears at a tem-
perature close to T DMFT

N and further develops as temperature
decreases. While finite DOS in the vicinity of the Fermi level
persists for U = 4.5 even at the lowest temperature indicated
in the figure, clear opening of the gap can be seen at β = 9.0
for U = 5.0. From these results it is expected that a pseudogap
phase to Mott-Hubbard insulator transition or crossover exists
in between U = 4.5 and 5.0.

To examine how the temperature dependence of ρ(ω = 0)
varies as U changes, in Fig. 11, the logarithmic plots of ρ(ω =
0) as a function of β for various values of U are presented.
The value of ρ(ω = 0) is reduce as temperature decreases and
the reduction becomes steeper as U increases particularly at
low temperatures; whereas the value of ρ(ω = 0) for U = 4.9
is rapidly reduced with decreasing temperature and the value
is less than 10−10 at β = 10.0, the reduction is moderate for
U = 4.3 and the value is only reduced to about 47% from
β = 3.0 to 10.0.

In the nonlinear σ model approach [31], the temperature
dependence of ρ(ω = 0) for the weak coupling limit at low
temperatures can be approximated by

ρ(ω = 0) ∝ exp(−β�0), (58)

where �0 is half the size of the gap of the AFM state at
T = 0. To verify whether the low-temperature behavior of
our results are consistent with the pseudogap phase in the
nonlinear σ model approach for small U , the linear least
squares fit is made for log10 ρ(ω = 0) as a function of β to
determine �0. For example, the results of the linear least
squares fit for U = 4.5 is shown in Fig. 12. The fitting is
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FIG. 11. Logarithmic plots of ρ(ω = 0) as functions of β for
various values of U : U = 3.0, 3.5, 4.0, 6.0, and 0.1 interval from
4.3 to 5.5.

made within a range from β = 6.2 to 8.2. A reasonably good
agreement can be obtained within the range. However, the
substantial deviation from the linear approximation are found
for β � 9.0 and the values of ρ(ω = 0) are larger than those
expected from Eq. (58). This is probably caused by inaccuracy
due to small 1 − λSP � 5 × 10−4 for β > 8.5 as mentioned in
Sec. VII A. The similar tendency is found for U � 4.7 at low
temperatures. The estimated �0’s for various values of U are
depicted in the inset. The obtained 2�0 is, indeed, about the
peak to peak distance of the pseudogap structure of DOS for
U � 4.3. However, �0 rapidly deviates from the actual size
of the pseudogap of DOS for U > 4.3 and the possible range
of β for the linear fitting is reduced as U increases, indicating
rapid disappearance of states inside the gap. No reasonable
fitting is available for U � 4.8.
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FIG. 12. Logarithmic plot of ρ(ω = 0) as a function of β for
U = 4.5 (closed circles) and its linear least squares fit within a range
from β = 6.2 to 8.2 (open circles). The inset shows �0 evaluated
from the least squares analysis for various values of U .
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These results show that a sharp crossover from the pseu-
dogap phase to the Mott insulator takes place at U ∗ ≈ 4.7. In-
deed, the value of U ∗ coincides with the boundary between the
Slater and Mott-Heisenberg regimes defined by the inflection
point of D curve as a function of U , i.e., (∂2D/∂U 2)T = 0,
discussed in Sec. VII B.

The robustness of the results obtained here has been
checked by altering the part of the procedure of MEM de-
scribed in Sec. VI in several different ways, e.g., by taking
data points only on the imaginary axis instead of those in
Fig. 3 or replacing the definition of χ2 in Eq. (46) by that with
absolute errors. Although the accuracy of the data is reduced
and discernible fluctuations of the data can be observed when
the same log10 ρ(ω = 0) plots as in Fig. 11 are made, the
variation of the estimated values of U ∗ is within 0.1.

E. Pseudogap in the spectral function

In the previous study with D�A [37,66], the MIT in
the half-filled Hubbard model on a square lattice has been
discussed, where the transition temperature is related to the
variation in the ωn dependence of Im �k(iωn). If the system is
a Fermi liquid or at least a Fermi liquid like, it is expected that
|Im �k(ω)| should decrease as ω decreases. However, the loss
of the Fermi-liquid feature is not necessarily indicate insulat-
ing behavior of the system. The purpose of this subsection is
to clarify the relation between the pseudogap formation in the
spectral function Ak(ω) and the change in Im �k(iωn).

As discussed in Sec. VII C, the pseudogap formation in
Ak(ω) has k dependence; it initiates at the X point and spread
through the Fermi surface and terminates at the M2 point as
temperature decreases. Figure 13 shows Ak(ω) in the vicinity
of the Fermi level for U = 3.0 at temperatures across the
pseudogap formation at the X and M2 points together with the
corresponding Im �k(iωn). It is clearly seen in panels (b) and
(d) that the ωn dependence of Im �k(iωn) changes upturn to
downturn in Im �k(iωn) with decreasing temperature around
the pseudogap formation temperature. These results are in
good agreement with those of D�A calculations for U =
3.0 in Ref. [66]. This indicates that for small U the Fermi-
liquid feature is gradually lost accompanied by the pseudogap
formation in Ak(ω) at the Fermi level. It is also found in
panels (b) and (d) that the variation mainly occurs in the
lowest Matsubara frequency ω1 = π/β, where |Im �k(iπ/β )|
is increases with decreasing temperature. This predominant
increase in |Im �k(iπ/β )|, as was already pointed out in
Ref. [24], is the main cause of the double peak structure in
Ak(ω), i.e., the formation of the pseudogap. Since the low-
temperature magnetic excitation of the half-filled Hubbard
model on a square lattice is considered to be described by
the two-dimensional nonlinear σ model in the renormalized
classical regime [59], the magnetic scattering at the lowest
Matsubara frequency is expected to be the dominant process,
which is consistent with our results.

The relation, however, becomes less clear as U increases,
although the pseudogap formation still occurs below T DMFT

N .
As shown in Fig. 14, for U = 5.0, |Im �k(iωn)| at the X
point monotonically increases with decreasing ωn already at
high temperatures above T DMFT

N and therefore no upturn to
downturn change occurs in Im �k(iωn) at β = 4.75 where
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FIG. 13. Relationship between the pseudogap formation at the
Fermi level of Ak(ω) for U = 3.0 and corresponding Im �k(iωn).
Ak(ω) at the X point [k = (π, 0)] in the vicinity of the Fermi level
with temperatures across the pseudogap formation β = 7.0, 7.5, 8.0,
8.5, and 9.0 are shown in (a) and corresponding Im �k(iωn) on the
imaginary axis are depicted in (b). Those in (c) and (d) are the same
as in (a) and (b) but for the M2 point [k = (π/2, π/2)] with β = 9.0,
9.5, 10.0, 10.5, and 11.0.

the pseudogap appears. This non-Fermi-liquid feature in
Im �k(iωn) above T DMFT

N spreads through the Fermi surface
from the X to the M2 point as U increases from U = 4.0
and at U = 5.5 the whole Fermi surface is lost already above
the temperature where the pseudogap appears, resulting in no
upturn to downturn change in Im �k(iωn) at all.

Furthermore, one can see the enhancement of the intensity
of shoulder structures around ω ≈ ±2.5 in Ak(ω) and the
increase of |Im �k(iωn)| up to ωn ∼ 5 with decreasing temper-
ature. The appearance of the high-energy structure ω ≈ ±U/2
is hallmark of the Mott physics and cannot be explained by the
magnetic scattering within the energy scale of T DMFT

N ∼ 0.3.
These facts can be contrasted with Ak(ω) and Im �k(iωn) for
U = 3.0 in Fig. 13, where their temperature effects are mainly
found within the energy scale of T DMFT

N ∼ 0.2 around the
Fermi level and are in accordance with the Slater mechanism
of gap formation due to the short-range AFM ordering. Nev-
ertheless, a quasi-particle-like broad single peak still exists at
the Fermi level at high temperatures in Ak(ω) for U = 5.0 in
Fig. 14 and predominant increase in |Im �k(iπ/β )| owing to
the magnetic scattering leads to the pseudogap formation.
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FIG. 14. The same as Fig. 13 but for U = 5.0.

F. U -T phase diagram

To conclude this section, here we consider how the elec-
tronic state changes on the U -T parameter space. In Fig. 1,
characteristic temperatures so far discussed are summarized.
The D local maximum temperature is the onset temperature of
AFM correlation in the high-temperature metallic state, which
is signaled by increase in |Im �k(iπ/β )| with decreasing
temperature around the X point for U < 5.0. For U � 5.5, on
the other hand, strong correlations already develop at high-
temperatures and no D local maximum temperature found
below T < 0.5. The AFM correlations further develop with
decreasing temperature and at T DMFT

N , |Im �k(iπ/β )| with
momenta k on whole Fermi surface start to increase with
decreasing temperature.

For U � 3.5, the Fermi-liquid behavior is gradually lost
below T DMFT

N line as the AFM correlations develops with
decreasing temperature. This starts at the X point of the Fermi
surface and ends at the M2 point with concomitant formation
of the pseudogap in the corresponding quasiparticle peak at
the Fermi level. The Fermi surface is totally lost and the
formation of the pseudogap at the Fermi level is complete at
the M2 pseudogap line. The difference between the pseudogap
temperatures at the X and M2 points rapidly decreases as U is
reduced and is only about 2 × 10−3 at U = 2.0.

The same gradual pseudogap formation in the peak at
the Fermi level occurs for U � 4.0 below the T DMFT

N line.
In this case, however, |Im �k(iπ/β )| around the X point is
large even at high temperatures and the system is already
non-Fermi-liquid like above the pseudogap formation tem-

perature. This tendency is strengthen as U increases and for
U � 5.5, the whole Fermi surface is already non-Fermi-liquid
like above the pseudogap formation temperature, where Ak(ω)
has a structure with a broad single peak at the Fermi level
accompanied by prominent shoulder structures at ω ≈ ±U/2.
In this regards, the formation of the pseudogap at low tem-
peratures only heralds the development of AFM correlations
for U � 5.5 and local spins are considered to be preformed
at higher temperatures as expected in the Mott-Heisenberg
regime. This is contrasted with the simultaneous formation
of the pseudogap and loss of the Fermi-liquid feature found
for U � 3.5, which is expected in the Slater regime. Note that
the D local maximum and the X and M2 pseudogap lines are
only those of crossover and no anomaly which indicates a true
transition is found in D, DOS or the spectral functions.

Further lowering the temperature, the development of the
pseudogap is distinctly different depending on whether U is
larger or smaller than U ∗ ≈ 4.7. For U < U ∗, ρ(ω = 0) is
reduced with decreasing temperature but persists even at low
temperatures. In contrast, for U > U ∗, the reduction is much
rapid and clear gap opening occurs at certain temperature. The
value of U ∗ ≈ 4.7 coincides with the boundary between the
Slater and Mott-Heisenberg regimes defined by the inflection
point of D curve as a function of U .

VIII. DISCUSSIONS

The MIT in the half-filled Hubbard model on the square
lattice has been discussed using D�A and lattice QMC [37].
Although the difference between the pseudogap formation
temperatures at the X and M2 points is substantially larger
compared to the present study, the behavior of the formation
found in this D�A study for U � 4.0 is essentially the same to
the present study (see Fig. 1): the pseudogap formation starts
at the X point and ends at the M2 point with decreasing tem-
perature. From this results it is suggested that Uc = 0 for T →
0 and thus no MIT occurs at any U > 0 similar to the one-
dimensional Hubbard model in this D�A study. Although we
found a sharp crossover from the pseudogap phase to Mott in-
sulator around U ∗ ≈ 4.7, we did not find any anomaly, e.g., a
discontinuity or kink, in D up to the second derivative with re-
spect to U at U ∗. Hence, it is unlikely that U ∗ ≈ 4.7 is the true
MIT point. For this reason, in the strict sense, the true MIT
point is considered to be presence at Uc = 0. This weakness
of the variation from the metallic to insulating phase at U ∗ as
compared to that in infinite dimension is not surprising. Since
the pseudogap owing to the AFM correlation already exists
at higher temperatures, the crossover we have discussed here
amounts to a subtle change in the states in the gap. This is con-
trasted with the MIT in the Hubbard model in infinite dimen-
sion, where the abrupt destruction of the coherent peak at the
Fermi level causes the first-order MIT in finite temperature.

In the D�A study, there is no detailed investigation on
DOS at the Fermi level below the pseudogap formation tem-
perature in particular for U > 4.0. For this reason, there is a
possibility that a similar sharp crossover from the Slater to
Mott-Heisenberg regime is found at finite U in D�A and it
would be interesting to investigate DOS at the Fermi level
below the pseudogap formation temperature with D�A to
clarify this point.
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IX. CONCLUSIONS

A new formula for the two-body Green’s function com-
bined with the Lanczos ED technique proposed in this paper
provides efficient and accurate means to calculate the local
vertex function of the effective impurity Anderson model re-
quired for DFA and similar perturbative extensions of DMFT.
The formula is applicable to not only the impurity Ander-
son model but cluster models including those with multiple
orbitals. Utilizing this new scheme, the double occupancy,
kinetic energy, spectral function and DOS of the Hubbard
model on the square lattice at the half-filling are calculated
by means of LDFA with an unprecedented accuracy at low
temperatures and U ’s ranging from U = 2.0 to 6.0 to discuss
the metal-insulator transition.

It is found that the pseudogap is first formed in the quasi-
particle peak of the spectral function at the X point as tem-
perature decreases. The formation spreads through the Fermi
surface and ends at the M2 point k = (π/2, π/2) similar to
the previous D�A and lattice QMC study [37]. For U � 3.5,
the pseudogap formation and the loss of the Fermi-liquid
feature occur simultaneously and below the temperature of
the pseudogap formation at the M2 point, the Fermi surface is
totally lost and the system enters the pseudogap phase. These
results for U � 3.5 are consistent with those expected in the
Slater regime.

However, for larger U , although the formation of the
pseudogap still occurs in the quasi-particle-like single peak at
the Fermi level accompanied by prominent shoulder structures

at ω ≈ ±U/2, the Fermi-liquid feature is partially lost around
the X point already at higher temperatures above T DMFT

N for
U = 4.0 and totally lost for U � 5.5. These results for U �
4.0 is consistent with those expected in the Mott-Heisenberg
regime, in which local spins are preformed above the temper-
ature where AFM correlations start to develop.

A sharp crossover from the pseudogap phase to the Mott
insulator around U ∗ ≈ 4.7 is found to occur below the temper-
ature of the pseudogap formation. For U < U ∗, ρ(ω = 0) is
reduced with decreasing temperature but persists even at low
temperatures. In contrast, for U > U ∗, the reduction is much
rapid and clear gap opening occurs at certain temperature.
These low-energy behavior of DOS in the vicinity of the
Fermi level is consistent with the previous study with the
nonlinear σ model approach [31].
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APPENDIX A: DERIVATION OF THE NEW EXPRESSION
FOR TWO-BODY GREEN’S FUNCTION

The purpose of this section is to provide detailed descrip-
tion of a derivation of the expression for the two-body Green’s
function given in Eqs. (5)–(8).

χ1234(iω1, iω2; iω3, iω1 + iω2 − iω3)

=
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3〈T [c1(τ1)c2(τ2)c†

3(τ3)c†
4(0)]〉ei(ω1τ1+ω2τ2−ω3τ3 )

= 1

Z

∑
lmnk

〈k|c1|l〉〈l|c2|m〉〈m|c†
3|n〉〈n|c†

4|k〉φlmnk (ω1, ω2,−ω3) + 1

Z

∑
lmnk

〈k|c†
3|l〉〈l|c1|m〉〈m|c2|n〉〈n|c†

4|k〉φlmnk (−ω3, ω1, ω2)

+ 1

Z

∑
lmnk

〈k|c2|l〉〈l|c†
3|m〉〈m|c1|n〉〈n|c†

4|k〉φlmnk (ω2,−ω3, ω1) − 1

Z

∑
lmnk

〈k|c†
3|l〉〈l|c2|m〉〈m|c1|n〉〈n|c†

4|k〉φlmnk (−ω3, ω2, ω1)

− 1

Z

∑
lmnk

〈k|c1|l〉〈l|c†
3|m〉〈m|c2|n〉〈n|c†

4|k〉φlmnk (ω1,−ω3, ω2)− 1

Z

∑
lmnk

〈k|c2|l〉〈l|c1|m〉〈m|c†
3|n〉〈n|c†

4|k〉φlmnk (ω2, ω1,−ω3),

(A1)

where

φlmnk (ω1, ω2, ω3) = e−βEk

∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3e(Ek−El +iω1 )τ1 e(El −Em+iω2 )τ2 e(Em−En+iω3 )τ3 . (A2)

If both the condition Ek �= Em or ω1 + ω2 �= 0 and the condition El �= En or ω2 + ω3 �= 0 are satisfied, we obtain

φlmnk (ω1, ω2, ω3) = − e−βEn − e−βEk

(Em − En + iω3)(El − En + i(ω2 + ω3))(Ek − En + i(ω1 + ω2 + ω3))

+ e−βEl − e−βEk

(Em − En + iω3)(El − En + i(ω2 + ω3))(Ek − El + iω1)

− e−βEm − e−βEk

(Em − En + iω3)(El − Em + iω2)(Ek − Em + i(ω1 + ω2))

− e−βEl − e−βEk

(Em − En + iω3)(El − Em + iω2)(Ek − El + iω1)
. (A3)

205133-17



ARATA TANAKA PHYSICAL REVIEW B 99, 205133 (2019)

Now we rewrite the right-hand side of Eq. (A3) in such a way that the three factors in denominator and the argument of the
exponential function of each term contain the same eigenvalue of H. To do this, we use the identity

1

z1z2
= 1

z2 ± z1

(
1

z1
± 1

z2

)
. (A4)

For instance, the term with the factor e−βEl on the second line of Eq. (A3) can be transformed into

e−βEl

(
1

Em − En + iω3
− 1

El − En + i(ω2 + ω3)

)
1

(El − Em + iω2)(Ek − El + iω1)
. (A5)

Together with the term with the factor e−βEl on the fourth line of Eq. (A3), we get

−e−βEl
1

(El − En + i(ω2 + ω3))(El − Em + iω2)(Ek − El + iω1)
, (A6)

where all the factors in the denominator and e−βEl contain the same eigenvalue El . We can cast all the terms of Eq. (A3) in this
form by further repeated use of Eq. (A4) to the terms with e−βEk :

φlmnk (ω1, ω2, ω3) = − e−βEk
1

(Ek − El + iω1)(Ek − Em + i(ω1 + ω2))(Ek − En + i(ω1 + ω2 + ω3))

− e−βEm
1

(Em − En + iω3)(Em − Ek − i(ω1 + ω2))(Em − El − iω2)

+ e−βEl
1

(El − Em + iω2)(El − En + i(ω2 + ω3))(El − Ek − iω1)

+ e−βEn
1

(En − Ek − i(ω1 + ω2 + ω3))(En − El − i(ω2 + ω3))(En − Em − iω3)
. (A7)

These terms correspond to the major terms discussed in Sec. III such as Eq. (12).
We now deal with the situations with Ek = Em or El = En, where some of denominators in Eq. (A7) are zero if ω1 + ω2 = 0

or ω2 + ω3 = 0 is satisfied. When Ek = Em and ω1 + ω2 �= 0, using Eq. (A4) the first two lines on the right-hand side of Eq. (A7)
can be written as

− e−βEk

{
1

(Ek − El + iω1)i(ω1 + ω2)(Ek − En + i(ω1 + ω2 + ω3))
− 1

(Ek − En + iω3)i(ω1 + ω2)(Ek − El − iω2)

}

= −e−βEk

[
1

Ek − El + iω1

1

Ek − En + iω3

{
1

i(ω1 + ω2)
− 1

Ek − En + i(ω1 + ω2 + ω3)

}

− 1

Ek − En + iω3

1

Ek − El + iω1

{
1

i(ω1 + ω2)
+ 1

Ek − El − iω2

}]

= e−βEk
1

(Ek − El + iω1)(Ek − En + iω3)

{
1

Ek − En + i(ω1 + ω2 + ω3)
+ 1

Ek − El − iω2

}
. (A8)

Similarly, when El = En and ω2 + ω3 �= 0, the last two lines on the right-hand side of Eq. (A7) can be written as

e−βEl

{
1

(El − Em + iω2)i(ω2 + ω3)(El − Ek − iω1)
− 1

(El − Ek − i(ω1 + ω2 + ω3))i(ω2 + ω3)(El − Em − iω3)

}

= −e−βEl
1

(El − Ek − i(ω1 + ω2 + ω3))(El − Em + iω2)

{
1

El − Ek − iω1
+ 1

El − Em − iω3

}
. (A9)

To complete the calculation of φ, we further need to know special cases of the integration of Eq. (A2). If Ek = Em and ω1 + ω2 =
0, we obtain

φlmnk (ω1, ω2, ω3) = + e−βEk
1

(Ek − El + iω1)(Ek − En + iω3)

{
1

Ek − En + iω3
+ 1

Ek − El + iω1

}

+ e−βEl
1

(El − Ek − iω1)2(El − En + i(ω2 + ω3))
+ e−βEn

1

(En − Ek − iω3)2(En − El − i(ω2 + ω3))

+ βe−βEk
1

(Ek − En + iω3)(Ek − El − iω2)
. (A10)

The terms on the first line of Eq. (A10) are identical to Eq. (A8) with Ek = Em and ω1 + ω2 = 0 and the same holds for the
terms on the second and third lines of Eq. (A10), which correspond to the terms on the last two lines of Eq. (A7). However the
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term on the last line of Eq. (A10) is newly appeared. Similarly, if El = En and ω2 + ω3 = 0, we obtain

φlmnk (ω1, ω2, ω3) = − e−βEk
1

(Ek − El + iω1)2(Ek − Em + i(ω1 + ω2))
− e−βEm

1

(Em − El − iω2)2(Em − Ek − i(ω1 + ω2))

− e−βEl
1

(El − Ek − iω1)(El − Em + iω2)

{
1

El − Ek − iω1
+ 1

El − Em + iω2

}

− βe−βEl
1

(El − Ek − iω1)(El − Em + iω2)
. (A11)

We find the terms on the third line of Eq. (A11) are identical to Eq. (A9) with El = En and ω2 + ω3 = 0 and the terms on the
first two lines of Eq. (A11) correspond to those on the first two lines of Eq. (A7). Again, we see the additional term on the last
line of Eq. (A11). From Eqs. (A7)–(A11), we obtain

φlmnk (ω1, ω2, ω3) = − (1 − δEk ,Em )e−βEk
1

(Ek − El + iω1)(Ek − Em + i(ω1 + ω2))(Ek − En + i(ω1 + ω2 + ω3))

− (1 − δEk ,Em )e−βEm
1

(Em − En − iω3)(Em − Ek − i(ω1 + ω2))(Em − El − iω2)

+ (1 − δEl ,En )e−βEl
1

(El − Em + iω2)(El − En + i(ω2 + ω3))(El − Ek − iω1)

+ (1 − δEl ,En )e−βEn
1

(En − Ek − i(ω1 + ω2 + ω3))(En − El − i(ω2 + ω3))(En − Em − iω3)

+ δEk ,Em e−βEk
1

(Ek − El + iω1)(Ek − En + iω3)

{
1

Ek − En + i(ω1 + ω2 + ω3)
+ 1

Ek − El − iω2

}

− δEl ,En e−βEl
1

(El − Ek − i(ω1 + ω2 + ω3))(El − Em + iω2)

{
1

El − Ek − iω1
+ 1

El − Em − iω3

}

+ δEk ,Emδω1,−ω2βe−βEk
1

(Ek − En + iω3)(Ek − El − iω2)

− δEl ,Enδω2,−ω3βe−βEl
1

(El − Ek − iω1)(El − Em + iω2)
. (A12)

Finally, inserting Eq. (A12) into Eq. (A1), we obtain the
expression for the two-body Green’s function in Eqs. (5)–(8).

APPENDIX B: DERIVATION OF UPDATE FORMULA
OF HYBRIDIZATION FUNCTION

Here, we show the derivation of the update formula of
�ω for DFA in Eq. (41). For the DMFT calculation, one can
choose new �ω and gω for next iteration

gnew
ω = 〈gkω〉k, (B1)

�new
ω = g−1

ω − [
gnew

ω

]−1 + �ω, (B2)

where gkω ≡ [g−1
ω + �ω − εk]−1 is the DMFT lattice Green’s

function. These update formulas render robust and rapid con-
vergence of �ω for DMFT. A formula similar to Eq. (B1) can
be derived for DFA. The condition of the convergence of �ω

adopted in this study is 〈Gd
kω〉k = 0. We rewrite this equation

as 〈
Gd

kω

〉
k = 〈

Gd
kω

[
Gd,0

kω

]−1
Gd,0

kω

〉
k

= 〈
Gd

kω

[
Gd,0

kω

]−1
(−gω + gkω )

〉
k

= −〈
Gd

kω

[
Gd,0

kω

]−1〉
kgω + 〈

Gd
kω

[
Gd,0

kω

]−1
gkω

〉
k = 0.

(B3)

From this one may employ

gnew
ω = 〈

Gd
kω

[
Gd,0

kω

]−1〉−1
k

〈
Gd

kω

[
Gd,0

kω

]−1
gkω

〉
k (B4)

as an update for gω of DFA. Indeed, if �d
ω = 0, this equation

is reduced to Eq. (B1). With combined use of Eq. (B2),
one can obtain new hybridization function for DFA. Finally,
substitution of Eq. (B4) into Eq. (B2) and use of the relation
g−1

kω
= g−1

ω + �ω − εk results in Eq. (41). Similar formula can
be obtained for DMFT: �new

ω = g−1
ω 〈gkωεk〉k. Note that instead

of directly calculating Gd
kω[Gd,0

kω
]−1 in Eq. (41), it is preferable

to use

Gd
kω

[
Gd,0

kω

]−1 = [
1 − �d

kωGd,0
kω

]−1
(B5)

to avoid loss of significant digits with small interaction.

APPENDIX C: CONVERGENCE OF THE VERTEX
FUNCTION OF IAM WITH THE LANCZOS ED METHOD

As described in Sec. IV, for the left and right resolvents of
the major terms, it is clear that both the low-energy properties
and asymptotic behavior can be accurately captured within
the Lanczos scheme. For the resolvent in the center, however,
excitations through the left and right resolvents must be
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FIG. 15. Comparison of the real part of the local four-point
vertex function of the IAM obtained with various values of Nα . In
lower panel, Re γ

↑↓↑↓
ωω′ ;ν as a function of the Matsubara frequency ωn

is shown for ω′ = π/β and ν = 4π/β. In upper panel, logarithmic
plots of the relative difference between Re γ

↑↓↑↓
ωω′ ;ν obtained with

Nα (=2, 4, 6, and 8) and that of Nα = 10 are presented [see Eq. (C2)].
The dashed line is the same as Nα = 6 but �6 is omitted in the
calculation.

considered and in the present method those at the finite num-
ber of the reference energy points �α (α = 1, 2, . . . , Nα) are
taken into account as the initial vectors of the band Lanczos
method to generate the basis set to construct approximated
resolvent [see Eq. (20)]. It is, therefore, important to know
how many energy points are required to obtain well converged
results within the present Lanczos algorithm. In this section,
the convergence of the local four-point vertex function of the
IAM with respect to the number of the energy points Nα is
discussed as an example.

In the calculation, the IAM with Nb = 7 discretized con-
duction band levels in Eq. (39) is assumed. For the parameters
of the IAM, U = 4, β = 5, and μ = 2 are adopted and the
energies εb

l and hybridization strength Vl of the discretized
levels are εb

1,7 = ±6 with V1,7 = 0.55, εb
2,6 = ±3 with V2,6 =

0.9, εb
3,5 = ±1 with V3,5 = 0.85 and εb

4 = 0 with V4 = 0.6.
These are about the values of the effective IAM of the DFA
calculation of the 2D Hubbard model at half-filling with U =
4, β = 5. The reference energy points chosen are �1 = 0,
�Nα = 5.12W , and

�α = 0.02 × 2(α−2)W (α = 2, 3, . . . , Nα − 1), (C1)

where W = 8.94. γα = 0.1W for all α.
In lower panel of Fig. 15, the real part of γ

↑↓↑↓
ωω′;ν [refer

Eqs. (29) and (30) for the definition] as a function of the
Matsubara frequency ωn is depicted for ω′ = π/β and ν =
4π/β. The convergence is very rapid and already Re γ

↑↓↑↓
ωω′;ν

obtained with Nα = 2 is hardly distinguishable from the others
with larger Nα . To examine the accuracy of the results more

closely, the relative differences between Re γ
↑↓↑↓
ωω′;ν obtained

with Nα (=2, 4, 6, and 8) and that of Nα = 10 defined as

δγNα
(ω) = |(Re γ

↑↓↑↓
ωω′;ν )Nα − (Re γ

↑↓↑↓
ωω′;ν )Nα=10|

|(Re γ
↑↓↑↓
ωω′;ν )Nα=10|

(C2)

are indicated as logarithmic plots in upper panel. About three
digits accuracy can be found for the result with Nα = 2. The
accuracy is improved to five digits for Nα = 4 and six digits
or more for Nα � 6. As mentioned in Sec. IV, it is essential to
include one large energy point �α � Emax − El , i.e., �Nα

=
5.12W in our example. Indeed, as shown by the dashed line in
upper panel, the accuracy of the result drastically deteriorates
from its counterpart, i.e., from six digits to less than three
digits, when �6 is omitted in the calculation with the Nα = 6
reference points.

APPENDIX D: COMPARISON OF DOS INFERRED
BY THE PRESENT AND STANDARD MEMS

In the present study, the MEM adopted for the analytic
continuation of the DOS and spectral functions is different
from the standard method used in the majority of the previous
studies [53]. As mentioned in Sec. VI, the differences can
be boiled down to the three points: (i) not only the data of
the Green’s function on the imaginary axis but those on the
complex plane indicated in Fig. 3 are used, (ii) the sum of
squared relative errors in Eq. (46) is adopted for χ2 instead
of the sum of squared absolute errors, and (iii) the standard
deviation σ = αχ

−1/2 of the Gaussian function in Eq. (47)
is not given as a parameter but inferred from the data as a
hyperparameter αχ .

The purpose of this section is to clarify to what extent these
differences affect the results. The quality of the results can be
assessed by comparing the DOS ρ(ω) directly inferred from
the local Green’s function Gloc(zn) data by MEM to the DOS
obtained from the summation of the spectral function Ak(ω)
inferred from corresponding Gk(zn) data by MEM: ρ(ω) =
(1/N )

∑
k Ak(ω). ρ(ω) and Ak(ω) are treated as NA = 512

discretized data within the range of −1.5W < ω < 1.5W .
The LDFA results of DOS of the 2D Hubbard model with

U = 4.0 and various values of β are shown in Fig. 16. The
DOSs obtained with the present MEM are indicated in panel
(a) and the results obtained with the points (i), (ii), and (iii)
mentioned above being altered to those of the standard method
are shown in panels (b), (c), and (d), respectively. The solid
lines are the DOSs directly inferred from the Gloc(zn) data
by MEM and the dashed lines are those obtained from the
summation of Ak(ω) inferred from corresponding Gk(zn) data
by MEM.

The DOSs obtained directly from the Gloc(zn) data by the
present MEM are in good agreement with those obtained from
the summation of Ak(ω) throughout the whole energy and
temperature ranges as can be seen in panel (a). On the other
hand, the deviations are apparent in the high-energy structures
(|ω| > 1) of the results in panel (b) and also those at the
low temperatures in panel (c). The deviations are much larger
in panel (d) and this is because the quasi-particle-like peaks
appeared at the high-energy region in the spectral function,
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FIG. 16. DOS ρ(ω) of the 2D Hubbard model for U = 4.0 by means of LDFA with various value of β obtained using the analytic
continuation with the present MEM (a) and with partly modified versions of the present MEM (b)–(d). In (b), only the data of the Green’s
function on the imaginary axis (the number of the data is NG = 256) are used instead of those indicated in Fig. 3. In (c), the sum of squared
absolute errors is assumed for χ 2 instead of relative errors in Eq. (46). In (d), the standard deviation in Eq. (47) is fixed to σ = α−1/2

χ = 5 × 10−5

instead of optimizing hyperparameter αχ from the data. The solid lines are the DOSs directly inferred from Gloc(zn) data by MEM and the
dashed lines are those obtained from the summation of Ak(ω) inferred from corresponding Gk(zn) data set by MEM.

e.g., those placed near the � point in Fig. 9, get too sharp with
fixed σ = 5 × 10−5 (estimated σ at the � point is one order
larger in the case of the present MEM).

As discussed in Sec. IV and also demonstrated in Ap-
pendix C, the Lanczos ED method used in this study is
the method which is accurate not only in the low-energy
properties but also in the asymptotic behavior. Because of this
feature, it is expected that one can infer more accurate DOS

or spectral functions by exploiting high-energy information
of the data: by using relative errors instead of absolute errors
in Eq. (46) to give more weight to the data points on the
high-energy side or by placing the data points not too far from
the poles on the real axis as in Fig. 3 to avoid the loss of
information. This explains why the present MEM can extract
more accurate information of the DOS and spectral functions
than the standard MEM.
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