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Spin liquid fingerprints in the thermal transport of a Kitaev-Heisenberg ladder
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We identify fingerprints of a proximate quantum spin liquid (QSL), observable by finite-temperature
dynamical thermal transport within a minimal version of the idealized Kitaev model on a two-leg ladder if
subjected to inevitably present Heisenberg couplings. Using exact diagonalization and quantum typicality, we
uncover (i) an insulator-conductor crossover induced by recombination of fractionalized excitations at small
Heisenberg couplings, (ii) low- and high-energy signatures of fractionalized excitations, which survive far off the
pure QSL point, and (iii) a nonmonotonous current lifetime versus Heisenberg couplings. Guided by perturbation
theory, we find (iv) a Kitaev-exchange-induced “one-magnon” contribution to the dynamical heat transport in
the strong Heisenberg rung limit.
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I. INTRODUCTION

A quantum spin liquid (QSL) is an elusive state of mag-
netic matter with the intriguing property of lacking a local
magnetic order parameter in the absence of external fields
at any temperature T [1,2]. Instead, QSLs may show quan-
tum orders, massive entanglement, and exotic fractional ele-
mentary excitations, e.g., spinons [3–5], Majorana fermions,
gauge vortices [6,7], and alike. QSLs are a consequence of
frustrating exchange couplings such that the local magnetic
moments cannot simultaneously satisfy their mutual inter-
actions [8]. In a seminal paper [9], Kitaev introduced an
exactly solvable Z2 QSL model where spin-1/2 operators
reside on the vertices of a honeycomb lattice and are subject
to exchange frustration from Ising interactions of the type
XX, YY , or ZZ depending on the direction of the bond [10].
Early on, it was proposed that such patterns can be realized in
optical lattices [11], and shortly after, in Mott-Hubbard insu-
lators with strong spin-orbit coupling [12,13]. In the quest for
materials which host Kitaev physics, several compounds have
surfaced, e.g., the iridates α-Na2IrO3 or α-Li2IrO3 as well as
α-RuCl3. The latter systems, however, all order magnetically
at low temperatures due to additional interactions [14–17].
Recently, H3LiIr2O6 has been synthesized, which reportedly
shows no magnetic order at temperatures �10−4J with J as
the exchange interaction [18].

Low-T magnetic ordering is the common obstacle in
real materials, preempting the putative formation of a QSL.
Therefore, it is of tantamount importance to identify and
interpret fingerprints, genuine to a QSL in systems which are
subject to residual interactions obscuring the QSL behavior.
For Kitaev magnets, this is not trivial and largely under
debate [19–24]. In this endeavor, thermal transport has also
been employed. Unlike for other magnetic systems [25,26],
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the longitudinal thermal conductivity κxx in α-RuCl3 is pre-
dominantly phononic with, however, some hints of magnetic
contributions [27–31]. Whether this is due to remnants of Ma-
jorana fermions due to the underlying Kitaev interactions is
not clear. Stronger evidence of Kitaev physics might show up
in finite external magnetic fields (not considered here) because
the low-temperature magnetic order is suppressed [32] and it
could give rise to a quantized thermal Hall conductance [33].

Theoretically, thermal transport studies in pure Kitaev
QSLs have been performed via quantum Monte Carlo
simulations in two dimensions (2D) [34] or via exact
diagonalization (ED) in one dimension (1D) and 2D [35,36].
Moment expansions might also provide high-temperature
analytic results for thermal transport of pure Kitaev QSLs
in the future [37]. Thermal transport was also studied in
magnetically ordered phases of a Kitaev-Heisenberg model
using spin-wave calculations [38]. However, the impact
of isotropic Heisenberg exchange on thermal transport,
perturbing a pure Kitaev QSL, is a completely open issue.
Here, our paper takes a step forward. We study the thermal
transport properties of a Kitaev-Heisenberg ladder, using
ED, dynamical quantum typicality (DQT), and perturbation
theory. By tuning the exchange couplings between the
limits of a pure Kitaev ladder (KL) and a Heisenberg
ladder (HL), we provide a comprehensive view on the
transport properties, while crossing over from a Z2 QSL
into a conventional valence-bond state with gapped triplon
excitations. En route, we emphasize characteristics which
serve to identify signatures of Kitaev physics at moderate
Heisenberg couplings, describing a proximate QSL [39,40].

II. MODEL

The Hamiltonian for the Kitaev-Heisenberg model on a
ladder of L rungs with boundary conditions is given by

H =
∑

a=x,y,z

∑
〈i, j〉

Ja
i jS

a
i Sa

j + Ji jS
a
i Sa

j . (1)
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FIG. 1. The Kitaev-Heisenberg ladder. Jx, Jy, and Jz denote Ising
interactions, whereas JH and J ′

H SU(2) denote invariant Heisenberg
interactions. The local energy densities he

l and ho
l used to define the

energy current are highlighted.

Here, Sa
i are spin-1/2 operators, and the restricted sum over

i, j reproduces the geometry depicted in Fig. 1. Ja
i j = Jx, Jy, Jz

denote the anisotropic Kitaev interactions—only one of them
is nonzero per bond—which we parametrize in terms of the
coupling strength JK . On the other hand, Ji j = JH , J ′

H are
SU(2) invariant Heisenberg interactions. If JH �= J ′

H is con-
sidered, we will note this explicitly. Lastly, we set the lattice
constant equal to unity as well as the Planck and Boltzmann
constants.

In the absence of Heisenberg interactions (Ji j = 0) the
system is a Z2 spin liquid [7,41,42]. The spin degrees of
freedom fractionalize into two species of Majorana fermions,
and the Hamiltonian acquires the form [7]

H = − i

4

∑
b

Jxcbcr + Jycbcr − Jz(ic̄bc̄r )cbcr . (2)

Here, c, c̄ represent Majorana fermions {ci, c j} = 2δi j =
{c̄i, c̄ j}, whereas the indices b and r correspond to the “black”
and “red” sites of the lattice, respectively. The quantity in
the parentheses is a good quantum number of the model
η = ic̄bc̄r = ±1, and therefore, the c̄ species becomes static.
By defining Dirac fermions from pairs of Majorana fermions
residing on the two sites of the same rung, Hamiltonian (2)
transforms to a tight-binding chain with pairing terms in the
presence of a Z2 gauge field. The latter acts as a disorder
potential. The ground state (GS) of the system lies in the
uniform η sectors, and it can either be gapless for |Jx − Jy| =
Jz or gapped otherwise.

The transport properties of the quasi-1D KL were analyzed
in Ref. [35]. It was shown, that the sole carriers of heat, the
Majorana fermions, scatter from the thermally activated static
gauge disorder such that localization occurs. I.e., the KL turns
into an ideal heat insulator at all temperatures. In the pure
2D Kitaev model, similar scattering occurs but too weak to
force localization, leading to normal heat conduction [34,36].
In contrast, the HL exhibits a ground state continuously
connected to a rung-singlet product (RSP) state and triplon
excitations [43]. The energy transport of the HL has been ana-
lyzed exhaustively over wide ranges of coupling strengths and
temperatures and is well understood to be diffusive [44,45].

To analyze the thermal transport properties of our system,
we obtain the energy current operator jε from the time
derivative of the polarization operator Pε = ∑

l 2lh2l [46],
which yields jε = −2i

∑
l [h2l , h2(l−1)]. Here, we choose

h2l = (he
2l + ho

2l )/2, see Fig. 1. The real part of the energy

current correlation function is given by C(t ) =
Re[〈 jε (t ) jε〉/L] where the brackets 〈· · · 〉 denote the thermal
mean value at temperature T . The thermal Drude weight
D as well as the regular part κ ′ of the thermal conductivity
κ (ω) = 2πDδ(ω) + κ ′(ω), are obtained via

D = β2

2
C0, κ ′(ω) = P

2β

ω
tanh

βω

2

∫ ∞

0
dt cos ωtC(t ).

(3)
Here, β = 1/T, P is the principal value, and C0 is the time-
independent contribution of degenerate states to C(t ). The
static value of the regular part is determined by the limiting
procedure κdc = κ ′(ω → 0). A finite value of D signifies
dissipationless energy transport, whereas the contribution of
dissipative modes to the normal dc conductivity is obtained
by κdc. In the case where D and κdc vanish simultaneously,
the system is an ideal heat insulator [47].

The thermal mean values are calculated numerically either
using ED by tracing over the full Hilbert space or by using
DQT which is expected to work well for high-dimensional
Hilbert spaces and at not too low temperatures. In DQT,
the thermal mean value is approximated by an expectation
value obtained from a single pure random state |ψ〉, drawn
from a distribution that is invariant under all unitary trans-
formations in Hilbert space (Haar measure), and evolved to
|ψβ〉 = e−βH/2|ψ〉 to account for finite temperatures [48]. The
limiting temperature for DQT is approximately the energy
scale of the system J , which is formally defined below
[45]. The correlation function is then evaluated via C(t ) ≈
Re 〈ψβ | jε (t ) jε |ψβ 〉

L〈ψβ |ψβ 〉 by solving a standard differential equation
problem for the temperature and the time evolution. The error
of DQT scales inversely proportional to the square root of
the partition function, i.e., it decreases exponentially with
L. The time (temperature) evolution is performed with a
J δt = 0.01 (J δβ = 0.01) step [corresponding to an accuracy
of the order of O(10−8) in the fourth-order Runge-Kutta
algorithm] and up to a maximum time tmJ = 100π , giving
a π/tm = 0.01J frequency resolution. We keep the same
frequency resolution also for the ED results in the binning of
the δ functions.

III. THERMAL TRANSPORT

A. Infinite temperature

Now, we detail a central point of this paper, i.e., the evolu-
tion of the Kitaev-Heisenberg ladder from the insulating QSL
regime of the pure KL to the diffusive one of the HL close to
the RSP state. To this end, we present in Fig. 2 the normalized
thermal conductivity κ (ω)/� with � = πβ2

L 〈 jε jε〉 as the sum
rule [44,49]. We distinguish two cases with respect to the
pure Kitaev ladder: (a) Jx,y,z = (2, 1, 1)JK , corresponding to
one of its gapless phases, Fig. 2(a); (b) Jx,y,z = (3, 1, 1)JK

corresponding to one of its topological gapped phases [41],
Fig. 2(b). For each of the two cases, we present results for
JH/JK = 0.05, 0.15, 0.35, 1 derived via DQT at β = 0 on a
system of L = 12 rungs. As a reference, we also present
results for the HL (JK = 0) and for the KL (JH = 0). To reduce
large degeneracy effects, specific to the latter, we resort to
the effective fermionic representation of Eq. (2), in that case,
using chains with L = 32 fermionic sites and ED calculations.
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The frequency axes are rescaled by the effective coupling
J = (Jx + Jy + Jz )/3 + JH .

Starting with absent Heisenberg interactions, κ (ω) com-
prises two prominent structures. First, a low-frequency one,
which can be interpreted as the Drude weight, i.e., the quasi-
particle contribution, spread over a finite-frequency region
due to the scattering of the itinerant fermions on the gauge
disorder potential. This lifts the degeneracies of the trans-
lationally invariant system yielding a broad low-frequency
hump. In 1D, itinerant fermions scattering off a random (here,
binary) potential leads to insulating behavior [50], also for
Eq. (2), i.e., D = 0 and κdc = 0 in the thermodynamic limit.
Consequently, the correlation function exhibits a sharp low-
frequency dip and the maximum of κ (ω) is shifted away
from ω = 0. Second, a high-frequency hump arises due to
pair-breaking two-fermion contributions in jε , which survives
at all temperatures—in contrast to the quasiparticle one which
is suppressed at low temperatures due to the fermionic occu-
pation factors. The two structures are continuously connected
in the gapless case, whereas, in the gapped one, the correlation
function vanishes for intermediate frequencies showing that
the gap persists even at infinite temperatures.

Now, we invoke Heisenberg coupling. This breaks the
Z2 symmetry, renders the gauge fluxes mobile, and restores
translational invariance on some low-energy scale, expanding
as JH/JK increases. In fact, for all JH �= 0 considered, local-
ization breaks down, and a finite dc conductivity emerges in
Figs. 2(a), 2(b) and the inset of Fig. 2(a). Yet, for a substantial
range of JH/JK � 0.2, and on a frequency scale of O(1), the
low-ω hump and depletion region persist, very suggestive
of a fractionalized two-component liquid of light (heavy)
mobile Majorana fermions (gauge fluxes). Actually, the fluxes
maintain a finite expectation value for JH �= 0 [51]. As JH is
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FIG. 2. Thermal conductivity versus frequency on a ladder of
L = 12 rungs via DQT at β = 0 for (a) Jx,y,z = (2, 1, 1)JK and
(b) Jx,y,z = (3, 1, 1)JK . For each case, the Heisenberg couplings
JH/JK = 0.05, 0.15, 0.35, 1 are considered. As a reference, the
curves JK = 0 and JH = 0 are also shown where the latter is obtained
using ED in the fermionic representation of Eq. (2) for a chain length
of L = 32 sites. The corresponding insets zoom into the (a) low- and
(b) high-frequency parts of κ (ω).

further increased, the system enters the Heisenberg regime
where the low-ω depletion is completely filled in and the
correlation function becomes monotonous at low frequencies.
Figures 2(a) and 2(b) nicely support the naive expectation that
the coupling ratio separating the Kitaev from the Heisenberg
regime should satisfy JH ≈ JK/3 even if Jx �= Jy, Jz, see also
Fig. 3(b). Note that the artificial Drude weight depicted in
the inset of Fig. 2(a) for vanishing Kitaev interactions JK = 0
is an artifact of the choice of fine frequency resolution. The
established diffusive transport of a pure Heisenberg ladder
[44,45] is recovered upon decreasing the frequency resolution.

Although the low-ω depletion-hump structure is intricately
intertwined with the two-component nature of the fraction-
alization, the high-ω pair-breaking peak directly probes only
one part of the fractional excitations, i.e., the two-fermion
density of states. As is obvious from the inset of Fig. 2(b),
this feature persists well into the range of finite Heisenberg
interactions, namely, 0 � JH/JK � 0.6 thereby providing not
only an unequivocal fingerprint of the original KL QSL in
the presence of perturbing Heisenberg exchange, but also a
measure for the crossover scale JH/JK |rec at which Majorana
fermions and fluxes recombine to form triplons.

B. Finite temperatures

Let us now focus on the dc part of the thermal transport
both versus the coupling constants as well as the temperature
and for Jx,y,z/JK = (2, 1, 1), (3, 1, 1), i.e., for a gapless and a
gapped case. We begin with κdc/β

2 versus JK/JH at β = 0 in
Fig. 3(a). A clearly monotonous increase with increasing JH

is observable, corroborating not only the insulating behavior
of the KL, but also a critical coupling for localization of
JH = 0. In fact, the data can be fitted very well by a fourth-
order polynomial with minor offsets, strongly suggesting an
insulator as JH → 0. Next, we normalize to the sum rule,
displaying κdc/� in Fig. 3(b). This can be viewed as a rough
measure for a zero-frequency current lifetime. Once again,
this figure shows a clear scale of JH ≈ JK/3, separating the
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FIG. 3. (a) κdc/β
2 and (b) κdc/� versus the ratio JH/JK at β = 0

via DQT. Open points correspond to L = 8, whereas the filled ones
correspond to L = 12. (c), (d) Heat map of κdc for L = 10 versus tem-
perature and the couplings JK , JH keeping J fixed. (c) Corresponds
to Jx,y,z = (2, 1, 1)JK , and (d) corresponds to Jx,y,z = (3, 1, 1)JK .
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KL QSL from the HL RSP. The rapid decrease in κdc/�

below this scale is dictated by the onset of localization, i.e., the
vanishing of κdc. This is in sharp contrast to the physics of the
HL where the current lifetime at β = 0 is a finite constant. In-
terestingly, the two regimes are connected nonmonotonously.
It is tempting to speculate that this may imply a reduction
of current scattering at the crossover to fractionalization. In
passing, Figs. 3(a) and 3(b) prove that finite-size effects are
negligible, showing little difference between L = 8 and 12.

Next, we consider two contour plots of the temperature
dependence of κdc versus JH/J at Jx,y,z/JK = (2, 1, 1) and
(3,1,1) in Figs. 3(c) and 3(d). The data are represented keeping
the effective energy scale J constant. This figure clearly shows
how a low-temperature regime of enhanced dc conductivity
developing in the upper right-hand corner of the plot as the
system recombines localized Majorana fermions into mobile
triplons upon increasing JH/J . We note that κdc ∝ β2 as β →
0, ∀ JH/J . This leads to the blue regions in Figs. 3(c) and 3(d).
The main point relating to the latter is that, for JH = 0, this
region extends over all β ′s, consistent with an insulator at all
temperatures [35]. Finally, in view of the similar appearance
of Figs. 3(c) and 3(d), differences between the gapped and the
gapless cases, which are certainly present for β > 1/J remain
inaccessible to our numerical approach.

C. Strong-rung limit

Now, we change the perspective and shed light on the
impact of Kitaev exchange as a perturbation, starting from
the popular strong-rung limit of the HL, i.e., for J ′

H � JK , JH .
For JK , JH = 0, the ground state |GS〉 is a RSP state with
energy EGS/L = −3J ′

H/4. Finite JK , JH both shift EGS and
induce dispersive triplon excitations |k, s〉 with momentum
k and magnetization s. We evaluate by perturbation theory
[52–54] the one- and two-triplon energies,

ω(1)(k)

J ′
H

= 1 + λ cos k,
ω(2)(k)

J ′
H

= 2

(
1 ± λ cos

k

2

)
, (4)

where ω(2)(k) stands for the boundaries of the two-triplon con-
tinuum, whereas λ = JH/J ′

H and JK/2J ′
H stand for Heisenberg

[Fig. 4(c)] and Kitaev [Fig. 4(d)] leg interactions, respectively.
Although these figures include our results for two-triplon
bound states, they will not be considered further since they
branch off the continuum only near the zone boundary and
are not expected to contribute significantly to κ (ω), see the
Appendix.

From Figs. 4(c) and 4(d) and Eq. (4), we can now interpret
ED for κ (ω) with L = 8 at β = 0 for Heisenberg versus
Kitaev legs in Figs. 4(a) versus 4(b). In both cases, inten-
sity at ω ∼ 0 arises from thermally populated triplon states,
comprising a Drude weight on finite systems. Additionally,
jε |GS〉 generates a state in the two-triplon manifold, which
combined with the selection rule 
k = 0, dictated by the
symmetries of the Hamiltonians, results in transitions in the
range of ω ∼ 2J ′

H (1 ± λ). This is clearly seen in Figs. 4(a) and
4(b). Kitaev legs induce an additional current mode at ω ∼ J ′

H ,
visible in Fig. 4(b). This qualitative difference is a direct
consequence of the loss of SU(2) invariance, allowing for
heat-current transitions between one- and two-triplon states,
which are forbidden for Heisenberg interactions due to the

0

2

4

6

8

10

(a)

JK = 0

0

0.5

1

1.5

2

2.5

(c)

one-triplon

two-triplon

0

2

4

6

8

0 0.5 1 1.5 2 2.5 3

(b)

Jx,y = JK , Jz = 0

-1 -1/2 0 1/2 1
0

0.5

1

1.5

2

(d)

one-triplon

two-triplon

JH = 0.1J ′
H

JH = 0.2J ′
H

JH = 0.5J ′
H

ω
(k

)/J
′H

κ
(ω

)J
′ H
/Θ

ω/J ′
H

JK = 0.1J ′
H

JK = 0.2J ′
H

JK = 0.5J ′
H

ω
(k

)/J
′H

k/π

FIG. 4. (a) and (b) κ (ω)/� versus frequency in the strong-
rung limit for Heisenberg JH/J ′

H = 0.1, 0.2, 0.5 and Kitaev JK/J ′
H =

0.1, 0.2, 0.5 legs, respectively, obtained via ED at β = 0. (c) and
(d) Low-lying excitation spectrum derived from perturbation theory
in the strong-rung limit for Heisenberg and Kitaev legs, respectively.
The light blue region denotes the two-triplon continuum, whereas the
violet dashed lines denote two-triplon bound states.


Sz = 0 selection rule. This one-triplon current intensity will
feature a strong temperature dependence ∼exp(−J ′

H/T ) as it
involves only excited states, see Fig. 6. As Figs. 4(a) and 4(b)
show, our interpretation remains intact up to fairly strong leg
couplings JK,H/J ′

H ≈ 0.5. Finally, we note that excitations to
three-triplon states induce low intensities and are not consid-
ered here.

IV. SUMMARY

In conclusion, we have uncovered several fingerprints of
a proximate Kitaev QSL manifested at various energy scales
in the dynamical thermal transport of the Kitaev-Heisenberg
ladder. Although born out of a quasi-1D model study, our
results should be transferable to 2D except for the singular
behavior at JH = 0 due to the difference between localization
in 1D and 2D. We hope this may stimulate experiments,
realizing that not only dc thermal conductivity is a well-
established experimental probe, but also dynamical heat trans-
port can be addressed, e.g., via fluorescent flash methods
[55,56] or pump-probe techniques [57]. Moreover, a tuning of
the exchange couplings, discussed here theoretically, is also
experimentally feasible—within certain limits—by chemical
substitution or external pressure.
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APPENDIX: PERTURBATION THEORY

This Appendix highlights the details of the calculation
presented in Sec. III C. Our starting point is the Hamiltonian
of decoupled dimers,

HR = J ′
H

N∑
i=1

SA
i · SB

i , (A1)

where SA,B
i denotes spin-1/2 operators located at the ith site

of the A or B chain of the ladder, correspondingly. The eigen-
states of each rung, denoted in terms of the total spin S and
the total Sz component |S, Sz〉, are singlets |0, 0〉 with energy
E rung

0 /J ′
H = −3/4 and triplets |1, 0〉, |1, 1〉, and |1,−1〉 with

energy E rung
1 /J ′

H = 1/4. The ground state of the ladder is a
direct product of spin-singlet states |GS〉 = ∏N

i=1 |0, 0〉i with
energy EGS = NE rung

0 , whereas its excitations are triplets. In
the following, we consider the effect of coupling the dimers
via Heisenberg or Kitaev leg interactions.

1. Heisenberg leg interactions

We first analyze the ground-state and low-lying excitations
in the presence of the perturbing Heisenberg Hamiltonian
H = HR + HH ,

HH/J ′
H = λH

N∑
i=1

B∑
α=A

Sα
i · Sα

i+1, (A2)

with λH = JH/J ′
H as the small parameter. Each bond of the

perturbing Hamiltonian excites two adjacent singlets of the
unperturbed ground state |GS〉 to spin-1 triplet states, whereas
the sum of the total Sz quantum number is zero. The ground-
state energy up to third order in λH is EH

0 /(NJ ′
H ) = − 3

4 −
3
8λ2

H − 3
16λ3

H , Ref. [53].
The first excited state of the unperturbed ladder is 3N-fold

degenerate and is obtained by promoting one rung to a triplet
state |s〉n = |1, s〉n

∏
j �=n |0, 0〉 j with s = 0,±1. States |s〉n are

eigenstates of HR with energy equal to E tr
0 = J ′

H (1 − 3
4 N ) for

any n. HH has the effect of moving the rung excitation to
nearest-neighbor rungs, thus, the degeneracy is removed by
constructing states with definite crystal momentum,

|k, s〉 = 1√
N

N∑
n=1

eikn|s〉n. (A3)

We will refer to states (A3) as triplons to describe a nonlocal-
ized triplet excitation. The first-order correction of the triplon
energy is found to be equal to E tr(k) = 1

J ′
H
〈k, s|HH |k, s〉 =

λH cos(k). Thus, the excitation energy of the triplons up to
first order is

ωH (k) = E tr
0 + E tr(k) − EGS = J ′

H [1 + λH cos(k)]. (A4)

We note that the single-triplon dispersion relation has a mini-
mum at k = ±π .

We now turn our attention to two-body states, namely,
states with total magnetization M = ±2 consisting of two-
triplons with Sz = ±1 correspondingly, states with M = ±1
consisting of one-triplon with Sz = 0, one-triplon with Sz =
±1, and states with M = 0, consisting of either two-triplons
with Sz = 0 or one-triplon with Sz = 1 and one-triplon with
Sz = −1. First, we note that, since the triplon states are
degenerate, the excitation energy of any two-body state with

one-triplon with crystal momentum k1 and one-triplon
with k2 fall into a two-body continuum with energies
�M=±2

H (k1, k2) = ωH (k1) + ωH (k2). Folding the wave-vector
k = k1 + k2 to the first Brillouin-zone [−π, π ], the con-
tinuum extends between the two boundaries �H (k)/J ′

H =
2[1 ± λH cos(k/2)], expressed up to first order in λH . Al-
though the two-body continuum energies are the same for
any two-body state, the two-triplon bound-state energy is
expected to depend on the M sector. Following the cal-
culations of Ref. [52] for the spin-1 chain based on an
elementary Bethe ansatz, we find that the bound-state en-
ergy of the M = ±2 sector is equal to �M=±2

H (k)/J ′
H = 2 +

λH [ 1
2 + 2 cos(k/2)2], which exists when 2π/3 � |k| � π lies

above the continuum and merges with it at the cutoff momen-
tum 2π/3. Similarly, for M = ±1 we find �M=±1

H (k)/J ′
H =

2 − λH [ 1
2 + 2 cos(k/2)2]„ which lies below the continuum

between wave-vectors 2π/3 � |k| � π and finally for M =
0 the bound-state energy is �M=0

H (k)/J ′
H = 2 − λH [1 +

cos(k/2)2], which is stable for the whole zone 0 � |k| � π .
We note that, in Ref. [54], analytical expressions for the bound
states of sectors M = 0 and M = 1 are derived based on a
mapping of the model onto a Bose gas of hard-core triplets.
The one- and two-particle excitation spectra of the Heisenberg
leg Hamiltonian (A2) are presented in Fig. 4(c) for λH = 0.1.

We note that the matrix elements 〈n| jε |m〉 are nonvanish-
ing for states |n〉, |m〉 that obey the selection rules 
Sz = 0
and 
k = 0. In addition, assuming that the dominant con-
tribution in the thermal conductivity κ (ω) originates from
the ground-state |GS〉H to other excited states, we note
that the operation jε |GS〉H generates a state which belongs
to the manifold of states with two excited triplons. Thus, the
only possible transitions are between the ground state and
the two-triplon continuum (of two Sz = 0 triplons or a pair
of Sz = 1 and Sz = −1 triplons) at k = 0 which results in
contributions from a band of frequencies with boundary lines
ωH

± = 2J ′
H (1 ± λH ). Figures 5(a) and 5(b) zoom to the higher-

frequency features of Figs. 4(a) and 4(b), respectively. A sim-
ple inspection of Fig. 5(a) reveals that in the high-temperature
limit most of the intensity is concentrated near the ωH

− limit
which is likely due to the fact that it involves transitions to
the two-triplon continuum at its lowest gap and is thus more
heavily populated. This is further confirmed by the shifting of
the band to lower frequencies as the Heisenberg coupling JH

is increased. Bound states branch off the continuum near the
zone boundary and are not expected to give a distinct signal in
the thermal conductivity. Finally, the operation jε |k, s〉 yields
states with three excited triplons, thus we do not observe
any contribution coming from transitions between single- and
two-triplons.

2. Kitaev leg interactions

The remainder of this Appendix is devoted in the analysis
of the low-lying excitation spectrum in the presence of the
perturbing Kitaev Hamiltonian H = HR + HK ,

HK/J ′
H = λK

N/2∑
i=1

(
Sx

2i,ASx
2i+1,A + Sy

2i,ASy
2i−1,A

+ Sx
2i,BSx

2i−1,B + Sy
2i,BSy

2i+1,B

)
. (A5)
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FIG. 5. High-frequency part of the high-temperature thermal
conductivity for a (a) Heisenberg and (b) Kitaev ladder with L = 8
rungs for JH/J ′

H = 0.1, 0.2, 0.5 or JK/J ′
H = 0.1, 0.2, 0.5. We refer

the reader to the main text of the present paper for definitions of the
thermal conductivity κ (ω).

Based on similar considerations, such as before, we find
that the ground-state energy up to second order in λK is
EK

0 /J ′
H = − 3

4 [N + λ2
K ( N

2 − 2)]. Moreover, we note that the
Kitaev Hamiltonian lifts the degeneracy of the triplon modes
with Sz = ±1 and the one with Sz = 0. More specifically, the
triplon excitation energy is

ωK
±1(k) = J ′

H

[
1 + λK

2
cos(k)

]
, ωK

0 = J ′
H , (A6)

up to first order in λK . In (A6), we have omitted states
that contain more than one excited rung as is appropriate
to leading order. We now turn our attention to two-triplon
states, focusing first on two unbounded excitations. The
boundaries of the two-body continuum consisting of any
combination of two states with Sz = ±1, and wave-vectors
k1 and k2 are �K (k)/J ′

H = 2 ± λK cos(k/2) with k = k1 +
k2. A two-body state consisting of two Sz = 0 triplons is
N (N − 1)/2 degenerate with energy �K

0 = 2J ′
H , whereas a

two-body state consisting of one Sz = 0 triplon and one with
a Sz = ±1 triplon with crystal momentum k has an excitation

energy equal to �K
1 /J ′

H = 2 + λK/2 cos(k). In addition, the
bound-state energy in the M = ±2 sector is �M=±2

K (k)/J ′
H =

2 + λK
2 [ 1

2 + 2 cos(k/2)2], which exists when 2π/3 � |k| �
π whereas the bound-state energy of a triplon with Sz = 1
and one with Sz = −1 belonging in the M = 0 sector is
�M=0

K (k)/J ′
H = 2 − λK/2[1 + cos(k/2)2]. The one- and two-

particle excitation spectra of the Kitaev leg Hamiltonian (A5)
are presented in Fig. 4(d) for λK = 0.1. We note that the
calculation of bound states involving triplons with Sz = 0 is
omitted because they lie for energies in-between the bound-
state energies of the M = 0 and M = ±2 sectors and are
not expected to give rise to prominent signals in κ (ω). Their
calculation relies on an involved degenerate perturbation
theory.

The selection rules between states |n〉 and |m〉 to obtain
nonvanishing matrix elements 〈n| jε |m〉 depend on the sym-
metries of the Hamiltonian under study. We note that, for
the Kitaev Hamiltonian of Eq. (A5) with less symmetries
than the Heisenberg one, only the 
k = 0 rule needs to
be fulfilled. As anticipated, the high-frequency part of κ (ω)
contains contributions from the ground state to the two-
particle sector from a band of frequencies with boundary lines
ωK

±/J ′
H = 2 ± λK . The most unexpected feature of Fig. 5 is

an additional dominant signal for frequencies ∼J ′
H , which is

absent for the Heisenberg perturbation scheme and originates
from transitions between excited states. More precisely, the
operation jε |k, s〉 generates states in the two-triplon manifold
with energies given by the two-triplon continuum as well as
the two-triplon bound states. To analyze the resulting signal,
we need to take into account that transitions are allowed for
every k in the first Brillouin-zone [−π, π ] that will eventually
produce a zoo of allowed frequencies given by the difference
of the energies of the two-triplon and the single-triplon states.
To simplify the picture, we note that, by increasing the Kitaev
coupling JK , the band shifts to higher frequencies, indicating

0.5 1 1.5

ω/J ′
H

0

1

2

3

4

5

C̃
(ω

)J
′ H
/Θ

′

β = 0
β = 2
β = 5

FIG. 6. Frequency dependence of the correlation function
C̃(ω)J ′

H/�′ around ω = 1 of a Kitaev ladder with L = 8 rungs
for λK = 0.1 and various values of the inverse temperatures β.
In the low-temperature limit of β = 5, we note that the dominant
signal ∼J ′

H vanishes as expected, indicating that it originates from
transitions between excited states.
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the fact that most of the intensity arises from transitions at k =
±π where triplons have their lowest gap and are thus more
populated. At k = ±π , the frequency band lies between the
lines ω1 = �M=±2

K (π ) − ωK
±1(π ) = J ′

H (1 + 3λK/4) and ω2 =
�M=0

K (π ) − ωK
±1(π ) = J ′

H .
In Fig. 6, we present the frequency dependence of the

correlation function C̃(ω)J
′
H/�′, where

C̃(ω) = Re
1

L

∫ ∞

−∞

dω

2π
e−iωt 〈 jε (t ) jε〉, (A7)

and the corresponding sum rule for the correlation function
�′ = π

L 〈 jε jε〉. The correlation function C̃(ω) and the thermal
conductivity defined in the main text are related as κ (ω) =
C̃(ω)β(1 − e−βω )/ω. Although the latter vanishes for β = 0,
the former is temperature dependent with a clear decay of
its weight with decreasing temperature. The almost vanishing
signal around J ′

H in the low-temperature limit of β = 5 is
a confirmation that it involves transitions between excited
states.
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