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In this paper we study the ground-state properties of a ladder Hamiltonian with chiral SU(2)-invariant spin
interactions, a possible first step toward the construction of truly two-dimensional nontrivial systems with chiral
properties starting from quasi-one-dimensional ones. Our analysis uses a recent implementation by us of SU(2)
symmetry in tensor network algorithms, specifically for infinite density matrix renormalization group. After a
preliminary analysis with Kadanoff coarse graining and exact diagonalization for a small-size system, we discuss
its bosonization and recap the continuum limit of the model to show that it corresponds to a conformal field
theory, in agreement with our numerical findings. In particular, the scaling of the entanglement entropy as well
as finite-entanglement scaling data show that the ground-state properties match those of the universality class of
a c = 1 conformal field theory (CFT) in (1 + 1) dimensions. We also study the algebraic decay of spin-spin and
dimer-dimer correlation functions, as well as the algebraic convergence of the ground-state energy with the bond
dimension, and the entanglement spectrum of half an infinite chain. Our results for the entanglement spectrum
are remarkably similar to those of the spin- 1

2 Heisenberg chain, which we take as a strong indication that both
systems are described by the same CFT at low energies, i.e., an SU(2)1 Wess-Zumino-Witten theory. Moreover,
we explain in detail how to construct matrix product operators for SU(2)-invariant three-spin interactions,
something that had not been addressed with sufficient depth in the literature.
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I. INTRODUCTION

The study of quantum criticality with density matrix renor-
malization group (DMRG) [1] has a long history. As such,
quantum critical systems have an infinite correlation length,
and it is well known that this cannot be exactly captured by
DMRG, which is based on matrix product states (MPS) [2],
but perhaps rather by other tensor networks [3] such as the
multiscale entanglement renormalization ansatz [4] and tree
tensor networks [5]. Nevertheless, DMRG is very efficient and
simple to program, and this is the reason why often it is the
preferred option to study criticality, both in its finite-size and
infinite-size (iDMRG) [6] versions. The approach, then, is to
push forward as much as possible the MPS bond dimension,
and do appropriate finite-size and/or finite-entanglement [7]
scalings to extract critical properties. To push the bond di-
mension, one of the best ideas is to implement symmetries.
In particular, for SU(2)-invariant systems, the use of SU(2)
at the level of the MPS has proven remarkably useful in
simulations of, e.g., Heisenberg quantum spin chains and
quasi-one-dimensional (quasi-1D) systems [8].

In this paper we use our own implementation of SU(2)-
invariant iDMRG [9] to study the ground-state properties of
a spin- 1

2 two-leg ladder with chiral three-spin interactions.
The model is similar to the system in Ref. [10], defined on
the two-dimensional kagome lattice and with a Hamiltonian

made of purely chiral three-spin terms.1 In that model, a
ground-state analysis using two-dimensional (2D) DMRG in
cylinders unveiled a ground state with chiral topological order.
Here, our motivation for studying the ladder is multifold.
First, it allows us to study the crossover from 1D to 2D
for chiral interactions. In particular, we find that the lad-
der has chiral properties similar to those of the chiral edge
mode in the 2D model, and a critical ground state with a
central charge c = 1 and other critical exponents that we
characterize numerically. Our findings are also compatible
with previous studies showing that the continuum limit of
the model is a (1 + 1)-dimensional conformal field theory
(CFT) [11–13], and show in particular that the entanglement
spectrum matches the expected behavior of an SU(2)1 Wess-
Zumino-Witten (WZW) theory at low energies. Moreover, the
technical simulation of the model allows us to understand
how to implement SU(2)-invariant matrix product operators
(MPO) for Hamiltonians with three-spin chiral interactions,
something that, to our surprise, had not yet been discussed
with enough detail in the literature. Finally, the model is one of

1Here, we use the word “chiral” in the sense that the Hamiltonian
is not even under a time-reversal operation. As we will see later, the
continuum limit is a field theory which is odd under time reversal.
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FIG. 1. Two-leg ladder made of triangles, for the model in Eq. (1).

the simplest SU(2) generalizations of a quite widespread strat-
egy in trying to access nontrivial two-dimensional systems
with chiral properties, starting from quasi-one-dimensional
ones (often dubbed as “wire deconstructionism”) [14,15]: the
key idea being to gap out right movers of a wire with left
movers (or vice versa) of the neighboring one by means of
suitable interactions, remaining at the end with a chiral edge
current on the external legs of the ladder. Such an approach is
experiencing a growing application in cold atoms, photonics,
and nanowire experiments [16]. By exploring the properties
of our ladder model, we provide further intuition about the
structure of such 2D chiral phases.

The structure of this paper is as follows. In Sec. II we
first introduce the details of the model Hamiltonian for the
chiral ladder with three-spin interactions. Then, we explain
briefly the expected behavior from Kadanoff coarse graining
and small-size exact diagonalization results, before we discuss
its bosonization. In Sec. III we explain some details about
the implementation of our numerical method, namely, SU(2)-
invariant iDMRG. In Sec. IV we present the results of our
simulation, where we show that the ground state of the system
corresponds to a conformal field theory (CFT) with c = 1. We
additionally study the algebraic decay of spin-spin and dimer-
dimer correlation functions, as well as the entanglement spec-
trum and the convergence of the ground-state energy. Our
results for the entanglement spectrum are remarkably similar
to those of the spin- 1

2 Heisenberg chain, which we take as a
strong indication that the CFT at low energies is a SU(2)1

WZW theory. We wrap up our conclusions in Sec. V. Finally,
in the Appendices we compute the spin-current operators
(Appendix A), review the continuum limit of the model by
Huang et al. presented in Ref. [11] (Appendix B), and explain
the details of how to construct the SU(2)-invariant MPO
for the Hamiltonian that we want to simulate (Appendix C),
focusing on chiral three-spin interactions. In Appendix D we
provide numerical data on the finite-entanglement scaling of
the entanglement spectrum.

II. CHIRAL LADDER

A. Model

The model that we analyze in this paper is a two-leg ladder
with chiral interactions on triangles. Specifically, it is a model
of spin- 1

2 on the sites of the ladder of Fig. 1 via the three-spin
interaction Hamiltonian

H =
∑

i

JiSi · (Si+1 × Si+2), (1)

with Si the spin- 1
2 operator at site i. The sites of the ladder

are labeled in a snakelike pattern as shown in the details of
the ladder in Fig. 2 and both triangles follow this snakelike
labeling (upper triangles 1-2-3, lower triangles 2-3-4). We

H1 H1 = +S1 · S2 × S3 − S2 · S3 × S4

1

2

3

4

H2 H2 = −S1 · S2 × S3 + S2 · S3 × S4

1

2

3

4

H3 H3 = −S1 · S2 × S3 − S2 · S3 × S4

1

2

3

4

H4 H4 = +S1 · S2 × S3 + S2 · S3 × S4

1

2

3

4

FIG. 2. Different orientations of the chiral triple product result in
different models. In the first two cases, the orientation is chosen to
be the same whereas it is opposite in the last two cases.

will consider the cases where Ji ∈ {±1} in which the cou-
pling coefficients depend on the traversal of the triangle. A
triangle formed by sites i, i + 1, i + 2 is traversed in (against)
the direction of the labels if Ji = 1 (Ji = −1). This can be
rephrased to clockwise or anticlockwise configurations for
each triangle. The triangles of the full ladder are all clock-
wise configured if Ji = (−1)i [anticlockwise if Ji = −(−1)i].
Mixing the two scenarios gives rise to Ji = 1 ∀ i (Ji =
−1 ∀ i), which leads to a staggered, anticlockwise/clockwise
(clockwise/anticlockwise) configuration pattern.

Playing with different clockwise/anticlockwise configu-
rations of the triangles, we can get different Hamiltonians.
For instance, for a unit cell of two triangles we can get the
four configurations presented in Fig. 2. In the figure, two
of the configurations (H1 and H2) have the same orientation
of the triangles (i.e., both clockwise or both anticlockwise),
and two (H3 and H4) have opposite orientation (i.e., one
clockwise and one anticlockwise). Since we have H1 = −H2

and H3 = −H4, both pairs of Hamiltonians have the same
energy spectrum. Therefore, for the physical properties only
the relative orientation between the two triangles matters and
it is sufficient to restrict to H1 and H3 as different cases.

Both Hamiltonians are odd under time-reversal symmetry
(Si → −Si), which results in T HiT −1 = −Hi. The combi-
nation of two mirror symmetries (which is equivalent to an
inversion at the chain center) leaves Hamiltonian H1 invariant,
whereas H3 transforms as PH3P−1 = −H3. This main dif-
ference between the two cases with different relative triangle
orientations (H1 and H3) results in different behavior of the
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edge states: while edge states for H1 are expected to be
counterpropagating, they propagate in the same direction for
H3 (see the arrows in Fig. 2). In what follows, we show that
this intuition is indeed true.

B. First intuition with Kadanoff coarse graining

The first approach we take to understand the dominant
physics of the model consists in a Kadanoff-type coarse-
graining procedure of the triangles into effective spin- 1

2 ’s. In
particular, we simply (i) project the 23-dimensional Hilbert
space of the triangle n starting at site i = 3n − 2 onto the
two-dimensional subspace of lowest energy via the isometry
Wn : 1

2 ⊗ 1
2 ⊗ 1

2 −→ 1
2 , (ii) construct the representation of the

operators WnS jW †
n and Wn(S j × S j+1)W †

n in this subspace,
and then (iii) look for the emerging Hamiltonian.

The first step is rather easy, once we recall that the SU(2)-
invariant Hamiltonian triangle term of Eq. (1) has to be pro-
portional to the identity in the different subspaces with definite
total spin, that it has null trace, and that it will be vanishing
once the three spins are all parallel arranged. Indeed, a bit of
algebra with Pauli matrices and Levi-Civita symbols leads to
the expression

S1 · (S2 × S3) =
∑
α=±

α

√
3

4
P1/2,α + 0P3/2, (2)

where 1
2 ⊗ 1

2 ⊗ 1
2 = 1

2 + ⊕ 1
2 − ⊕ 3

2 and P are the correspond-

ing projectors. 1
2 ± are the subspaces of the spin- 1

2 states with
positive and negative energy. The searched isometry will then
be depending on the sign of the triangle coupling, i.e.,

WnW
†

n = P1/2,−sgn(J3n−2 ). (3)

Next, we have to construct the coarse-grained expressions
of the spin operators involved in the interaction between
triangles n and n + 1. It turns out that we can choose the
projectors such that ∀ j ∈ {3n − 2, 3n − 1, 3n} and α ∈ {±},

W1/2,αS jW
†

1/2,α = 1
3 S̃n, (4)

W1/2,α (S j × S j+1)W †
1/2,α = α√

3
S̃n (5)

with S̃n the new effective spin- 1
2 . The resulting effective

Hamiltonian then reads as

Heff = −sgn(J1J2)
|J1| + |J2|

3
√

3

N∑
n=1

S̃n · S̃n+1, (6)

where N � L/3 is the total number of effective triangles, and
we neglected an additive term −

√
3

4
|J1|+|J2|

2 N . We thus ob-
tained an emerging spin- 1

2 Heisenberg chain, whose magnetic
character (ferromagnetic or antiferromagnetic) depends on the
mutual signs of the triangle couplings J1 and J2, and we can
resort to a wealth of known facts to foresee the behavior of
our triangle ladder.

If the triangles are all (anti)clockwise oriented (H1 and
H2), then the effective model (6) is antiferromagnetic: we
therefore predict that it will be gapless, with central charge
c = 1, and that its ground state would tend to minimize the
total spin of the chain, i.e., for even N will be in the zero total

spin sector. Conversely, if the triangles have mixed character
(H3 and H4), then the effective model (6) is ferromagnetic:
we have thus good reasons to expect that the system will
try to maximize its total spin, giving rise to a macroscopic
degeneracy of the ground-state manifold, and without a well-
defined CFT character. Of course, such low-energy projection
is a very strong simplification and further corrections would
be needed to describe the full richness of the model (e.g.,
the degeneracy counting of the case J1 = J2 in finite systems
will be nontrivial). But, still, we will see below that the main
results obtained by this simple analysis are in fact confirmed
by more sophisticated theoretical and numerical approaches.

C. Exact diagonalization of small systems

The intuition obtained from the Kadanoff blocking in the
previous section can be further corroborated by a simple exact
diagonalization exercise. Specifically, here we perform exact
diagonalization for small sizes, in particular for 16 spins. For
this case, we compute the ground state and low-energy excited
states and evaluate some observables. Of particular interest in
order to assess chirality are spin-current operators of the form

J z
i,i+1 = −Ji−1Sz

i−1(SiSi+1) − Ji(SiSi+1)Sz
i+2,

(7)
J z

i,i+2 = −Ji(SiSi+2)Sz
i+1,

which describe the flow of the z component of magnetization
from site i to sites i + 1 and i + 2, respectively [notice that, by
SU(2) invariance, there is not a preferred spin-component].
J z

i,i+1 measures the currents on the rung and slash links,
to which there are contributions from two triangles. J z

i,i+2
measures the currents in the chains with only a single triangle
contribution. The current operators can be derived by taking
the commutator of the spin operator and the Hamiltonian,
which is presented in Appendix A for a general N-leg ladder.
For the wave functions obtained from our small-size exact
diagonalization, we evaluate the expectation value of this
current operator for the up, down, rung, and slash pairs of
sites. Notice that in the chosen basis described below there are
no J x and J y current components, so that the plotted current
J z is the total current in the system.

For the Hamiltonian configuration H1 (or equivalently H2),
we find from our results that the ground state is a singlet
of SU(2) with total spin zero, i.e., 〈S2〉 = 0 with S the total
spin vector operator. Thus, we find that the ground state does
not carry any currents. However, in the first excited state [an
SU(2) triplet] the pattern of currents for every pair of sites
corresponds to the one in Fig. 3, where we show both open and
periodic boundary conditions. The chirality of the currents in
the bulk is clear, and matches the intuition from Fig. 2.

Complementarily, for the Hamiltonian configuration H3 (or
equivalently H4), we find that the ground state has a well-
defined total spin and is also degenerate, according to the
data in Table I. In this case, we diagonalize the subspace of
degenerate ground states in the S2 and the Sz bases and pick
states with fixed total and z component of the spin. We find
that in such ground states there is a nontrivial current behavior,
as shown in Fig. 4. Again, the observed pattern also matches
our intuitive picture from Fig. 2.
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FIG. 3. Expectation values of the link currents for the first ex-
cited state of H1 with 16 spins and 〈S2〉 = 2, Sz = −1 for open
boundary conditions (top) and periodic boundary conditions (bot-
tom). The color refers to the strength of the currents normalized to
the maximal current J max = 0.107 in Figs. 3 and 4. Both cases have
counterpropagating edge currents, with periodic boundary conditions
showing translation invariance and no currents on the rung and slash
links. The first excited state with 〈S2〉 = 2 and Sz = 0 does not show
J z current expectation values, for Sz = +1 the current patterns are
inverted.

From our small-size study with exact diagonalization we
learn a couple of important things in order to study this model.
First, configurations H3 and H4 do not have counterpropagat-
ing chiral edge modes and, moreover, have a covariant ground
state with a well-defined, nonzero, total spin S; therefore, the
ground manifold is a (2S + 1)-plet. Second, configurations H1

and H2 have counterpropagating chiral edge modes as well as
a singlet ground state, which is thus SU(2) invariant.

As a matter of fact, the reason for the ground state of H3

breaking SU(2) symmetry down to U(1) lies in the different
overall character of the Hamiltonian: as readily visible on
short chains, H1 is globally antiferromagnetic, while H3 is
instead ferromagnetic. This means, practically, that the ground
state of H1 belongs to the singlet sector (total spin zero), while
the energy for H3 would be minimized by a state with large
spin. If we do not make use of symmetries, the multiplicity
of the H3 ground-state manifold diverges at the targeted
thermodynamic limit, thus making it difficult for numerical
algorithms to converge.

TABLE I. Ground-state degeneracy and total spin for different
lengths, for configurations H3 and H4.

No. Spins Degeneracy Total spin

4 3 1
6 3 1
8 5 2

10 5 2
12 7 3
14 7 3
16 7 3
18 9 4
20 9 4
22 11 5
24 11 5

FIG. 4. Expectation values of the link currents for the ground
state of H3 with 16 spins and 〈S2〉 = 12, Sz = −3 for open boundary
conditions (top) and periodic boundary conditions (bottom). The
color refers to the strength of the currents normalized to the maximal
current J max = 0.107 in Figs. 3 and 4. Both cases have coprop-
agating edge currents, with periodic boundary conditions showing
translation invariance and no oscillations in the strength of the
currents. The ground state with 〈S2〉 = 12 and Sz = 0 does not show
J z current expectation values, for Sz = +3 the current patterns are
inverted.

Given the above, in this paper we choose to analyze in
detail the ground state of configuration H1 (or equivalently
H2), which is an SU(2) singlet, with an SU(2)-invariant
infinite DMRG code. The case of configuration H3 (and H4)
could be better assessed by an MPS code that incorporates
U(1) symmetry instead, and/or an SU(2) code that can target
generic covariant states. Therefore, we focus here entirely on
the configuration providing an SU(2)-invariant ground state.

D. Bosonization

A wide class of interactions can be treated by Jordan-
Wigner transformation followed by bosonization of the
fermionic modes [17,18]. We start with the following set of
definitions:

S+
j = e+iφ j c†

j , S−
j = e−iφ j c j, Sz

j = n j − 1/2, (8)

where φ j = π
∑

k< j S+
k S−

k is the Jordan-Wigner string. A
term h( j) = JjS j · (S j+1 × S j+2) of three consecutive spins
with coupling Jj will transform to h( j) → Jj[T ( j) + V ( j)].
The kinetic and interacting terms read as

T ( j) = − i

4
(c†

j c j+1 − c†
j c j+2 + c†

j+1c j+2) + H.c.,
(9)

V ( j) = + i

2
(c†

j c j+1n j+2 + n jc
†
j+1c j+2) + H.c.,

with density operator nj = c†
j c

†
j . The full kinetic part of the

two-site invariant Hamiltonian in Eq. (1) reads as

Hkin =
∑
j odd

J1T ( j) + J2T ( j + 1), (10)

which is simply a tight-binding model of spinless fermions on
a triangular lattice with nonzero fluxes for generic couplings
J1 and J2. For the case J1 = −J2, two parts of the tight-binding
Hamiltonian become fully disconnected. To see this, we use a
two-site unit cell according to the drawings in the introductory
chapter with sublattices A (upper chain) and B (lower chain)
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FIG. 5. Dispersion for different coupling strengths. The color indicates the polarization of the bands. In the case we study in the paper,
both bands are fully polarized and the kinetic dispersion is ω(k) = ± 1

2 sin(k). If we tune J2
J1

> −1, we allow for a mixing between A and B,
and only one of the avoided crossings is preserved.

and a spinor dk = (cA,k cB,k )�. The tight-binding Hamiltonian
in this basis and after a subsequent Fourier transformation
reads as Hkin = ∑

k d†
k h(k)dk and reduces to a sum of 2 × 2

matrices given by

h(k) = −1

4

(
2J1 sin k iJ+(1 − e−ik )

−iJ+(1 − e+ik ) 2J2 sin k

)
, (11)

where J+ = J1 + J2. Without further restrictions, we assume
J1 � 0 to avoid unnecessary ambiguities in the ordering of
the bands and show the resulting dispersion in Fig. 5. If we
consider J1 = +1 and J2 = −1 (i.e., H1), we see two cosine
bands which are shifted by ±π

2 according to the nonzero
flux threading the two sublattices. The two Fermi points
correspond to a central charge of c = 2. If we slightly increase
J2, we find H (k = 0) = 0, that is, there are no scattering

processes and the dispersion (i.e., the band crossing) will
be left untouched. However, at momentum k = π , there are
strong interchain transitions, i.e., H (k = π ) = 1

2 (J1 + J2)σy

which yields the observed avoided crossing.
The interacting part of the Hamiltonian reads as

Hint =
∑
j odd

J1V ( j) + J2V ( j + 1), (12)

which can again be written in terms of the two-site basis

Hint = i

2

∑
j

[(J1n j+1,A + J2n j−1,B)c†
j,Ac j,B

+ (J1n j,A + J2n j+1,B)c†
j,Bc j+1,A] + H.c. (13)

For better understanding, we visualize all hopping terms of
the full Hamiltonian

H =
∑
j

J1

J2

j j + 1

+ J1 + J2

j j + 1

+ J1 + J2

j j + 1

+
J2

J1

j j + 1

+
J2

J1

j − 1 j j + 1

+ H.c.

Here, the colored sites (filled circles) correspond to the density
and the arrows indicate a hopping operator. It is now apparent
that the interactions enable the same interchain tunnelings as
the single-particle ones (up to a phase and additional density
dependencies). Albeit the isolated study of chiral interac-
tions in existing materials is quite unrealistic, we showed
here that it is equivalent to a simple fermionic tight-binding

model combined with density-assisted hoppings in a quasi-
one-dimensional ladder setup. A combination of such terms
was proposed for experiments in the framework of ultracold
atoms trapped in optical lattices [19] and has been realized
very recently [20].

In order to understand the gapping mechanism in the
model, we start from Hamiltonian H1 (J1 = −J2 = +1) with

205121-5



SCHMOLL, HALLER, RIZZI, AND ORÚS PHYSICAL REVIEW B 99, 205121 (2019)

FIG. 6. At the Fermi energy EF the linearized spectrum consists
of left- and right-moving species for each flavor A, B.

two identical bands which are displaced by a phase π in
momentum space. If we fix the density at a Fermi energy EF

such that the Fermi momentum kF is in the vicinity of the
linear regime of the dispersion, we are allowed to linearize
the spectrum. The linearization of such a dispersion is fairly
standard and can be described by a Luttinger liquid (LL)

HLL = vF

∑
α∈{A,B}

∑
k

(
R†

α (k)
(
k − kα

2

)
Rα (k)

− L†
α (k)

(
k + kα

1

)
Lα (k)

)
, (14)

where R/Lα (k) denote right- and left-moving modes of the
linearized dispersion in the vicinity of the Fermi momenta kα

i
and vF = 1

2 cos(kα
2 ) is the Fermi velocity (see Fig. 6).

We now proceed by rewriting the fermionic modes in terms
of right- and left-moving fields R/Lα (x):

cA(x) ∝ eikA
1 xLA(x) + eikA

2 xRA(x),

cB(x) ∝ eikB
1 xLB(x) + eikB

2 xRB(x) . (15)

The local densities for both species α ∈ {A, B} can be
expressed in terms of the new modes

nα (x) ∝ nα,R(x) + nα,L(x) + (
ei(kα

1 −kα
2 )xR†

α (x)Lα (x) + H.c.
)
.

(16)

The gap opening in Fig. 5 can be explained by a perturbative
expansion in J+. Going back to the general noninteracting
Hamiltonian, the A, B scattering processes become

J+�h(x) ∝ J+
2i

[c†
AcB − c†

A(x + a)cB] + H.c.

≈ J+
2i

[2R†
A(x)LB + (∂xL†

A(x))RB] + H.c. (17)

The first term (∝R†
ALB) is a relevant, the other an irrelevant,

perturbation to the Luttinger liquid Hamiltonian.
Among many other (supposedly irrelevant) terms of the

interacting Hamiltonian in Eq. (13), which we do not devote
our main focus to, we obtain a marginal term

Hint ≈ −2
∑

j

nAB( j)�h( j) . (18)

This yields up to a sign the same scattering process between
the sublattices as encountered in Eq. (17), only here it is
multiplied by the density

nAB( j) = J1[nA,L( j) + nA,R( j)] + J2[nB,L( j) + nB,R( j)].
(19)

The simple Abelian bosonization approach presented in this
section is already sufficient to explain two important features.
First, by coupling right movers of sublattice A with left movers
of sublattice B, a gap opens up around k = π . This removes
one of the two Fermi points and the interaction drives the
system from a central charge c = 2 to c = 1 in a similar
fashion as the noninteracting term. Furthermore, it explains
the chiral current propagation of the low-lying energy exci-
tations observed in the exact diagonalization (see Fig. 3). To
predict the long-distance behavior of correlation functions, we
resort instead to more sophisticated non-Abelian bosonization
techniques. In Appendix B, we recap the continuum limit
of the model by Huang and coauthors following Ref. [11]
and present the expected analytic behavior for spin-spin cor-
relations.

III. METHODS

The numerical method that we used to compute the ground-
state properties of the model is infinite DMRG [6]. The
iDMRG algorithm has been extensively discussed many times
in the literature (see, e.g., Sec. III of Ref. [21]). In our specific
implementation we used the two-site update for an infinite
MPS with a two-site unit cell. Each physical index of the
MPS has dimension 4, and describes the upper and lower
spin- 1

2 of each rung of the ladder. Moreover, we implemented
SU(2) symmetry using the scheme that we described in
Ref. [9], based on the formalism of fusion trees to target
the SU(2)-symmetric ground state of the ladder configuration
J1 = −J2 = −1 (H1). Therefore, the physical index of the
MPS carries the quantum numbers 1

2 ⊗ 1
2 = 0 ⊕ 1.

Apart from the implementation of SU(2) symmetry, our
iDMRG method heavily relies on the correct implementation
of the MPO for the Hamiltonian with SU(2) symmetry. While
the case of three-spin interactions is implicitly discussed in
the literature, a more in-depth discussion of this case would
be particularly useful. We describe the details of how to
implement such an MPO in Appendix C.

TABLE II. Symmetric and effective bond dimensions for several
simulations together with the irreps and degeneracies on the virtual
bonds of the MPS.

χsym χ Virtual bond irreps

50 148 014 ⊕ 124 ⊕ 211 ⊕ 31

100 312 026 ⊕ 146 ⊕ 224 ⊕ 31

150 480 037 ⊕ 168 ⊕ 238 ⊕ 37

200 652 048 ⊕ 189 ⊕ 252 ⊕ 311

250 834 058 ⊕ 1110 ⊕ 265 ⊕ 316 ⊕ 41

300 1008 069 ⊕ 1130 ⊕ 280 ⊕ 320 ⊕ 41

350 1184 080 ⊕ 1149 ⊕ 296 ⊕ 324 ⊕ 41
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FIG. 7. Convergence of the ground-state energy E0 with the MPS
bond dimension χ . Here, we use the discarded weight (see also
Fig. 8) as an estimate of the relative error for the ground-state energy
in each simulation. The inset shows the convergence of the error
�E0 = E0 − E0(χ → ∞) between the energy and its extrapolated
value.

IV. RESULTS

A. Energy convergence

Let us start by showing the results for the energy conver-
gence of our SU(2) iDMRG code for the considered chiral
Hamiltonian on a ladder. In order to give an overview of
simulation parameters and the corresponding irreps on the
virtual bonds, we listed some examples in Table II. The
convergence of the energy with the effective MPS bond di-
mension χ is shown in Fig. 7, where we use up to χ ≈ 1200.
In the aforementioned figure, convergence is only approached
for very large bond dimension χ � 1000, which would be
difficult to reach without SU(2)-symmetric tensors. In Fig. 8

FIG. 8. Convergence of the ground-state energy E0 with the
iDMRG discarded weight. The inset shows the convergence of the
error �E0 = E0 − E0(χ → ∞) between the energy and its extrapo-
lated value.

FIG. 9. Scaling of the entanglement entropy S(L) for a block of
size L and different bond dimensions χ . Computing the entanglement
entropy of a block is restricted to only moderate bond dimensions
due to a higher computational cost of O(χ 5) compared to the semi-
infinite chain which scales like O(χ 3).

we show a similar plot, namely, the convergence of the
ground-state energy with the discarded weight in the iDMRG
approximation. As is well known, this allows for a better
extrapolation to the χ → ∞ limit [22]. In our case, we obtain
an estimate of

E0(χ → ∞) ≈ −0.578 978(2). (20)

In the insets of Figs. 7 and 8 we plot the convergence of
the error �E0 = E0 − E0(χ → ∞) between the energy and its
extrapolated value, as a function of the inverse effective MPS
bond dimension 1/χ and the discarded weight, respectively.2

B. Entanglement

We studied several entanglement figures of merit in our
system. First, in Fig. 9 we show the scaling of the entan-
glement entropy S(L) of a block of length L with two open
ends, for different values of the bond dimension χ . The
computational cost of this calculation is O(χ5), as opposed
to the O(χ3) cost of infinite DMRG. Thus, we are restricted
to only moderate values of the bond dimension for the calcu-
lation of the entanglement entropy. Before reaching saturation
due to finite χ for large block sizes, the data follow a CFT
scaling S(L) ∼ c/3 log L [24]. In our case, this implies that
c ≈ 1, as seen in the plot, where we also show our best fit
including O(1/L) subleading corrections. Furthermore, we
also analyzed the scaling of the entanglement entropy of
half an infinite chain with the MPS correlation length ξ , a
calculation that instead scales like O(χ3). The result shown

2Generally, the convergence of the ground-state energy with respect
to the discarded weight should be fitted with a linear function [23].
This, however, is in good agreement with our power-law fit that
shows an exponent of 0.973.
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FIG. 10. Scaling of the entanglement entropy S(ξ ) for half an
infinite chain with the MPS correlation length ξ for up χ = 1184.

in Fig. 10 matches perfectly a CFT scaling S(ξ ) ∼ c/6 log ξ ,
again with central charge c ≈ 1.

In order to assess the consistency of our calculations, we
computed the finite-entanglement scaling of the MPS corre-
lation length ξ with the bond dimension χ [7]. In Fig. 11
we see that this follows a perfect algebraic fit ξ ∼ χκ , with
exponent κ ≈ 1.16, which following the approximate formula
κ ≈ 6/[c(

√
12/c + 1)] [7], is again compatible with c ≈ 1.

C. Correlation functions

In order to assess the criticality of the system, we com-
puted a number of SU(2)-invariant correlation functions
C(r = |i − j|) in the system, with positions i, j and relative
distance r (notice that the sites i, j can belong to different
ladder legs). We observed algebraic decays and critical ex-
ponents, following C(r) ∼ r−α . We computed all correlation

FIG. 11. Scaling of the MPS correlation length ξ with the bond
dimension χ .

FIG. 12. Spin-spin correlation function between spins in the
same chain. The two-point correlation function is expected to follow
C(r) ∼ (log r)1/2/r, which is in good agreement with the numerical
data [25,26]. The exponent for the short-distance term is fixed.

functions for an MPS with bond dimension χ = 1184 (χsym =
350).

1. Spin-spin correlator

First, we computed the spin-spin correlation functions
〈Su

i Su
j〉 and 〈Su

i Sd
j 〉, where i, j are the rung indices and u, d

the leg indices, respectively. As shown in Figs. 12 and 13, we
observe a similar algebraic decay in both cases with exponent
α ≈ 1. This indeed matches the expectation from the contin-
uum limit calculation in Eq. (B12). Additional logarithmic
corrections for large distances are conform with the analytic
prediction [25,26].

FIG. 13. Spin-spin correlation function between spins in differ-
ent chains. The two-point correlation function is expected to follow
C(r) ∼ (log r)1/2/r, which is in good agreement with the numerical
data [25,26]. The exponent for the short-distance term is fixed.

205121-8



QUANTUM CRITICALITY ON A CHIRAL LADDER: AN … PHYSICAL REVIEW B 99, 205121 (2019)

FIG. 14. Dimer-dimer correlation function between vertical
dimers with logarithmic corrections. The correlations for smaller
bond dimensions show an exponential tail due to the final amount of
entanglement in the MPS. For larger bond dimension, the correlation
is expected to follow the fitted function to even larger separation
distances.

2. Dimer-dimer correlator

Next, we studied the dimer-dimer correlation function be-
tween vertical dimers 〈(Su

i Sd
i )(Su

jS
d
j )〉. The four-body correla-

tion is corrected by all possible disconnected parts, namely,
〈Su

i Sd
i 〉〈Su

jS
d
j 〉, 〈Su

i Su
j〉〈Sd

i Sd
j 〉, and 〈Su

i Sd
j 〉〈Sd

i Su
j〉 with appro-

priate factors. The result is shown in Fig. 14, where the decay
fits very well an algebraic decay, as expected for criticality,
with decay exponent α ≈ 5

4 .

D. Entanglement spectrum

In order to further characterize the model, we also studied
the entanglement spectrum of half an infinite chain. The
singular values are readily available and their distribution is
according to the virtual bond irreps shown in Table II, where
each spin sector S comes with a 2S + 1 degeneracy. Notice
that, by construction, S will always be an integer because of
the coarse graining of the two spin- 1

2 ’s from the upper and
lower legs to form the MPS.

In Fig. 15 we show our results for the entanglement ener-
gies εα ≡ − log λ2

α with λα the Schmidt coefficients of half
an infinite chain. The results are organized according to the
different spin sectors S = 0, 1, 2, 3, and 4 of the bond dimen-
sion [so that each point in the plot is indeed a (2S + 1)-plet].
Results for our ladder model with triangles (TM) are given by
the squares. In addition, we compare the results of the chiral
ladder to the values of εα that we obtain when computing
the ground state of the spin- 1

2 Heisenberg spin chain (HM)
with the same numerical method, and after coarse graining
two sites into one (so that the MPS bond dimension also has
integer spin sectors S). As can be seen in the plot, both spectra
show exactly the same features up to an overall rescaling.
This is especially true for the lowest part of the entanglement
spectrum, i.e., the largest singular values, which are also most
accurate. This is an important observation because it means

100 101 102 103
0

5

10

15

20

25

30

FIG. 15. Entanglement spectrum for the triangle ladder model
(TM, squares) and the Heisenberg spin chain (HM, dots), with
multiplets organized according to their spin sector S. Every point is
a (2S + 1)-plet.

that the low-energy limits of both lattice systems (TM and
HM) have quite probably the same boundary CFT [27], and in
practice it means that both limits are probably described by the
same (1 + 1)-dimensional CFT. Accordingly, this is a strong
indication that the CFT for our chiral ladder model is likely
the same than for the Heisenberg spin- 1

2 chain, i.e., an SU(2)1

WZW theory, which indeed would be in agreement with all
our previous results as well as with the SU(2) symmetry of the
lattice model. Notice, though, that the continuum Hamiltonian
in Eq. (B10) is not yet the one of an SU(2)1 effective theory
since it is written in terms of current operators for each leg of
the ladder. For completeness, we also show the convergence
of the entanglement spectrum with the MPS bond dimension
in Appendix D.

V. CONCLUSIONS

In this paper we have studied a chiral two-leg ladder with
SU(2) symmetry using an SU(2)-invariant iDMRG algorithm.
After getting some intuition about the model by Kadanoff
coarse graining, exact diagonalization, and bosonization, we
find numerically that the ground state of the system agrees
with a CFT with central charge c ≈ 1, which is also com-
patible with previous studies of the continuum limit. In
particular, we analyzed the scaling of the entanglement en-
tropy of a block and of half an infinite system, as well as
finite-entanglement scaling, ground-state energy convergence,
entanglement spectrum, and different correlation functions
showing algebraic decay at long separation distances. Our
results for the entanglement spectrum are compatible with
an SU(2)1 WZW theory in the low-energy limit. Moreover,
we explained in full detail how to obtain SU(2)-invariant
MPOs for three-spin interactions, something that so far had
not been discussed in detail in the literature. Our procedure
for constructing such MPOs can be generalized to arbitrary
SU(2)-invariant interactions on 1D and quasi-1D systems.
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Our work motivates further investigations along a number
of directions. For instance, it would be interesting to dig
deeper into the continuum limit of the model. The case of
multileg and higher-spin ladders could also be analyzed with
techniques similar to the ones in this paper. This would
be particularly interesting in order to understand how two-
dimensional physics emerges, and how the gapped/gapless
nature of the chiral system depends on both the spin and the
number of legs. An investigation of configuration H3 with
U(1)-invariant and/or SU(2)-covariant MPS methods would
also be relevant in order to understand the overall physics of
the chiral ladder configurations that we did not consider here.
Investigating similar chiral Hamiltonians in kagome stripes
would also be within reach and could lead to interesting
physical insights. Finally, we expect that the simulations in
this paper will help us to understand the procedure to simulate
chiral quantum spin models in two spatial dimensions with
SU(2)-invariant tensor networks such as projected entangled
pair states (PEPS) [28–30].
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APPENDIX A: DERIVATION OF THE
CURRENT OPERATOR

The operators to measure the spin currents flowing in the
links of the ladder can be derived from the Hamiltonian

H = Jjεαβγ Sα
j Sβ

j+1Sγ

j+2 (A1)

using the Heisenberg equation of motion. Kirchhoff’s law is
satisfied for all the nodes in the lattice, and we can compute
the spin currents passing each node according to

−∂Sμ
i

∂t
= − i

[
Sμ

i , H
] = −iJjεαβγ

[
Sμ

i , Sα
j Sβ

j+1Sγ

j+2

]
= Ji

(
SiSi+1Sμ

i+2 − SiSi+2Sμ
i+1

)
+ Ji−1

(
SiSi+1Sμ

i−1 − Si−1SiS
μ
i+1

)
+ Ji−2

(
Si−2SiS

μ
i−1 − Si−1SiS

μ
i−2

)
. (A2)

For a general ladder with N chains, there are two currents
on every link, one for each triangle the link appears in. The
resulting 12 different currents per lattice site can be presented
in a more intuitive way in Fig. 16. For the N = 2 leg ladder
subject to analysis in the paper there are only six terms for
every lattice site i, e.g., Ji,n with n ∈ [1, 2, 3, 4, 5, 6] for
the upper chain and n ∈ [7, 8, 9, 10, 11, 12] for the lower
chain assuming periodic boundary conditions. In case of open
boundary conditions, one has to disregard nonexistent terms
at the edges.

−∂tSi =

+

+

+

+

+

J1

( )
(SiSi+1)Si+N

Ji,1

− (SiSi+N )Si+1

Ji,2

J2

( )
(SiSi+1)Si−N+1

Ji,3

− (SiSi−N+1)Si+1

Ji,4

J1

( )
(SiSi−N )Si−N+1

Ji,5

− (SiSi−N+1)Si−N

Ji,6

J1

( )
(SiSi+N−1)Si−1

Ji,7

− (SiSi−1)Si+N−1

Ji,8

−

J2

( )
(SiSi+N−1)Si+N

Ji,9

− (SiSi+N )Si+N−1

Ji,10

−

J2

( )
(SiSi−N )Si−1

Ji,11

− (SiSi−1)Si−N

Ji,12

−

FIG. 16. All terms of the spin current operator contributing at
each site of the ladder. We define incoming currents as being positive
and outgoing currents as being negative. The current in each link of
the ladder is a three-site observable which includes a scalar product
(indicated by arrows) between two sites, and the multiplication with
S on the third site (depicted as a blue colored circle).

APPENDIX B: CONTINUUM LIMIT

The ladder Hamiltonian in Eq. (1) has been considered in
the literature in the presence of extra spin-spin Heisenberg-
type interactions [11–13]. In these works, the low-energy
continuum limit of our purely chiral lattice model H1 (equiv-
alently H2) has also been computed (see, e.g., Appendix A
of Ref. [11]). Here, we sketch briefly the main points of this
derivation, and discuss some implications.

The key idea to derive the continuum limit is to use the
same formalism as in Ref. [31] (see also Ref. [32]) to deal
with the continuum limit of the antiferromagnetic Heisenberg
quantum spin chain. Starting from a Hubbard-type Hamilto-
nian for fermions with spin (say, electrons), one considers
operator ci,α which annihilates an electron of spin α at site
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i. Spin operators are then written in terms of these fermionic
operators as

Si = 1
2 c†

i,ασσσαβci,β , (B1)

with σσσ a vector of Pauli matrices. As explained in Ref. [31],
in the continuum limit the fermionic field is expanded around
the Fermi points k ≈ ±π/2,

ci,α → ψα (x) ∼ e−iπx/2ψL,α (x) + eiπx/2ψR,α (x), (B2)

with ψL/R,α (x) slowly varying fields on the scale of lattice
spacing a, which annihilate left–plx-sol-plxright-moving elec-
trons. These chiral fermions can be bosonized as

ψL/R,α (x) ∼ e−i
√

2πϕL/R,α (x), (B3)

with ϕL/R,α (x) chiral bosons. Introducing charge and spin
degrees of freedom as

ϕL/R,c(x) = ϕL/R,↑(x) + ϕL/R,↓(x)√
2

,

(B4)

ϕL/R,s(x) = ϕL/R,↑(x) − ϕL/R,↓(x)√
2

,

one can see that at half-filling (or, more restrictively, for one
electron per lattice site), a small Hubbard interaction gaps
out the charge mode. This can then be integrated out, and
the low-energy properties are then described by spin physics.
Moreover, for the Heisenberg model, the SU(2) spin symme-
try is independently conserved for fields ψL/R,α (x) [31] which,
following Noether’s theorem, implies that one can write the
conserved (chiral) currents

JL/R = 1
2ψ

†
L/R,ασσσαβψL/R,β . (B5)

Thus, in the continuum limit, the lattice spin operators can be
written as

a−1Si ≈ (JL + JR) + 1
2 (−1)i(ψ†

L,ασσσαβψR,β + H.c.). (B6)

Bosonizing the fermionic fields in the second term and inte-
grating out the charge boson [31] one arrives at the expression

a−1Si ≈ (JL + JR) + (−1)i� tr(gW · σσσ ), (B7)

with gW(x) the Wess-Zumino-Witten (WZW) field [i.e., an
SU(2) matrix] and � a nonuniversal constant. Matrix gW(x)
is explicitly given by

gW(x) =
(

ei
√

2πϕs ei
√

2πϕ̄s

e−i
√

2πϕ̄s e−i
√

2πϕs

)
, (B8)

with ϕs ≡ ϕL,s + ϕR,s ≡ (ϕL,↑ + ϕR,↑ − ϕL,↓ − ϕR,↓)/
√

2
and ϕ̄s ≡ ϕL,s − ϕR,s ≡ (ϕL,↑ − ϕR,↑ − ϕL,↓ + ϕR,↓)/

√
2

following notation from Ref. [33]. Usually, one defines
n ≡ � tr(gW · σσσ ), which physically amounts to a quantum
field for the staggered magnetization. Thus, one finally arrives
at the usual expression

a−1Si ≈ (JL + JR) + (−1)in. (B9)

This equation sets the connection between lattice spin opera-
tors and chiral spin-current fields. Thus, for a Hubbard-type
system of electrons with exactly one electron per site, charge
degrees of freedom are frozen and spin physics emerges
entirely in terms of these operators. Importantly, for our

purposes, in Ref. [11] it was shown that with this substitution,
the continuum limit of our chiral Hamiltonian H1 is given by

H1 ≈ g
∫

dx(JL,1 · JR,2 − JR,1 · JL,2), (B10)

where g = 4a/π with a the lattice spacing, and JL/R,1/2 is the
chiral L/R current for the upper (1) or lower (2) legs of the
ladder. Here, the approximation ≈ means that the equivalence
holds up to irrelevant local perturbations, and in the limit of
lattice spacing going to zero. The calculation arriving to this
effective Hamiltonian, which we do not reproduce entirely
here, makes use of operator product expansions and analyzes
the existence of irrelevant terms in the continuum Hamilto-
nian. Notice that, as expected from the lattice Hamiltonian,
the obtained quantum field theory is odd with respect to time-
reversal symmetry (i.e., the exchange L ↔ R). As a remark,
let us also mention that, recently, it has been shown that
Eq. (B10) can also be written in terms of four Majorana fields
for each leg [34].

In the CFT language, operators JL/R are SU(2)1 Kac-
Moody chiral currents, and are the ones entering the SU(2)1

WZW model as low-energy effective field theory of the spin- 1
2

Heisenberg quantum spin chain [31]. Importantly, for our
purposes, in Ref. [13] it was shown that the quantum field
theory in Eq. (B10) for the chiral spin ladder is an RG fixed
point, i.e., dg/dl = 0, with l the RG-flow parameter. In other
words, the continuum limit of H1 is a scale-invariant quan-
tum field theory in (1 + 1) dimensions. In combination with
unitarity, a theorem by Zamolodchikov and Polchinski [35]
implies that this is indeed a (1 + 1)-dimensional conformal
field theory (CFT).3 Therefore, we expect a critical behavior
in the numerical simulations of the lattice Hamiltonian for a
purely chiral ladder in Eq. (1).

At this point, it is worth mentioning that, using these results
for the continuum limit, we can actually predict some of the
expected behavior for the correlation functions that we will
compute for the lattice model. In particular, let us consider
here the spin-spin correlator 〈SiS j〉 for, say, the upper leg.
Rewriting the continuum limit of spin operators as in Eq. (B9),
one arrives at a expression for the correlator in terms of
JL/R and n fields. Using the operator product expansion for
these fields, one can compute the decay of the asymptotic
decay of the correlator. These operator product expansions
can be found in, e.g., the Appendix of Ref. [11]. The relevant
nonvanishing ones for our case are

Ja
M (xM )Jb

M (0) ∼ 1

(2π )2

δab/2

x2
M

+ iεabc

2π

Jc
R(0)

xM
,

na(x)nb(0) ∼ 1

2π2a

δab

(xLxR)1/2
,

(B11)

Ja
L (xL )nb(0) ∼ i

εabcnc(0) + δabtr(g(0))/2πa

4πxL
,

Ja
R (xR)nb(0) ∼ i

εabcnc(0) − δabtr(g(0))/2πa

4πxR
,

3As far as the authors know, this theorem only exists for two-
dimensional CFTs, and its generalization to higher dimensions has
proven remarkably hard.
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(jL, mL) (jR, mR)

(jD, mD)

(jU , mU)

FIG. 17. Internal SU(2) structure of a generic MPO tensor with
four indices.

with M = L/R and xL/R = vτ ± ix holonomic/antiholonomic
coordinates (where τ is imaginary time and v the velocity
of the spin mode). Expanding the correlator and computing
the vacuum expectation value according to the above expres-
sions, the leading contribution at long distances is given by∑

a na(x)na(0), such that we obtain

〈SiS j〉 ∝ 1

| j − i| (B12)

up to multiplicative and additive constants. We will confirm
this asymptotic decay later with our numerical simulations,
as well as compute a number of other lattice correlation
functions.

APPENDIX C: CONSTRUCTION
OF SU(2)-INVARIANT MPOS

Here, we explain how to construct MPOs for different types
of SU(2)-invariant interactions based on symmetry consider-
ations only. We start with simple MPOs, such as the one for
the Heisenberg quantum spin chain, and then move on to more
complex interactions such as the three-spin chiral interactions
that we consider in this paper.

The ultimate goal is to write the desired Hamiltonian in
an SU(2)-invariant form, which implies a decomposition in
terms of degeneracy tensors and structural tensors (Clebsch-
Gordan coefficients) as described by the Wigner-Eckart theo-
rem. In order to do this, we first consider the Clebsch-Gordan
coefficients which are eligible for the MPO and determine
afterward which degeneracy factors are necessary in order to
construct the correct Hamiltonian, with the constraint that the
Hamiltonian must be an SU(2) scalar.

As a building block, we consider the generic MPO tensor
in Fig. 17, which shows an internal structure due to the
presence of four indices in the MPO tensor. The left/right
indices are the MPO bond indices, and the up/down indices
are the physical indices. Each trivalent tensor corresponds to
an intertwiner of SU(2), i.e., a Clebsch-Gordan coefficient.
Arrows show the direction of the legs (incoming/outgoing
irreps, see Ref. [9]).

To show how the construction process works for the MPO,
we consider two different Hamiltonians: a two-site Heisen-
berg interaction S · S, and a three-spin chiral interaction
S · (S × S).

(0, 0) (1, m)

(S, m′
S)

(S, mS)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
√

1
2s(s+1) Ŝ+ for m = −1

+
√

1
s(s+1) Ŝz for m = 0

+
√

1
2s(s+1) Ŝ− for m = +1

FIG. 18. Matrices for the MPO tensor with the left bond index
fixed to spin-0 and the right bond index fixed to spin-1, leaving
the freedom of choosing m = −1, 0, +1. Physical indices have spin
S = 1

2 .

1. Heisenberg two-spin interaction

Since the term S · S produces a scalar, we are interested in
MPOs that transform as a scalar as well, which means that
the bond indices at the left and right ends of the MPO need
to have spin-0. For two physical spins- 1

2 , it is easy to check
that this implies that the connecting bond index between two
MPO sites can only have either spin-0 or spin-1. While the
spin-0 channel is trivial and corresponds to the application
of the identity operator on the physical spins, the spin-1
channel necessarily generates the dot product. This is because
the only two scalar operators for two spins are I ⊗ I and
S · S ≡ Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz. For the left and right
MPO tensors, we can now write all the coefficients once all the
irreducible representations are fixed. Focusing on the spin-1
channel for the connecting index, the results are shown in
Figs. 18 and 19. It is then straightforward to check that the
contraction of the left and right MPO tensors from Figs. 18
and 19 gives back the desired dot product S · S of the two-site
Heisenberg Hamiltonian, with a prefactor of − 4

3 as shown in
Fig. 20.

Next, we can easily build the SU(2)-invariant MPO for
the Heisenberg quantum spin chain with H = ∑

i Si · Si+1 by
adding one more spin-0 channel to the MPO bond index. More
specifically, the irrep with spin-0 will have degeneracy two,
i.e., we will have 01 and 02 (the subscript refers to the degen-
eracy). Combined with the nondegenerate spin channel 11, the
MPO can be written according to Fig. 21, where we show the
details of the degeneracy tensors accompanying the structural
(Clebsch-Gordan) part. As in the nonsymmetric part, the irrep
01 “propagates” through the bond indices until an interaction

(1, m) (0, 0)

(S, m′
S)

(S, mS)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+
√

1
2s(s+1) Ŝ− for m = −1

−
√

1
s(s+1) Ŝz for m = 0

−
√

1
2s(s+1) Ŝ+ for m = +1

FIG. 19. Matrices for the MPO tensor with the left bond index
fixed to spin-1 and the right bond index fixed to spin-0, leaving
the freedom of choosing m = −1, 0, +1. Physical indices have spin
S = 1

2 .
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(0, 0)
(1, m)

(0, 0)

= −
(√

2
3

)2

S+
i S−

i+1 −
(

2√
3

)2

Sz
i Sz

i+1 −
(√

2
3

)2

S−
i S+

i+1 = − 4
3
�Si · �Si+1

FIG. 20. The contraction of the MPO tensors in Figs. 18 and
19 produces the desired two-site Heisenberg interaction with a − 4

3
prefactor. The sum is over the values of m for the spin-1 channel of
the bond index.

is hit (which is mediated by irrep 1), and onwards propagates
the irrep 02. In describing this MPO tensor we have used the
notation

�S =
(

−
√

2

3
S+,

2√
3

Sz,

√
2

3
S−,

)
, �S =

⎛⎜⎜⎜⎝
√

2
3 S−

− 2√
3
Sz

−
√

2
3 S+

⎞⎟⎟⎟⎠,

(C1)

for a system of spin- 1
2 . Moreover, we also defined the fac-

tor γ ≡ i
√

3/4 that compensates the unavoidable factor − 4
3 ,

which appears due to the contraction of the Clebsch-Gordan
tensors as shown in Fig. 20.

full MPO =

I γ �S 0

0 0 Jγ�S

0 0 I

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠
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01 11 02

chargeSector
jint j1 j2 j3 j4

dimensionality degeneracyTensor MPO

1
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1
2 0 0 1

2 [ 1 , 2 , 2 , 1 ]
1 0

0 1

⎛
⎜⎝

⎞
⎟⎠01
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01 02

0 01/2

1
2

1
2 0 1 1

2 [ 1 , 2 , 1 , 1 ]
γ

0

⎛
⎜⎝

⎞
⎟⎠01

02

11

0 11/2

1
2

1
2 1 0 1

2 [ 1 , 1 , 2 , 1 ] 0 Jγ

( )
11

01 02

1 01/2

FIG. 21. MPO tensor with SU(2) symmetry for the Heisenberg
quantum spin chain. The degeneracy tensors go together with the
rank-4 structural tensor for the spin sectors shown. All other spin
sectors have vanishing degeneracy tensors. The internal spin for
every block is shown in bold font, the physical spin is always S = 1

2 .
The labels of the MPO indices are in the order D, L, R, U .

(1, m1) (1, m2)1
2

=

− 1
3 I + 2

3Sz
√

2
3 S− 0

√
2

3 S+ − 1
3 I

√
2

3 S−

0
√

2
3 S+ − 1

3 I − 2
3Sz

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠ ≡ A�

�

m1

−1

0

+1

\m2 −1 0 +1

(1, m1) (1, m2)
3
2

=

2
3 I + 2

3Sz
√

2
3 S− 0

√
2

3 S+ 2
3 I

√
2

3 S−

0
√

2
3 S+ 2

3 I − 2
3Sz

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠ ≡ B�

�

m1

−1

0

+1

\m2 −1 0 +1

FIG. 22. Possible coefficients of the central MPO tensor for the
scalar triple product. Here, the internal leg of the MPO can have the
two spin representations 1

2 and 3
2 .

2. Chiral three-spin interaction

As a second example of a scalar operator we consider the
triple product S · (S × S). In this case, the MPO spans over
three sites. The interaction on the second site can only be
mediated by having a spin-1 representation on both virtual
legs of the central MPO tensor. If this tensor had a spin-0
representation on either leg, then it would not be possible to
generate a three-body interaction. Moreover, a spin-2 repre-
sentation is excluded since the three-site MPO can then no
longer be terminated by a spin-0 after the third site, which we
demand in order for it to be a scalar. Additionally, the central
MPO tensor will have different internal spin- 1

2 and/or spin- 3
2 ,

since

1
2 ⊗ 1 = 1

2 ⊕ 3
2 , (C2)

where spin-1 will come from some bond index, and spin- 1
2

from some physical index.
In order to start and terminate the interaction in the MPO,

we can reuse the terms of the Heisenberg interaction from
Figs. 18 and 19. The additional terms of the MPO for the
triple product can be again constructed by evaluating the
Clebsch-Gordan coefficients for fixed spin representations of
the virtual legs for the central MPO tensor. These are given
explicitly in Fig. 22, for the two possible values 1

2 and 3
2 of

the internal leg.
In order to construct the MPO, we can now take linear

combinations of matrices A and B in Fig. 22 together with
the left and right tensors from Figs. 18 and 19. This is shown
in Fig. 23. We also use the notation

↔
M = αA

↔ + βB
↔

. (C3)

(0, 0)
(1, m)

M�

� (1, m′)
(0, 0)

FIG. 23. General construction of a three-site MPO with the linear
combination

↔
M = αA

↔ + βB
↔

. Summation over the common indices m
and m′ is assumed.
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full MPO =

I γ �S 0 0

0 0 M�
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Jγ�S

0 0 0 Kγ�S

0 0 0 I
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FIG. 24. MPO tensor with SU(2) symmetry for the quantum spin
chain Heisenberg and chiral three-spin interactions. The degeneracy
tensors go together with the rank-4 structural tensor for the spin
sectors shown. All other spin sectors have vanishing degeneracy
tensors. The operator

↔
M is the combination of the operators A

↔
and

B
↔

with proper weights. Again, the labels of the MPO indices are in
the order D, L, R,U .

Here the arrowheads indicate the center site of the MPO, in
analogy to Fig. 21, where arrows were used to signal the start
and end of the interaction.

The free parameters α and β can now be chosen in order to
reproduce the desired interaction. As a first option, one could
choose the superposition −A + B. For this choice, the MPO
tensor at the central site simplifies to

−A + B =
⎛⎝I 0 0

0 I 0
0 0 I

⎞⎠, (C4)

such that the overall three-body MPO reproduces a next-to-
nearest-neighbor Heisenberg interaction S1 · S3 instead of the
scalar triple product we aim for. As a matter of fact, this is also
a valid scalar for three spins, where the second spin simply
does not interact. By playing with this choice of α and β it is
also possible to construct MPOs for long-range interactions.
In our case, though, we find that in order to generate the chiral
triple product, it is necessary to choose α = −i and β = −i/2,

01

11

12

02

I

γ �S

Jγ�S

M�

�

Kγ�S

I

FIG. 25. Finite state machine for the MPO of the spin- 1
2 nearest-

neighbor Heisenberg model with chiral three-spin interactions. The
different states correspond to the different spin sectors for the bond
dimensions of the MPO.

in which case the MPO tensor at the central site becomes

−i

(
A + 1

2
B

)
= i

⎛⎜⎜⎝
−Sz −

√
2

2 S− 0

−
√

2
2 S+ 0 −

√
2

2 S−

0 −
√

2
2 S+ Sz

⎞⎟⎟⎠. (C5)

Evaluating the sum over the three MPO tensors in Fig. 23
yields

H = −4i

6
(SzS+S− − SzS−S+ + S+S−Sz

− S+SzS− + S−SzS+ − S−S+Sz )

= −4

3
S1 · (S2 × S3). (C6)

Notice that here again the factor − 4
3 appears due to the

relation between spin- 1
2 operators and Clebsch-Gordan co-

efficients. From these tensors it is then easy to construct an

FIG. 26. Snake pattern for the MPO and also coarse graining of
two ladder sites into one site of the MPS.
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FIG. 27. Scaling of the entanglement spectrum for S = 0 with
the MPS symmetric bond dimension χ , in normalized units.

MPO for a Hamiltonian made of a sum of chiral three-spin
interactions.

3. Two-spin and three-spin interactions together

We can now construct an MPO for a Hamiltonian such as

H = J
∑

i

SiSi+1 + K
∑

i

Si · (Si+1 × Si+2), (C7)

i.e., a sum of two-spin Heisenberg interactions and chiral
three-spin interactions. This Hamiltonian is an SU(2) scalar
because it is constructed as a sum of scalar operators. J and K
are parameters giving more weight to one term or the other.

As in the case of the plain Heisenberg model, we need
two spin-0 sectors in the bond dimensions of the MPO that
take care of applying the identity to all sites to the left and

50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

FIG. 28. Scaling of the entanglement spectrum for S = 1 with
the MPS symmetric bond dimension χ , in normalized units.
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FIG. 29. Scaling of the entanglement spectrum for S = 2 with
the MPS symmetric bond dimension χ , in normalized units.

to the right of the interacting sites. Moreover, here we also
need two spin-1 sectors in the MPO bond dimension: one
mediating the two-spin interaction, and the other mediating
the three-spin interaction. The resulting MPO tensor is given
in Fig. 24, where we specify the structural part, corresponding
to the Clebsch-Gordan coefficients, as well as the degeneracy
part. The structure of the MPO can also be represented by a
finite state machine, as shown in Fig. 25.

4. Chiral three-spin interactions on the ladder

For the purposes of this paper, we simulated a Hamiltonian
with chiral three-spin interactions of the triangles of the ladder
in Fig. 1, in which we considered alternating orientations
for the triangles as explained above. In order to construct
an MPO, we considered the snake pattern from Fig. 26, and
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2

2.5

3

3.5

4

4.5

FIG. 30. Scaling of the entanglement spectrum for S = 3 with
the MPS symmetric bond dimension χ , in normalized units.
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applied the techniques discussed previously to construct an
MPO for the sum of the different three-spin interactions.
Then, as shown in the figure, we coarse grained the two spins
for each rung of the ladder into a single physical site (with
irreps 01 ⊕ 11). In this way, the resulting MPO has a two-site
unit cell and is the one used in the iDMRG algorithm with a
two-site update.

APPENDIX D: FINITE-ENTANGLEMENT SCALING
OF THE ENTANGLEMENT SPECTRUM

In this Appendix we show our results for the scaling with
the bond dimension χ of the entanglement spectrum for the
different spin sectors S. Our results are shown in Figs. 27–30
for integer spins S = 0 up to S = 3. Each dot in the plots is a
(2S + 1)-plet. As we can see, the lowest part of the entangle-
ment spectrum converges quickly with the bond dimension.
The distribution of the lowest-lying entanglement energies
tends to have an equidistant structure, typical of a CFT. The

values for the largest possible bond dimension, which we
take as essentially converged for the lowest-lying part of the
spectrum, correspond to the ones shown in Fig. 15. We also
notice that the convergence of the individual entanglement
energies with the symmetric bond dimension seems to be
algebraic as opposed to exponential. In practice, this means
that from our plots one can extract the behavior

εα ≈ 1

χμ
, (D1)

for the αth entanglement energy εα , with μ an exponent
controlling the behavior at large χ . According to our data,
the exponent μ may depend on the index α itself, i.e., be
different for each one of the entanglement energies. Even if
purely empirical, this behavior seems to hold well for all the
studied values of the spin S. According to the results presented
in this paper, we take this also as a strong indication that the
system is critical and has an infinite correlation length.
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