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We consider Mott insulators driven by periodic coherent laser radiation, using both single-orbital and
multiorbital models, noting that the latter is of more interest in solid-state systems. We derive general expressions
for the resulting periodically driven spin models and spin-orbital models using time-dependent perturbation
theory. First, we show that the effective exchange interactions of the Floquet Hamiltonians are highly tunable
by the frequency, amplitude, and polarization of the laser. Second, we take the effect of finite bandwidth of
excitations into account and study possible heating effects. Using the same formalism with a slight modification
we also consider the small-frequency regime and study the dielectric breakdown of Mott insulators.
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I. INTRODUCTION

The study of periodically driven quantum systems has
received significant attention in recent years. A common
theoretical prescription is the Floquet formalism [1,2], which
amounts to finding the eigenstates of the time evolution oper-
ator U (T + t, t ) from time t to t + T , where T is the period
of the drive. These states have the form e−iεnt |n〉t , with |n〉t

a periodic state with the same period as that of the drive and
εn called the quasienergy. This form for eigenstates ultimately
allows for a description of a time-periodic system using some
time-independent Hamiltonian dubbed as the “Floquet Hamil-
tonian,” HF = ih̄ logU (T, 0)/T , where U (T, 0) is the strobo-
scopic time-evolution operator from time 0 to a full period
T . One can further write down the evolution operator from
arbitrary time t0 to another arbitrary time t with the use of
the operators called the micromotion operators, as U (t, t0) =
ÛF (t ) e−iH eff (t−t0 ) Û †

F (t0), where H eff is a time-independent
effective Hamiltonian and ÛF (t ), the micromotion operator,
is a periodic operator yielding intraperiod dynamics [3,4].

A natural way to periodically drive a condensed matter
system is with electromagnetic radiation. Since the details of
the Floquet Hamiltonian describing this situation are crucially
dependent on the frequency, amplitude, and polarization of the
external drive, one is able to engineer the physical properties
of a quantum system to a large extent using laser-light radi-
ation [5]. Such “Floquet engineering” has been extensively
studied in the context of both single-particle and many-body
condensed-matter physics. In noninteracting systems, the light
radiation dresses the electronic band structure, which may
change the topological character, leading to various exotic
phenomena [6–16]. On the other hand, in interacting sys-
tems the Floquet physics has been explored in the context
of the light-induced/light-enhanced superconducting [17–21],
charge-density-wave [22], and spin-density-wave [23] Fermi-
surface instabilities. Laser-controlled exchange interactions
in single-band Mott insulators [24], topological phase tran-
sitions in Kondo insulators [25], and the possible periodi-

cally driven topologically ordered states [26,27] have also
been discussed. There are also many papers exploring Flo-
quet engineering in bosonic Hubband models based on the
high-frequency Floquet-Magnus expansion which assumes
the drive frequency ω is much larger than the hopping t
[28–30]. In that regime, an effective bosonic Hubbard model
can be derived with occupation-dependent hopping, amenable
to more standard analysis. This approach is complimentary to
the one we will adopt below, in which we focus on fermions
(i.e., electrons) and keep the frequency of the same order
as the Hubbard repulsion but assume that the hopping is
small compared to the Hubbard repulsion and that the particle
density is close to single-occupancy, which is the criterion for
the Mott state.

In the presence of interactions, one expects a periodically
driven system to eventually heat up to infinite temperature at
long times [31,32], i.e., that the density operator of any finite
subsystem become maximally mixed and featureless at long
times. However, as has been shown rigorously, the heating rate
can be (quasi-)exponentially slow [33–35] in the ratio of the
driving frequency to the local energy scales. As a result of
this, one expects such system to show interesting prethermal
behavior. One can even think of the possibility for a system to
first relax into a steady prethermal state at intermediate times
t � τ ∗, then ultimately evolve into the infinite-temperature
state at long times t � τ ∗. Such a prethermal regime is re-
alized numerically in Ref. [36], where it has been shown in a
lattice spin model that such a system can first equilibrate to a
(pre)thermal state with respect to a time-independent effective
Hamiltonian before it reaches the infinite-temperature state.
Such time-independent effective Hamiltonians are dubbed
“Floquet Hamiltonians” in the literature and are typically ex-
pressed as series expansions in 1/ω. Furthermore, it has been
explicitly shown in Ref. [36], using numerics, that the char-
acteristic infinite-temperature timescales τ ∗ in their models
grow exponentially with the increase of the driving frequency.

We will study periodically driven Mott insulators in this
work. We start with single-orbital Mott insulators, i.e., the
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Hubbard model, at half filling. The effective spin Floquet
Hamiltonian for periodically driven half-filled Hubbard model
has been derived [24,26,37]. In the static case, in an insulator,
the Hubbard model has two relevant energy scales: (i) the
energy scale of spin dynamics, i.e., exchange interaction J
between the electrons at neighboring sites, and (ii) the onsite
electron-electron interaction energy U , which comes into play
when there are doubly occupied sites. In the Mott-insulating
regime, the latter is much larger than the former, U � J . The
periodically driven Hubbard model, on the other hand, has an-
other energy scale that is the driving frequency ω. Following
similar arguments as in the previous paragraph, one should
be concerned about the regime in which a rapid heating does
not occur in this system. There are two classes of processes
that can lead to heating of the system due to the absorption of
photons: one is by multispin reorderings, and the other is by
creation of doubly occupied sites in the system. Considering
the second case, one can think of the doubly occupied sites
(doublons) and the empty sites (holons) which are created as
a consequence as new dynamical degrees of freedom. Due
to the hopping of electrons in the original Hubbard model,
the doublons and the holons are able to hop around and thus
these excitations of the system have a nonvanishing bandwidth
[38,39]. If photons that strike the system are able to supply
an energy that lies within this bandwidth, one expects to see
a rapid heating due to creation of doublon-holon (DH) pairs
in the system. As we will see, heating can be avoided if the
frequency is kept outside of certain resonant windows and,
at the same time, also kept much larger than the effective
spin exchange. In this paper, we will restrict our attention to
states with very low density of DH pairs and will develop a
time-dependent perturbation theory that will take the above
points into account.

Most of the previous theoretical studies of similar
Floquet systems have been focused on spin degrees of free-
dom and the electron-phonon couplings. To the best of our
knowledge, the orbital degrees of freedom and their interplay
with the spins have never been addressed in the context of
Floquet physics. This is most relevant to solid-state Mott
insulators like titanates, nickelates, and manganites. Given
that the orbitals play essential roles in strongly correlated
transition-metal oxides [40–42], in this paper we next consider
driving multiorbital Mott insulators using laser radiation. We
use multiorbital Hubbard models to describe such systems,
with the on-site electron interactions much greater than the
hopping parameters, and we consider the filling equal to
one electron per site. In a multiorbital Mott insulator, the
on-site interaction energy depends on the spin and orbital
configurations of the electrons at a multiply occupied site.
Furthermore, for a hopping event between two given sites, the
hopping parameters can also depend on the initial and final
orbital configurations of the sites. This added complexity of
multiorbital Mott insulators has an upside: It introduces more
freedom to engineer the exchange interactions in the effective
Floquet Hamitlonian.

Based on time-dependent perturbation theory, we first de-
rive general expressions for the time evolution in the periodi-
cally driven spin and spin-orbital models. Including the effects
of the DH hoppings, i.e., taking the effect of the bandwidth of
excitations into account in our perturbation theory, we find

that the Floquet Hamiltonian projected onto a generic state in
the zero-doublon subspace contains both real and imaginary
parts. The real part is interpreted as an effective spin or spin-
orbital model, and the corresponding exchange interactions
are renormalized by the periodic driving, which allows for the
Floquet engineering of the interactions. The imaginary part,
on the other hand, is related to the rate of generation of DH
pairs and thus can capture the effects of heating, due to the
increase in the density of DH pairs. This said, one can work in
two different regimes using the formalism of this paper. Either
one is away from a resonance and not too many DH pairs
are created, and thus a spin(-orbital) effective Hamiltonian
captures the physics well, or one is inside one of the resonant
windows and the physics of the system, at least for a short
time, is described by studying how DH pairs density increases
as a result of resonant radiation. We furthermore study, by
slightly altering the formalism, the creation rate of DH pairs
at very small frequencies and show that indeed a nontrivial
zero-frequency limit exists. The results in this limit can be
interpreted as the behavior of the system when exposed to
static external field, and thus is a reflection of the (static)
field-induced breakdown of a Mott insulator.

In a prior short paper [43], some parts of this formalism
were presented and applied to the orthorhombic titanates
YTiO3 and LaTiO3 using first-principles calculations. It was
observed that as a result of multiorbital interactions, ferromag-
netic and antiferromagnetic Mott insulators exhibit distinct
responses to laser radiation. The effective exchange interac-
tions in these titanates may be engineered to a large extent
and may be even flipped at moderate electric-field energies.
The present paper derives and extends the formalism of this
earlier work and discusses in much more detail the physics of
doublon generation.

The remainder of this paper is organized as follows. In
Sec. II we discuss the formalism of the Floquet spin model de-
rived from the periodically driven Hubbard model and apply
it to a single-orbital Hubbard model. In Sec. III we generalize
the formalism to the case of multiorbital Mott insulators. We
finally present a summary of what has been done in the paper.

II. FLOQUET SPIN MODEL

We start the discussion with a half-filled single-orbital
Hubbard model which is periodically driven by laser radia-
tion. Such a problem has been discussed in Refs. [24,26,37].
Here we rederive the effective Floquet spin Hamiltonian using
time-dependent perturbation theory and show that one can
capture novel physics if one takes the effect of the finite
bandwidth of the excitations into account. We later will use
similar methods to generalize the discussions to multiorbital
Mott insulators.

A. Time-dependent perturbation theory

We consider the following periodically driven Hubbard
model:

H (t ) = −
∑
〈i j〉σ

(th ei ui j sin ωt c†
iσ c jσ + H.c.) + U

∑
i

n̂i↑n̂i↓,

(1)
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where th is the hopping amplitude between sites i and j and
U � th is the onsite Coulomb repulsion energy; ui j =eE0 ·
ri j/ω (we have set h̄ = 1), where |E0| denotes the magnitude
of the oscillating electric field of a laser with frequency ω,
E(t )=E0 cos ωt ; and ri j is the displacement vector between
two lattice sites i and j. Only the nearest-neighbor hopping is
taken into account here and the model is studied at half-filling.
Note that Hermiticity requires ui j = −u ji.

In equilibrium without driving it is well known that at
half filling the system stays in the Mott-insulating phase
in the limit U � th. Then the low-energy physics is dom-
inated by the spin dynamics and is well described by a
Heisenberg model with antiferromagnetic nearest-neighbor
exchange, Ji j = 4t2

h /U ; this result can be derived using a
second-order time-independent perturbation theory [44]. We
generalize the discussions to the case with periodic laser
radiation and derive a time-dependent spin model using time-
dependent second-order perturbation theory.

A generic many-body state |�〉t can be expressed as
a linear superposition of states with n doubly occupied
sites (which are dubbed as “doublons”): |�〉t =

∑∞
n=0 |�n〉t ,

where |�n〉t represents the component of the state of the
system with n doublons, i.e., U

∑
i n̂i↑n̂i↓|�n〉t = nU |�n〉t .

The Schrödinger equation for the evolution of the different
components of the state of the system reads:

i∂t |�0〉t = P̂0 H |�〉t = P̂0 Tt |�1〉t ,

i∂t |�1〉t = P̂1 H |�〉t = U |�1〉t + Tt |�0〉t

+ P̂1 Tt |�1〉t + P̂1 Tt |�2〉t ,

... (2)

where Tt = −∑
〈i j〉σ (th ei ui j sin ωt c†

iσ c jσ + H.c.) is the time-
dependent hopping term in the Hamiltonian (1) and P̂n is the
projector onto the subspace with n double occupancies.

Since we are interested in the dynamics of states with
a small local density of doublons and holons, we approx-
imately consider only the dynamics induced by |�1〉t for
the component |�0〉t and neglect corrections due to the
effects of |�n〉t , with n > 1. We claim that the essential
properties of the dynamics of the system can be captured
by this approximation. Thus we will continue by neglecting
the P̂2|�〉, P̂3|�〉, . . . components of the time-dependent state
in the above Schrödinger equation and focusing on how
|�0〉 and |�1〉 evolve mutually. Note that these higher-order
components will contribute with at least the fourth order of th
to the time evolution of the spin state. The truncated equations
of motion take the following form:

i∂t |�0〉t = P̂0 Tt |�1〉t ,

i∂t |�1〉t = U |�1〉t + Tt |�0〉t + P̂1 Tt |�1〉t . (3)

The hopping operator P1 Tt in the second line of (3) can
be replaced by T̃t = P1Tt P1 since it is acting on the one
double-occupancy subspace. One can think of the action of
the operator T̃t as the hopping operator of the doublon and
holon restricted to the 1 DH pair subspace. Note that we have
kept the term Tt |�1〉t in the above equation, although it will
give the same order corrections to the dynamics of |�0〉t as the
terms that are neglected. The reason is that it accounts for the

effects of the finite bandwidth of excitations, which can give
rise to a form of heating due to the creation of doublon-holon
pairs. We will discuss these matters more in what follows.

We will restrict our attention for now to the regime in
which the frequency is much larger than the hopping ampli-
tude th; one continues with (3) by approximating the hopping
operator within the single DH subspace T̃t by its time average
(Appendix A),

T̄ = ω

2π

∫ 2π/ω

0
dt ′ T̃t ′

= th
∑
〈i j〉

{[J0(ui j ) P̂1 v̂i j P̂1] + (i ↔ j)}, (4)

where Jn stands for the Bessel function of the first kind and
v̂i j = (−∑

σ c†
iσ c jσ ) is the hopping operator for the electrons.

The operator P̂1 v̂i j P̂1 is the hopping operator for the doublon
and the holon. The second equation of (3) reads thus:

e−i(U+T̄ )t i ∂t [e
i(U+T̄ )t |�1〉t ] = Tt |�0〉t . (5)

Integrating both sides and fixing the initial conditions such
that the lower limits of the integrals cancel each other, one
arrives at:

i [ei(U+T̄ )t |�1〉t ] = th

∫ t

dt ′ ei(U+T̄ )t ′ ∑
〈i j〉,n

×{[J−n(ui j ) e−inωt ′
v̂i j] + (i ↔ j)}|�0〉t ′ .

(6)

In the above equation we have used eiA sin ωt =∑∞
n=−∞ Jn(A) einωt . Noting that |�0〉t is a slow function

of time, one can integrate by parts and drop the resulting
integral, as being higher order in th:

|�1〉t = −th

( ∑
〈i j〉,n

{[
J−n(ui j )

e−inωt

U − nω + T̄
v̂i j |�0〉t

]

+ (i ↔ j)

}
+ O

(
t2
h /U 2

))
. (7)

The remainder is O(t2
h /U 2), because it comes from neglecting

an integral which contains a factor of 1/(U − nω) and a
time derivative of |�0〉t , which has leading-order contribution
proportional to th/U 2, as we will see. Note also that we are
collectively showing all U − nω by U in the argument of O.
One can plug this back into the first equation of (3) to get the
following relation for the time evolution equation of |�0〉t :

i∂t |�0〉t =
∑

〈i j〉,〈i′ j′〉,mn

{[
f mn
i′ j′i j (t ) Ĝi′ j′i j (U − nω) |�0〉t

]
+ (i ↔ j)

} + [i′ ↔ j′], (8)

where

f mn
i′ j′i j (t ) = − ei(m−n)ωtJ−n(ui j )Jm(ui′ j′ ), (9)

and the operator

Ĝi′ j′i j (E ) = t2
h P̂0 v̂i′ j′

1

E + T̄
v̂i j P̂0, (10)
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creates a DH pair at (i, j), propagates it according to (E +
T̄ )−1, and, finally, annihilates the pair at ( j′, i′).

Let us first consider a situation where U − nω � th in
Eq. (8), under this condition one is able to neglect T̄ in the
operator 1

U−nω−T̄ which appears in G(U − nω) and thus
G(U − nω) can be well approximated by
t2
h [P0 v̂i′ j′

1
U−nω

v̂i jP0]. Noting that the fraction 1
U−nω

is a
number and that P0v̂ ji v̂i jP0 = ( 1

2 − 2 Si · S j )P0, the evolution
equation for |�0〉t becomes

i ∂t |�0〉t = −
∑
〈i j〉

Ji j (t )

(
1

4
− Si · S j

)
|�0〉t , (11)

with

Ji j (t ) =
∞∑

m,n=−∞
ei(m−n)ωtJm(u ji )Jn(u ji )

(
4t2

h

U − nω

)
.

Since Ji j (t ) is periodic, the above equation of motion can
be treated using the Floquet formalism. By virtue of a high-
frequency expansion, the Floquet effective Hamiltonian can
be expanded in a power series in 1/ω, H eff = ∑∞

n=0 Hn/ω
n,

where Hn is O(Jn+1
i j ). When the driving frequency ω is much

larger than the exchange energy, the leading term is given by
time averaging [3,4]:

H eff = ω

2π

∫ 2π/ω

0
dt

⎡
⎣∑

〈i j〉
Ji j (t ) Si · S j

⎤
⎦ + O

(
J2

i j/ω
)
. (12)

Here we have dropped the constant term. With time aver-
aging one arrives at the effective exchange parameter:

J̄i j = ω

2π

∫ 2π/ω

0
dt Ji j (t ) =

∞∑
n=−∞

4t2
hJ 2

n (ui j )

U − nω
. (13)

This shows that the effective spin exchange interaction of
the Floquet spin Hamiltonian associated with the bond i j
is renormalized due to the periodic driving and becomes
dependent on both the frequency and amplitude of the drive,
J〈i j〉 = ∑∞

n=−∞ 4t2
hJ 2

n (ui j )/(U − nω). Moreover, the summa-
tion over n shows the contribution of all the virtual DH exci-
tation processes which absorb/emit integer numbers of pho-
tons, and each n-photon process is weighted by J 2

n (ui j ). The
energy of the virtually created DH pair which absorbs/emits
n photons is just U − nω because the effects of DH hoppings
are neglected. Note that this is a reproduction of the results
reported in previous studies [24,26,37].

One expects the above result to be valid up to large times
[34], i.e., (quasi-)exponential in the ratio of frequency to
effective exchange energy scale, t2

h /U , and not after that due
to Floquet thermalization of the system; the system becomes
featureless and locally indistinguishable from an infinite-
temperature system, due to the absorption of energy in the
form of reorderings in the spin configuration of the system.

However, the system would also be heated up by absorbing
photons to create doublon-holon pairs. When the rate of
DH generations is non-negligible, the local properties of the
system can no longer be captured by the low-energy spin
dynamics.

The result in Eq. (13) shows no imaginary part for the
effective exchange interaction, and hence the effective Floquet

Hamiltonian dynamics in the 0-doublon subspace shows no
departure from this subspace; thus the physics of doublon-
holon creation is not captured by this result. The reason for
this is that the finite bandwidth of the virtual doublon-holon
pairs in the time-dependent perturbation theory is neglected
by dropping T̄ in the definition of G [Eq. (10)]. We will study
the effects that arise from restoring the finite bandwidth of
these excitations next.

With the above considerations in mind, one can think of
expanding G in Eq. (10) in a power series as follows:

Gi′ j′i j (E ) = P0 vi′ j′

{
1

E

[
1 +

(
− T̄

E

)
+

(
− T̄

E

)2

+
(

− T̄

E

)3

+ . . .

]}
vi j P0. (14)

The above series indicates that one should take into account
all the possible virtual hopping processes taking place for
the virtual doublon-holon pair. The effect of considering all
virtual hopping processes is twofold. First, it introduces sub-
leading corrections to the evolution equation for |�0〉t [analog
of (11)]—these corrections can be of the same Heisenberg-
interaction form as in (11) and may include new forms like
four-spin interactions. Note that we have already dropped
comparable corrections by working up to the second order
in our time-dependent perturbation theory. Second, and most
important for our purposes, they account for the effects of a
finite bandwidth of the virtual excitations involved. To treat
this in what follows we make a key assumption: We only
consider the hopping processes which bring the DH pairs back
to where they were created, with a final spin configuration
which is identical to the initial configuration. Taking the other
nonlocal processes into account will bring in higher-order
effects in the interaction terms and also the bandwidth of
excitations. With the above assumption, it follows that

i∂t |�0〉t =
∑
〈i j〉

∞∑
m,n=−∞

[
Hmn

i j (t )|�0〉t
] + (i ↔ j), (15)

where

Hmn
i j (t ) =

∑
σσ ′

t2
h f mn

i j (t ) c†
jσ ′ciσ ′ c†

iσ c jσ gdh(U − nω), (16)

gdh(E ) = t 〈�0|c†
jσ ciσ (E + T̄ )−1 c†

iσ c jσ |�0〉t is the DH
Green’s function, and f mn

i j (t ) is defined in Eq. (9). Note
that the dependence of gdh on (i, j, σ, σ ′) and also the state
|�0〉t is understood despite the notation not showing it.

B. The Green’s function

To calculate the Green’s function of the virtual doublon-
holon pair, we decompose the time-averaged DH pair hopping
operator T̄ into a sum of a doublon-hopping and a holon-
hopping term, T̄ = T̄d + T̄h, with T̄d and T̄h the hopping oper-
ator for the doublon and the holon in the 1-doublon subspace.
In principle, the motions induced by T̄ (which is the time-
averaged hopping restricted to the 1-doublon subspace), for
the doublons and for the holons are correlated, but following
Ref. [45], we neglect the correlations between the motions of
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the doublons and the holons. We also add an infinitesimal
negative imaginary part to the denominator of the Green’s
function which can be interpreted as the reciprocal of the time
over which the drive is turned on,

gdh(E − iδ) = 〈�0|c†
jσ ciσ

(
1

E + T̄ − iδ

)
c†

iσ c jσ |�0〉

= −i
∫

d


2π
〈�0|c†

jσ ciσ
1


 + T̄h − iδ

× 1

E − 
 + T̄d − iδ
c†

iσ c jσ |�0〉

= −i
∫

d


2π
gh(
 − iδ) gd (E − 
 − iδ), (17)

where gd and gh are the doublon and the holon Green’s
functions:

gh(E − iδ) = 〈�0|c†
jσ

1

E + T̄h − iδ
c jσ |�0〉,

gd (E − iδ) = 〈�0|ciσ
1

E + T̄d − iδ
c†

iσ |�0〉. (18)

Let us emphasize once more that in order to obtain the result
of Eq. (17), we have assumed a mean-field approximation to
be valid and that the motion of the doublon and that of the
holon are not correlated [45].

To calculate the Green’s functions defined above, we
work in the retraceable path (RP) approximation proposed by
Brinkman and Rice [38]. To compute the Green’s function
for a holon, for example, with the same initial and final
locations and spin configurations [as in (18)], one needs to
consider all the hopping processes which bring the particle
back to its original location and in the meanwhile bring
the spin configuration back to the original one; in the RP
approximation scheme, this can be done if one takes every
path that starts at the given location and terminates at the
same point, with the constraint that the hopping holon should
exactly retrace its forward-going path in its way back to the
original location. With this constraint, every spin reordering
that is done in the forward-going path is corrected when the
particle is getting back to its original position. Note that this
prescription does not capture all the possible processes; what
is missing is the contribution by the paths that are closed loops
and keep the final and initial spin configurations the same. As
Brinkman and Rice showed, such closed loops will contribute
first at order t12

h in the antiferromagnetic spin background, for
example, and are thus negligible. Note that the single doublon
Green’s function has the same analytical form as the holon
Green’s function.

Finally, gdh for a generic state on the right-hand side of the
first line of (15) can be approximated using the convolution
integral in (17) in terms of gh and gd , which are calculated
using an RP approximation. With this prescription, as we will
see, the state dependence and also site dependence of the
Green’s functions gh, gd , and therefore gdh, when nonzero, are
dropped. For a brief review of the RP approximation, we refer
the reader to Appendix B.

As is shown in the Appendix, after Ref. [38], one has
the following form for the holon Green’s function in the RP

approximation:

gh(E ) = 2(z − 1)

E
[
(z − 2) + z

√
1 − 4(z − 1)t̄2

h /E2
] , (19)

where z is the coordination number and t̄h = thJ0(ui j ) is the
time-averaged hopping amplitude between sites i and j. Here
we take the polarization of the radiation such that the electric
field amplitude is isotropic and thus ui j does not depend
on the bond directions, for the sake of simplicity. How-
ever, in principle, ui j is different for different bonds which
makes the hopping t̄h anisotropic, and one needs to solve
coupled self-energy equations for different bond directions
self-consistently in order to calculate the holon’s Green’s
function. A first approximation in that case will be to average
the hopping amplitudes along the different bond directions.
(Please refer to Appendix B for more discussion.) This kind
of treatment is also adopted in the case of multiorbital Mott
insulators as will be discussed in Sec. III.

It is obvious from the form in Eq. (19) that gh(E ) behaves
as 1

E for large values of E . Furthermore, gh(E ) when viewed
in the complex Ẽ = E/(2t̄h

√
z − 1) plane has a branch cut

with the two end points Ẽ = 1 and Ẽ = −1. Note that gd has
the same analytic expression as gh. With the above form of
the Green’s function for the doublon and the holon, gdh is
calculated as discussed in Appendix C. A plot of gdh for z = 6
obtained this way can be found in Fig. 1.

With gdh at hand, it is easy to derive the effective exchange
parameter, similarly to what was done previously:

J̄i j =
∞∑

n=−∞
4t2

hJ 2
n (ui j ) gdh(U − nω). (20)

It can be seen from Fig. 1 that gdh(U − nω) has both real
and imaginary parts when |U − nω| < 4t̄h

√
z − 1; the real

part contributes to the ordinary exchange parameter, while the
imaginary part can be related to the doublon-holon creation
rate at bond 〈i j〉 and thus also to the increase in the local den-
sity of DH pairs. From Fig. 1 it is inferred that the imaginary
part of gdh is always positive; this along with the fact that
the effective Hamiltonian has a term like J̄i j (− 1

4 + Si · S j )
for every bond guarantees that the creation rate is always

FIG. 1. Real and imaginary parts of the Green’s function com-
puted with the retraceable path approximation. The Green’s function
g0(E ) = 1

E is plotted for reference. The value of z = 6 is chosen for
this plot.
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positive. In fact the creation rate is zero for neighboring
triplets and positive for neighboring singlets. Note that the
exchange interaction parameter derived in the previous section
[Eq. (13)] by neglecting DH hoppings can be consistently
recovered by noting that gdh(U − nω) behaves similarly to

1
U−nω

for sufficiently large values of (U − nω)/(
√

z − 1 t̄h).
The above considerations show that the Floquet spin model

breaks down when the photon energy ω (setting h̄=1) is in
resonance with the interaction energy U , i.e., nω is around U .
In such resonant regime, the periodic driving would generate
real DH pairs, and the description of the system by the
low-energy spin dynamics is no longer valid. As shown in
Appendix C and discussed above, the excitation spectrum
has a finite bandwidth 4

√
z − 1t̄h due to the hoppings of

the DH pairs. As a result of this, within the approximation
scheme used here, real DH pairs are generated as long as
the frequency is within this excitation band. On the contrary,
when ω is outside the DH band, the DH creation rate is tiny
and the description of the system by an effective Floquet spin
Hamiltonian is still valid, but the expression of of J〈i j〉 would
be modified due to the DH hoppings.

One can further find an expression for the rate of the local
DH pair creation (when close to a resonance) using the above
formalism. The imaginary part of gdh, when nonzero, has a
typical value of order 1

t̄h
, and this corresponds to an imaginary

effective Hamiltonian of order th, and thus a timescale for DH
pair creation rate ∼ 1

t̄h
; while, on the other hand, the timescale

for spin dynamics due to the effective Hamiltonian is of order
U
t̄2
h
. Clearly, the latter is much larger in the insulating limit.

Thus in order to find the DH pair creation rate, we would
restrict our attention to the ground-state spin configuration of
the static Hamiltonian, which is antiferromagnetic order in
our case. In other words, the Floquet spin dynamics which
is induced by turning on the laser radiation can safely be
neglected. As pointed above, the rate of increase in the density
of DH pairs ρdh is basically the doublon creation rate in
this spin ground state; this is nothing but the decay rate of
the spin ground state calculated using the imaginary part
of the Green’s function described above and thus takes the
following form:

∂

∂t
ρdh = 1

N

∑
〈i j〉

∞∑
n=−∞

4t2
hJ 2

n (ui j ) Im gdh(U − nω)

×〈�0|
[

1

4
− Si · S j

]
|�0〉. (21)

where one can use the spin ground state of the static Hamil-
tonian for |�0〉 in this relation. A consistent result can also be
derived using Fermi’s golden rule.

One should note that in order to take the effect of band-
width of DH pairs into account we have made a partial
summation over virtual hopping processes, while neglect-
ing other terms in the perturbation theory which can be of
the same order; this can be justified as follows: Because
the hopping parameter is considered small, all these lower-
order contributions (including the virtual DH hoppings) play
subleading roles when compared to the dominant exchange
term which is derived using strict perturbative expansion,
unless one is close to a resonance; in this situation the strict

perturbation expansion gives a divergent result, which can be
made finite if the higher-order effects of DH virtual hoppings
are taken into account, and this corresponds to the terms
that are retained in our considerations. Other higher-order
corrections, on the other hand, can be argued to have small
contributions everywhere. One can also argue in more tech-
nical terms that the higher-order contributions that are kept
here, i.e., virtual hoppings of the doublon and holon that take
the two particles back to their original positions, are present
for every process considered. In a diagrammatic perturbation
theory language, every virtual hopping process can be dressed
by the above contributions at each step, and thus we are in fact
calculating the normalized hopping parameter by the partial
sum performed here.

C. Small-frequency regime

With the form (21) for the creation rate of DH pairs at hand,
we turn our attention to the study of the doublon creation rate
at small frequencies. At very small frequencies, one expects
the absorption of a high number of photons for supplying the
energy needed for the creation of a DH pair, as a result of this
one expects large values of n (of order U/ω) to only contribute
to the sum in Eq. (21). One can further justify this point by
Noting that the function Imgdh(U − nω) in (21) is nonzero
when its argument is in a window around 0 (Fig. 1), and thus
only terms with n ∼ U/ω contribute to the sum.

Turning to the Bessel function in the sum, we note that
a Bessel function of large order is essentially zero until its
argument gets comparable to its order, and this can be seen
by checking the integral representation of a Bessel function
Jn(A) = ω

2π

∫ 2π/ω

0 dt eiA sin ωt e−inωt ; when n is large and A
is not, the factor e−inωt oscillates rapidly and in one of its
periods, eiA sin ωt is almost constant, which makes the integral
negligible. The integral becomes not very small only when A
becomes comparable to n. As argued above, n should be of
order U/ω and thus noting that the argument of the Bessel
functions in (21) is ui j = eEa/ω, with a being the lattice
constant, one needs eEa ∼ U for a non-negligible absorption.

To present a more accurate treatment, we will focus on
a given bond and assume that the spins on the two ends of
the bond are aligned antiferromagnetically. The change in the
local density of DH pairs due to creation of a pair at the two
ends of a given bond 〈i j〉 reads [46]:

∂

∂t
ρdh =

∞∑
n=−∞

4t2
hJ 2

n (ui j ) Im gdh(U − nω) × 1

2
. (22)

The site indices will be suppressed in the what follows. First,
we present a numerical evaluation of the sum in (22) for small
values of ω, and different values of the electric field energy
� = eEa = uω.

The rate of change in the density of DH pairs given
by Eq. (22) is evaluated numerically for a range of small
frequencies, while the electric field energy is varied. In this
section, all energies are expresssed in units of 2th

√
z − 1 and

all times in units of its inverse. A plot of DH creation rate
for U = 10 can be found in Fig. 2. Figure 2 shows that
among many field-dependent behaviors, something similar
happens for different field energies at very small frequencies:
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FIG. 2. Semilogarithmic plot of DH pair creation rate at a given
bond. This plot shows how the DH creation rate behaves for small
frequencies for different values of electric field energy near U = 10.
All energies are expressed in units of 2th

√
z − 1 and thus

1
2th

√
z−1

∂

∂t ρdh versus ω

2th
√

z−1
is actually plotted here.

The creation rate shows a saturation for different values of
field energy, i.e., a constant value is maintained over two
orders of magnitude of change in frequency. This suggests the
possibility for existence of a zero-frequency limit in the DH
pair creation rate.

The small-frequency saturation value can be extracted
numerically for different electric field strengths, a plot of
which is presented in Fig. 3 as the data points. First, this plot
shows that a nonvanishing zero-frequency limit exists only if
�/U � 0.8, i.e., when the electric field energy is above the
lower bound of the DH excitations, and below this value it is

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.01

0.02

FIG. 3. The zero-frequency limit of DH creation rate plotted as
a function of electric field strength. The data points correspond to
the values of zero-frequency limit, obtained by finding the saturation
values at small frequencies for different field strengths numerically.
The solid line, on the other hand, shows the prediction of the
analytical result (24). This shows that there is a very good agreement
between the two results.

negligible (zero within our approach). Second, it also shows
that the maximum zero-frequency limit of the DH creation
rate occurs at an electric field strength just slightly higher than
U . This zero-frequency limit of DH creation rate can also be
interpreted as the rate for the breakdown of a Mott insulator,
when exposed to a static electric field and thus we indeed
expect from Fig. 3 that the maximum static breakdown rate
happens when � is very close to U .

We then turn our focus to an analytical study of the asymp-
totic behavior of the sum in Eq. (22). Since the imaginary
part of the Green’s function gdh(E ) is only nonzero when its
argument sits in the window (U − 2 , U + 2), the sum can be
rewritten as:

S =
∞∑

n=−∞
J 2

n (�/ω) Imgdh(U − nω)

=
U/ω+2/ω∑

n∼U/ω−2/ω

J 2
n (�/ω) Imgdh(U − nω). (23)

In the limit of very small frequency, n is a large number for all
the terms in the above sum, and thus one can use an asymp-
totic form for Bessel functions of high order (Appendix D).
After substituting the Bessel functions with the asymptotic
forms, the sum can further be converted to an integral, and
thus finally the quantity S in the zero-frequency limit takes
the form (Appendix D):

lim
ω→0

S = 1

π

∫ �

U−2
d ν̄

[
1(

�
ν̄

)2 − 1

]1/2
1

ν̄
Imgdh(U − ν̄). (24)

This analytical form for the zero-frequency limit is plotted
and compared to the numerical result in Fig. 3 as the solid
line, and it can be seen that there is a very good agreement
between this analytical result and the saturation values found
numerically. Indeed, this shows that there is a zero-frequency
limit for the creation rate of DH pairs and thus, as mentioned
above, the breakdown rate of the Mott insulator due to a static
electric field can be read from Fig. 3. These results can be
easily generalized to the multiorbital Mott insulators by the
treatments introduced in Sec. III B.

III. FLOQUET SPIN-ORBITAL MODEL

A. Time-dependent perturbation theory

The previous discussion of the periodically driven Hubbard
model can be generalized to the case of periodically driven
multiorbital Mott insulators with Kanamori local interac-
tions [47]

HK = U
∑
i,α

n̂iα↑n̂iα↓ + U ′ ∑
i,α<β,σ,σ ′

n̂iασ n̂iβσ ′

− JH

∑
i,α<β,σ,σ ′

c†
iασ ciασ ′c†

iβσ ′ciβσ

+ JP

∑
i,α<β,σ

c†
iασ c†

iα−σ ciβσ ciβ−σ , (25)

where U and U ′ are the intraorbital and interorbital direct
Coulomb interactions. JH and JP denote the onsite exchange
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interaction (Hunds’s coupling) and the pair hopping respec-
tively; the sets of indices {i, j}, {α, β}, {σ, σ ′} denote the
lattice sites, orbitals, and spin degrees of freedom. As in the
case of the Hubbard model, the effect of the laser radiation
is manifested in the kinetic energy via the so-called Peierls
substitution,

Tt =
∑

〈i j〉,αβ,σ

(tiα, jβ eiui j sin ωt c†
iασ c jβσ + H.c.), (26)

where tiα, jβ represents the hopping amplitude from orbital β

at site j to orbital α at site i. Note that Hermiticity dictates
tiα, jβ = t∗

jβ,iα , along with ui j = −u ji.
In the multiorbital case, we also need to consider the

crystal-field splittings (HCF). In addition to the giant t2g − eg

splitting in typical perovskite transition-metal oxides, there
may be additional splittings within the t2g and/or eg manifold
due to the octahedral rotations, tiltings [48], and Jahn-Teller
distortions [40]. The crystal-field splitting between t2g and eg

levels is on the order of a few eV, but the splittings due to
octahedral rotations and Jahn-Teller distortions are typically
much smaller. Throughout this paper we only consider the
t2g orbitals. Within the quasidegenerate t2g levels we further
include the crystal-field splittings from various octahedral
distortions and tiltings,

HCF =
∑

i

∑
α,β,σ

εi,αβ c†
iασ ciβσ . (27)

Including all these terms, we find the total periodically driven
Hamiltonian as Ht = Tt + HK + HCF.

We consider the limit that the typical interaction energy
scale (a few eV) is much greater than the hopping energy
scale (∼0.1 eV in 3d transition-metal oxides) and consider
Tt as a perturbation to HK . In the nondriven case, the low-
energy physics is dominated by the spin and orbital dynamics,
which is well described by the Kugel-Khomskii [40,49] and
similar spin-orbital models and can be derived using time-
independent second-order perturbation theory. Doubly occu-
pied states have different energies for different spin and orbital
configurations. We also neglect the HCF in the calculation of
energies of the virtual double-occupancy states, since HCF has
a much smaller energy scale than HK .

To find an effective equation of motion in this model, in an
approach similar to the one used in the single-orbital case, we
expand a generic state of the system in terms of the states with
different numbers of double occupancies. We then truncate the
equations of motion similarly to arrive at:

i∂t |�0〉t = P̂0 Tt |�1〉t ,

i∂t |�1〉t = HK |�1〉t + Tt |�0〉t + T̃t |�1〉t . (28)

where T̃ = P̂1Tt P̂1, and the hopping operator Tt in this case
is multiorbital. First, we consider the case where the effect
of hopping of virtual excitations is negligible, which occurs
when one is sufficiently away from a resonance. In this case,
one can safely drop the term P̂1 Tt |�1〉t in the second equation
of (28), and with the same manipulations done in the single-
orbital case, one arrives at the following form for the effective

equation of motion of |�0〉t :

i∂t |�0〉t = −
∑
n,m

∑
〈i j〉

Jn(u ji )Jm(u ji ) ei(m−n)ωt

×
∑

αβσα′β ′σ ′
tiα jβt jα′iβ ′ c†

jα′σ ′ciβ ′σ ′

× 1

HK − nω
c†

iασ c jβσ |�0〉t + (i ↔ j), (29)

where HK is the Kanamori interaction operator defined in (25).
The Floquet spin-orbital effective Hamiltonian can now be

obtained by time averaging:

H eff =
∑

n

∑
〈i j〉

J 2
n (ui j )�̂i j (nω), (30)

with �̂i j defined as:

�̂i j (nω) = −
[ ∑ (

tiα jβt jα′iβ ′ c†
jα′σ ′ciβ ′σ ′

1

HK − nω
c†

iασ c jβσ

)

+ (i ↔ j)

]
P̂0, (31)

with the summation done over the set of indices
{α, β, σ, α′, β ′, σ ′}. To calculate the operator �̂i j , one
should note that it creates a doublon-holon pair at sites
i, j, then acts on the resulting state with the inverse
Kanamori Hamiltonian, and, finally, annihilates the pair.
It is a 0-doublon-to-0-doublon operator and thus can be
written in terms of spin and orbital operators acting on the
0-doublon subspace. As mentioned above we will compute
this operator for the case of three orbitals.

Noting that HK has four distinct eigenvalues EK,1 =
U ′ − JH , EK,2 = U ′ + JH , EK,3 = U − JP, EK,4 = U + 2JP,
one is able to expand �̂i j (nω) as follows:

�̂i j (nω) = �̂i j,1

U ′ − JH − nω
+ �̂i j,2

U ′ + JH − nω

+ �̂i j,3

U − JP − nω
+ �̂i j,4

U + 2JP − nω
, (32)

where �̂i j,m is the spin-orbital operator corresponding to
eigenvalue number m. One can further decompose these op-
erators into spin and orbital parts as follows:

�̂i j,1 = (
3
4 + Si · S j

)
[γ̂i j,2 − γ̂i j,1],

�̂i j,2 = ( − 1
4 + Si · S j

)
[γ̂i j,2 + γ̂i j,1 − γ̂i j,3],

(33)
�̂i j,3 = ( − 1

4 + Si · S j
)
[γ̂i j,3 − γ̂i j,4],

�̂i j,4 = ( − 1
4 + Si · S j

)
γ̂i j,4.

In the above equations, γi j,m are the following orbital
operators:

γ̂i j,1 =
∑
αiβiβ j

Âi
αiβi

tiαi jβ j t jβ j iβi + (i ↔ j),

γ̂i j,2 = 2
∑

αiβiα jβ j

Âi
αiβi

Â j
α jβ j

tiαi jβ j t jα j iβi ,
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γ̂i j,3 = 2
∑
αiβiα j

Âi
αiβi

Â j
α jα j

tiαi jα j t jα j iβi + (i ↔ j),

γ̂i j,4 = 2

3

∑
αiβiα jβ j

Âi
αiβi

Â j
α jβ j

tiαi jα j t jβ j iβi + (i ↔ j). (34)

We have introduced the orbital operators Âi
αiβi

=∑
σ c†

iαiσ
ciβiσ P̂i

0, with αi, βi = 1, 2, 3, as a basis for orbital
operations at each site i, that contains only one electron. Note
that P̂i

0 is the projector onto the states with one electron at
site i. With the above manipulations one is able to derive
an effective exchange Ĵi j , which is an orbital operator in the
present case:

Ĵi j =
∞∑

n=−∞
J 2

n (ui j )

{
γ̂i j,2 − γ̂i j,1

U ′ − JH − nω
+ γ̂i j,2 + γ̂i j,1 − γ̂i j,3

U ′ + JH − nω

+ γ̂i j,3 − γ̂i j,4

U − JP − nω
+ γ̂i j,4

U + 2JP − nω

}
. (35)

It can be seen from (33) that the last three contributions
only arise when the adjacent spins at 〈i j〉 are in a singlet state,
which means that the virtual processes responsible for these
terms only occur when the state of the adjacent spins is a
singlet.

It is also worthwhile to study the special case U ′ = U − JH

and JP =0 [42]. With such an assumption HK is rotationally
invariant and there are only two distinct multiplet energy
levels: Esinglet = U for spin singlets and Etriplet = U − 2JH for
spin triplets [42]. Indeed, with this assumption EK,1 = U −
2JH and EK,2 = EK,3 = EK,4 = U , and the effective exchange
operator becomes

Ĵi j =
∞∑

n=−∞
J 2

n (ui j )

(
γ̂i j,2 − γ̂i j,1

U − 2JH − nω
+ γ̂i j,2 + γ̂i j,1

U − nω

)
. (36)

B. Bandwidth of excitations

Now we will take into account the effects of the multi-
orbital doublon-holon bandwidth. This is quite complex in
comparison to the single-orbital Hubbard model and we will,
consequently, make a number of simplifying assumptions in
order to obtain a tractable result. While these approximations
are not fully controlled, we believe they do not qualitatively
affect the results. First, we specialize in this part to the case
U ′ = U − JH and JP =0 and note again that in this case
there are only two different eigenvalues for the Kanamori
Hamiltonian corresponding to singlet and triplet virtual states:
Esinglet = U and Etriplet = U − 2JH .

We have to consider the multiorbital equations of motion
(28) once more and this time we will not neglect the hopping
term for the excitations to see the effect of finite bandwidth
of excitations in the multiorbital model. To this end, we
expand the 1-doublon component as |�1〉t = |�s

1〉t + |�t
1〉t ,

where |�s
1〉 and |�t

1〉 denote the single-doublon states with
their doublon in a spin-singlet state and a spin-triplet state. As
discussed before, we neglect the excited states with more than
one doublon. The equations of motion can be written as:

i∂t |�0〉t = P̂0 Tt
(∣∣�s

1

〉
t + ∣∣�t

1

〉
t

)
,

i∂t

∣∣�s
1

〉
t = U

∣∣�s
1

〉
t + P̂s

1 Tt |�0〉t + T̃ ss
t

∣∣�s
1

〉
t + T̃ st

t

∣∣�t
1

〉
t ,

i∂t

∣∣�t
1

〉
t = (U − 2JH )

∣∣�t
1

〉
t + P̂t

1 Tt |�0〉t

+ T̃ tt
t

∣∣�t
1

〉
t + T̃ ts

t

∣∣�s
1

〉
t . (37)

Here P̂t
1 and P̂s

1 are the triplet and singlet projection operators.
The hopping operators are defined as T̃ ab

t = P̂a
1 T̃t P̂b

1 (a, b =
s, t). We continue by replacing T̃ tt

t and T̃ ss
t by their time

averages, similarly to the single-orbital case, and also by ne-
glecting the two cross hoppings T̃ st

t and T̃ ts
t (see Appendix A).

One is now able to write down the 1-doublon components
in terms of the 0-doublon component at arbitrary time, and
through manipulations similar to those in the single-orbital
case one arrives at the following form for the time evolution
equation of |�0〉t in the multiorbital case:

i∂t |�0〉t =
∑

〈i j〉〈i′ j′〉,mn,a

{[
f mn
i′ j′i j (t ) Ĝa

i′ j′i j (nω) |�0〉t
]

+ (i ↔ j)
} + [i′ ↔ j′] + HCF |�0〉t , (38)

where f mn
i′ j′i j (t ) = −ei(m−n)ωtJm(ui′ j′ )J−n(ui j ), and the index a

in the sum runs over {s, t}. Note that we did not include the
HCF term in Eq. (37), as we are neglecting it compared to HK ,
but it has been included in (38). The operator Ĝa

i′ j′i j (nω) is
defined as

Ĝs
i′ j′i j (nω) =

∑
αβα′β ′,σσ ′

(tiα, jβ ti′β ′, j′α′ ) P̂0 c†
i′β ′σ ′c j′α′σ ′

× (U − nω + T̄ ss)−1 P̂s
1 c†

iασ c jβσ P̂0,
(39)

Ĝt
i′ j′i j (nω) =

∑
αβα′β ′,σσ ′

(tiα, jβ ti′β ′, j′α′ ) P̂0 c†
i′β ′σ ′c j′α′σ ′

× (U − 2JH − nω + T̄ tt )−1 P̂t
1 c†

iασ c jβσ P̂0.

Similarly to the single-orbital case, we also make the follow-
ing assumption for the operators Ĝs

i′ j′i j and Ĝt
i′ j′i j : We only

consider the hopping processes which create DH pairs at the
given sites, propagate them around and bring them to their
initial positions and annihilate them, with a final spin-orbital
configuration which is identical to the initial configuration.
Under this assumption, Eq. (39) can be expressed as

Ĝa
jii j (nω) =

∑
αβα′β ′,σσ ′

tiα, jβ t jβ ′,iα′ ga
dh(U a − nω)

× P̂0 c†
jβ ′σ ′ciα′σ ′ P̂a

1 c†
iασ c jβσ P̂0, (40)

with a being either s or t , with U s = U and Ut = U − 2JH

and where

gs
dh(U −nω)=〈�0|c†

jβσ ciασ

P̂s
1

U −nω+T̄ ss
c†

iασ c jβσ |�0〉,

gt
dh(U−2JH −nω) = 〈�0|c†

jβσ ciασ

× P̂t
1

U − 2JH − nω + T̄ tt
c†

iασ c jβσ |�0〉.
(41)

In the multiorbital case, gt (s)
dh is calculated using the analogs

of Eqs. (17) and (18), assuming the motions of the doublons
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and holons are uncorrelated:

gt (s)
dh (E − iδ) = −i

∫
d


2π
gh(
 − iδ) gt (s)

d (E − 
 − iδ),

(42)
where gh and gt (s)

d are the holon and the doublon Green’s
functions which are defined in a similar fashion to the single-
orbital case:

gh(E − iδ) = 〈�0|c†
jβσ

1

E + T̄h − iδ
c jβσ |�0〉,

gt (s)
d (E − iδ) = 〈�0|ciασ

P̂a
1d

E + T̄ t (s)
d − iδ

c†
iασ |�0〉, (43)

where P̂a
1d projects onto subspace with zero holon and one

a-type doublon and like the single-orbital case, we have
assumed a decomposition for the hopping operator T̄ aa =
T̄ a

d + T̄h. We will try to compute the doublon and the holon
Green’s functions using the retraceable path approximation
in a similar approach to the one presented in Sec. II. One
should note that the multiorbital case gh and gd defined above,
unlike the single-orbital model, highly depends on the state
in question. In other words, since there are orbital degrees
of freedom, even with the RP approximation gh and gt (s)

d
do not turn out to be independent of the state |�0〉 since
in general hopping parameters can be different for hopping
events between different initial and final orbitals.

Noting the above fact, we work in a limit that the crystal-
field splitting (within the t2g or eg manifold) is much larger
than the intersite exchange energy, so that the occupied orbital
at each site is uniquely determined by the crystal-field term
and is denoted by the orbital index α = 1. We would like
to consider an effective holon hopping parameter between
two adjacent lattice sites i and j as an input to our Green’s
functions calculated using RP approximation; in the classical-
orbital regime discussed above, it is legitimate to introduce an
effective hopping which accounts for hoppings from orbitals
|1〉i( j) to |α〉 j(i) and then back, which is denoted as t eff

i j :

(
t eff
i j

)2 = 1

2

∑
α

(|ti1, jα|2 + |t j1,iα|2). (44)

In a semiclassical approximation the doublon effective hop-
ping for both of the cases (s, t) is also taken to be equal
to the above value. The effective hopping defined above is
anisotropic along different bond directions in general and,
furthermore, time averaging [T̄ ss(tt )] introduces a factor of
J0(ui j ) into the hopping amplitudes. For simplicity we further
average over the hopping amplitudes along different bond
directions, resulting in an effective isotropic DH hopping
parameter for a given site i:

t̄i = 1

z

∑
j ∈ n.n.

t eff
i j J0(ui j ), (45)

where “n.n.” is the abbreviation for nearest neighbor. One
calculates the Green’s functions on the right-hand side of (42)
with this value of hopping: With this prescription the DH
Green’s functions for both singlet and triplet cases, i.e., gt

dh
and gt

dh, will have the same form, and this form agrees with the
one discussed in the single-orbital case, except for a different

effective hopping here; the imaginary and real parts of such
Green’s functions can be found in Fig. 1.

With all this at hand, using manipulations similar to those
leading to (35) and (36), one is able to write down the effec-
tive Hamiltonian describing the dynamics of the 0-doublon
subspace for the multiorbital case which includes the effect of
bandwidth of excitations:

H eff =
∑
〈i j〉,n

[
J 2

n (ui j )(γ̂i j,2 + γ̂i j,1) gs
dh(U − nω)

×
(

−1

4
+ Si · S j

)

+J 2
n (ui j )(γ̂i j,2 − γ̂i j,1) gt

dh(U − 2JH − nω)

×
(

3

4
+ Si · S j

)]
, (46)

in which we have used the orbital operators defined in (34).
It is worthwhile here to make a connection with our result

for the multiorbital case when the frequency is away from
resonances, i.e., Eq. (36). The functional form for the Green’s
functions used in the above effective Hamiltonian can be seen
in Fig. 1. As we discussed for the single-orbital case, when
the argument of the Green’s function is much larger than the
effective hopping, and hence one is away from a resonance,
the Green’s functions ga

dh(U a − nω) look very similar to
1/(U a − nω), and thus one recovers the previous form (36).
Furthermore, when this argument is close enough to zero, or,
more precisely, in a window of width of the same order as
the effective hopping, one expects to see a nonzero imaginary
part for the Green’s function; this can happen when one of
the excitation energies is close enough to a multiple of the
frequency. Because the Green’s funtion is complex, the above
effective Hamiltonian becomes non-Hermitian and thus the
effective evolution of |�0〉t becomes nonunitary. The stronger
this nonunitarity becomes, the more doublons are created.
Indeed, a DH pair creation rate for the multiorbital case can
also be derived given a spin-orbital configuration which will
look similar to the one derived for the single-orbital case (21).

In order for the Floquet engineering of the spin-orbital
dynamics to be relevant, one needs to be in a regime where not
many doublons are created and thus one needs to avoid certain
ranges of parameters in which the nonunitarity of the effective
Hamiltonian results in a large rate of doublon creation. Let us
consider a concrete example to show how one can study this
quantitatively: As mentioned, the above effective Hamiltonian
is applied to the orthorhombic titanates YTiO3 and LaTiO3

using first-principles calculations in Ref. [43]. There we
show that the effective exchange interaction for neighboring
sites can be engineered to a high degree but the effective
exchange parameter turns out to be a complex number. This
complex exchange parameter can be interpreted as follows:
Its real part shows the strength of the physical exchange
interaction between neighboring sites and its imaginary part
quantifies the rate of change in DH pairs density. Therefore
and as we discuss in length in [43], one will be interested in
regimes where the real part of the effective exchange param-
eter is much larger than its imaginary part; this results in a
much smaller timescale for the physical exchange interaction
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dynamics than the timescale for DH creation. This leads the
exchange interaction to be the dominant physical effect in
such a setting.

We believe that the above formalism with slight modifica-
tions can be applied to many other realistic situations involv-
ing driven multiorbital Mott insulators. In this formalism, not
only the effect of Floquet engineering can be computed, but
also the rate for a channel of heating, i.e., DH pair creation,
can be quantitatively evaluated.

One should finally note that all the discussion assumes that
the system is prevented from heating due to absorption of
photons, i.e., it is kept in the subspace of interest (the lower
Hubbard band is considered here). We have only studied one
channel of photon absorption and heating in this work, i.e., the
one happening due to creation of real DH pairs in the system.
However, there can be other absorption mechanisms present
that will lead to unwanted heating such as phonon creation,
excitation to higher bands, etc. We have not considered the
latter mechanisms in this work since these effects depend on
the details of the material in question and thus should be
considered case by case. On the other hand, the heating due
to creation of DH pairs can be studied in a unified fashion for
all materials described by a Hubbard model at low energies
as considered here. In applications to specific materials, the
effect of other unwanted heating channels must also certainly
be accounted for.

IV. CONCLUSION

In this work, we have studied the effects of coherent laser
driving of single-orbital and multiorbital Mott insulators. We
have developed the formalism and methods for calculating the
Floquet spin and spin-orbital Hamiltonians in single-orbtial
and multiorbital Mott insulators, respectively. We have shown
that the effective exchange interactions are dependent not
only on the intrinsic properties of the materials but also on
the properties of the laser radiation. The increased number
of parameters describing multiorbital physics enriches the
possibilities for Floquet engineering in such systems. Appli-
cations to the orthorhombic titanates are studied in Ref. [43],
where it is shown by realistic calculations that Floquet en-
gineering in these compounds can be implemented to a high
extent. In particular, even the sign of the static exchange
interaction can be flipped in the Floquet regime if one uses
radiation with properly chosen frequency and electric field
strength.

We have further argued that if the frequency of the radia-
tion (and its multiples) is kept away from the Hubbard interac-
tion scale, collectively shown as U , the heating due to creation
of doublon-holon pairs can be avoided and an effective spin or
spin-orbital (in the multiorbital case) Hamiltonian can capture
the physics of the system. In fact, the finite bandwidth of the
excitations, i.e., doublon-holon pairs, which we have shown is
of order

√
z − 1th, specifies a window for ω around U which

should be avoided so that heating is suppressed. Using this
notion, we have given a criterion for how distant one needs
the laser frequency to be from the interaction energies in
the Hamiltonian describing the material: A complex-valued
effective exchange parameter is calculated, with its real part
interpreted as the physical exchange interaction strength. One

requires the real part to dominate over the imaginary part in
order for the doublon creation to be negligible.

We have also derived relations for the doublon-holon cre-
ation rates using the imaginary part of the complex-valued
exchange parameter mentioned above. Using these relations,
we have additionally studied the rate of creation of doublon-
holon pairs in the very small frequency regime and derived a
zero-frequency limit of absorption which can be related to the
breakdown of the Mott insulator in the presence of a static
electric field. The maximum rate occurs when the electric
field energy between neighboring sites is comparable to the
Hubbard interaction energy scale. This may be observable
experimentally. A potentially interesting subject for future
theoretical study is the effects of selective doublon-holon
generation with specific quantum numbers, i.e., preferential
generation of singlets or triplets, forming a gas of excitations
with controllable internal degrees of freedom. Our equations
for the generation rates of these excitations provide a starting
point for such a study.
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APPENDIX A: TIME AVERAGING
THE VIRTUAL HOPPINGS

In this Appendix, we justify the time averaging of virtual
hoppings in the time-dependent Schrödinger Eqs. (3) and (37)
of the main text.

We first consider the single-orbital case. Consider the
left-hand side of the second line of Eq. (3) written in a
different way:

i(∂t + iU + iT̃t )|�1〉t = Tt |�0〉t . (A1)

The unitary evolution operator St = P̂1St P̂1, defined as satis-
fying an equation analogous to the above:

i(∂t + iU + iT̃t )St = 0, (A2)

can be useful, in the sense that if one finds St , the solution
to Eq. (A2), with initial condition St=0 = 1 one can write
(A1) as:

St i∂t
(
S−1

t |�1〉t
) = Tt |�0〉t , (A3)

where S−1 only acts on states in the subspace invariant under
P̂1. The equation of motion of St can be written as:

i∂t (e
iUt St ) = eiUt T̃t e−iUt (eiUt St ). (A4)

This is similar to an interaction picture time evolution. Noting
that the exponentials commute with T̃t , one notices that the
above equation is of Floquet type and thus the corresponding
effective Hamiltonian to leading order is obtained by time
averaging [3,4]. This fact can also be seen by the follow-
ing manipulations. Using the Fourier series for the hopping
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operator T̃t = ∑
n einωt T̃n, Eq. (A4) reads:

i∂t (e
iUt St ) =

∑
n

einωt T̃n (eiUt St ). (A5)

Noting T̃0 = T̄ , one has:

i e−iT̄ t ∂t [e
i(U+T̄ )t St ] =

∑
n �=0

einωt T̃n (eiUt St ). (A6)

Moving the factor e−iT̄ t to the right-hand side, one can in-
tegrate the above equation and do integration by parts on the
right-hand side, keeping in mind that the derivative of (eiUt St )
is of order th (this is similar to what was done in the main text):

i{[ei(U+T̄ )t ′
St ′ ]|t ′=t − St ′=0}

=
∑
n �=0

1

i(T̄ + nω)

{
[ei(T̄ +nω)t ′

T̃n(eiUt ′
St ′ )|t ′=t − T̃nSt ′=0]

−
∫ t

0
dt ′ ei(T̄ +nω)t ′

T̃n∂t ′ (eiUt ′
St ′ )

}

= O
(

th
ω

)
. (A7)

The first line on the right-hand side is of first order and the
second line of second order and thus the right-hand side is
first order overall.

Finally, the solution can be obtained to leading order:

St = e−i(U+T̄ )t + O
(

th
ω

)
, (A8)

and plugging this back into (A3), one obtains the desired
result.

One can generalize this to the multiorbital case also, noting
the fact that the multiorbital doublon can be in a singlet or
triplet state and so the following decompositions should be
considered:

P̂1 = P̂s
1 + P̂t

1, Û = UP̂s
1 + (U − 2J )P̂t

1, (A9)

T̃t = T̃ ss
t + T̃ st

t + T̃ ts
t + T̃ tt

t , (A10)

with T̃ ab
t = P̂a

1 T̃t P̂b
1 . The analog of Eq. (A4), can be written as:

i∂t (e
iÛt Ŝt ) = eiÛt T̃t e−iÛ t (eiÛt Ŝt )

= [
T̃ ss

t + T̃ tt
t + T̃ ts

t ei2Jt + T̃ st
t e−i2Jt

]
(eiÛt Ŝt ).

(A11)

A similar argument like the one carried out for the case of
a single orbital can be applied here also, except that when 2J
and nω are not close to each other (compared with th), T̃ ts

t ei2Jt

and T̃ st
t e−i2Jt do not have constant terms. Thus the final form

for Ŝt reads:

Ŝt = e−i(Û+T̄ ss+T̄ tt )t + O
(

th
ω0

)
, (A12)

where th in O show the typical hopping parameter and ω0 in
the denominator stands for either of ω or J .

APPENDIX B: OVERVIEW OF THE RETRACEABLE
PATH APPROXIMATION

In this Appendix we present a short discussion of the RP
approximation of Brinkman and Rice [38]. With the notation
of the main text, one can write the Green’s function of a single
hole in a single band Hubbard model as:

gh(E ) =
∑

σ

〈�0|c†
jσ

1

E + T̄h
c jσ |�0〉

= 1

E
〈0|c†

jσ j

[
1 +

(
− T̄h

E

)
+

(
− T̄h

E

)2

+
(

− T̄h

E

)3

+ . . .

]
c jσ j |0〉. (B1)

Note that |�0〉 has one electron per site and thus the state
c jσ j |�0〉 has a hole at site j, with σ j showing the spin at site
j in state |�0〉. The series on the right-hand side shows that
one should consider all the possible paths including arbitrary
number of holon hoppings that connect the state with a hole
to itself. Moreover, the final spin configuration should be
the same as the initial. The RP approximation amounts to
considering only paths that start at j and terminate at the
same point, with the constraint that the hopping holon should
exactly retrace its forward-going path in its way back to the
original location. With this constraint, every spin reordering
that is done in the forward-going path is corrected when
the particle is getting back. What one is missing here is the
contribution by the paths that are closed loops and to correct
all the spin reorderings in some way.

We use the following ansatz for the one-holon Green
function, with the introduction of a self-energy:

gh(E ) = 1

E [1 − �(E )]
. (B2)

Since we are considering paths with any number of hoppings,
at each step of a path for the remainder of the path, one should
consider all the paths that start at the given point and come
back to the same position, except for the one going backward.
This is very similar to what we are trying to compute, and thus
in order to perform an infinite summation over the retraceable
paths, one introduces a summation of all forward-going paths
at a specific step of the path. At a given step of the process,
since the paths can just go forward, there are (z − 1) choices
for direction of the next step, with z the coordination number.
The following equation for �A will result in a self-consistent
summation over forward-going paths with arbitrary lengths,
something that is present as the future of every step (other
than the first) in a retraceable path:

�A(E ) = (z − 1)t2
h

E2[1 − �A(E )]
, (B3)

which has the solution:

�A(E ) = 1

2

[
1 ±

√
1 − 4(z − 1)

t2
h

E2

]
, (B4)

where the hopping parameter in T̄h is shown as th. The
self-energy can be written in terms of the sum of all the
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FIG. 4. Appendix C figures. (a) Definition of square root in the complex E plane; (b) The contour for computing gdh.

forward-going paths as:

�(E ) = z

z − 1
�A(E ), (B5)

because at the first step of each path there are z choices of
direction rather than z − 1 choices for the holon. This finally
results in the following form for the Green’s function:

gh(E ) = 2(z − 1)

E
[
(z − 2) + z

√
1 − 4(z − 1)t2

h /E2
] . (B6)

The solution with a minus sign in Eq. (B4) is chosen so that
the above Green’s function behaves as 1

E as E → ∞.
One can also consider the case of anisotropic hoppings

which results in solving more self-consistent equations. We
will work with hopping parameters tμ that are different for dif-
ferent directions. One can further introduce a summation over
all the forward-going paths in different directions, denoted
as �A

μ(E ), which should satisfy the following self-consistent
equations:

�A
μ(E ) = t2

μ/E2

1 − �A
μ(E ) − ∑

μ′ �=μ �A
μ′ (E )

, μ = 1, . . . , d.

(B7)
The total self-energy used for obtaining the Green’s function
can be written in terms of the �A

μ as follows:

�(E ) = 2
∑

μ

�A
μ(E ). (B8)

A first approximation for finding the solution to the above
self-consistent equations (B7) would be to use the average
hopping

∑
μ tμ for every tμ; one can make this approximation

better by iterating the solution obtained this way in Eq. (B7).

APPENDIX C: THE FREQUENCY INTEGRAL
OF THE DH GREEN’S FUNCTION

In this Appendix, we show how the convolution integral in
Eq. (17) can be calculated in order to the get the functional
form shown in Fig. 1.

The holon and doublon Green’s functions in the RP ap-
proximation can be written in the following form as well:

gh(E ) = gd (E ) = 2 (z − 1)

E (z − 2) + z
√

E2 − 4(z − 1)t̃2
h

, (C1)

with the definition of the square-root function in the denom-
inator, in the complex E plane, presented in Fig. 4(a). It is
easy to check that with this definition and the signs above, the
two Green’s functions fall off like 1

E for large E . Note that we
define the dimensionless frequencies as Ẽ = E

2t̃h
√

z−1
.

In order to find gdh, one should do the frequency integral in
Eq. (17), with the integrand having two branch cuts as shown
in Fig. 4(b). Using Cauchy’s theorem the contour (−∞,∞)
can be deformed into a contour that turns around the upper
branch cut, and the integral can be done for this contour. In
four different ranges for E the integral over this contour is
computed in the following:

Case (i) Ẽ > 2(π

2
t̃h

√
z − 1

)
gdh(Ẽ ) = (z − 1)2z

∫ 1

−1
d
̃

(1 − 
̃2)1/2


̃2(−4z + 4) + z2

1

(Ẽ − 
̃)(z − 2) + z[(−Ẽ + 
̃)2 − 1]1/2
. (C2)

Case (ii) Ẽ < −2(π

2
t̃h

√
z − 1

)
gdh(Ẽ ) = (z − 1)2z

∫ 1

−1
d
̃

(1 − 
̃2)1/2


̃2(−4z + 4) + z2

1

(Ẽ − 
̃)(z − 2) − z[(−Ẽ + 
̃)2 − 1]1/2
. (C3)

Case (iii) 0 < Ẽ < 2

(π

2
t̃h

√
z − 1

)
gdh(Ẽ ) = (z − 1)2z

∫ Ẽ−1

−1
d
̃

(1 − 
̃2)1/2


̃2(−4z + 4) + z2

1

(Ẽ − 
̃)(z − 2) + z[(−Ẽ + 
̃)2 − 1]1/2

+ (z − 1)2z
∫ 1

Ẽ−1
d
̃

(1 − 
̃2)1/2


̃2(−4z + 4) + z2

1

(Ẽ − 
̃)(z − 2) − iz[1 − (−Ẽ + 
̃)2]1/2
. (C4)
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Case (iv) −2 < Ẽ < 0

(π

2
t̃h

√
z − 1

)
gdh(Ẽ ) = (z − 1)2z

∫ 1

Ẽ+1
d
̃

(1 − 
̃2)1/2


̃2(−4z + 4) + z2

1

(Ẽ − 
̃)(z − 2) − z[(−Ẽ + 
̃)2 − 1]1/2

+ (z − 1)2z
∫ Ẽ+1

−1
d
̃

(1 − 
̃2)1/2


̃2(−4z + 4) + z2

1

(Ẽ − 
̃)(z − 2) − iz[1 − (−Ẽ + 
̃]2)1/2
. (C5)

gdh only has nonzero imaginary part in cases (iii) and (iv). A plot of gdh, obtained above, can be found in Fig. 1; z = 6 is taken
for this plot.

APPENDIX D: ZERO-FREQUENCY LIMIT OF DH PAIRS CREATION RATE

In this Appendix, we present a derivation of the zero-frequency limit of the DH pair creation rate and derive the result (24).
We will take the frequency ω to be very small. Our starting point is the sum:

S =
∞∑

n=−∞
J 2

n (�/ω) Imgdh(U − nω) =
U/ω+2/ω∑

n∼U/ω−2/ω

J 2
n (�/ω) Imgdh(U − nω). (D1)

Since n is a very large number in all of the terms in the above sum, one is able to use the following high-order Bessel function
asymptotic form [50,51]:

Jν (x) ∼
[

4 ζ
(

x
ν

)
1 − (

x
ν

)2

]1/4
Ai

[
ν2/3 ζ

(
x
ν

)]
ν1/3

, (D2)

which holds for large and positive ν and positive x and Ai is the Airy function. The function ζ (z) is defined as:

ζ (z) =
{{

3
2

[
log

(√
1−z2+1

z

) − √
1 − z2

]}2/3
z � 1,

−[
3
2

{√
z2 − 1 − cos−1

(
1
z

)}]2/3
z > 1,

(D3)

where ζ (z) is positive if z < 1 and negative if z > 1. The function ζ (z) is depicted in Fig. 5(a), but we will not need its exact
form finally. Plugging the asymptotic form back into Eq. (23) and converting the sum over n into an integral:

S =
∫ U/ω+2/ω

U/ω−2/ω

dν

[
4 ζ

(
�
ων

)
1 − (

�
ων

)2

]1/2
Ai2

[
ν2/3 ζ

(
�
ων

)]
ν2/3

Imgdh(U − νω)

=
∫ U+2

U−2
d ν̄

[
4 ζ

(
�
ν̄

)
1 − (

�
ν̄

)2

]1/2
1

ν̄2/3
Imgdh(U − ν̄)

{
1

ω1/3
Ai2

[
ν̄2/3 ω−2/3 ζ

(
�

ν̄

)]}
, (D4)

where the substitution ν̄ = ων is done in the second line. Only the expression in the [.] is ω dependent, and thus it is the term
that should be studied in the limit ω → 0. The following asymptotic forms for the Airy function with a large argument |x| � 1

FIG. 5. The two auxiliary functions used in this Appendix. (a) The function ζ (z) defined in (D3). It is positive when z < 1 and negative
when z > 1 and vanishes at z = 0; (b) The function f (x) = √

1 − x2 − x cos−1(x) is a monotonic function for 0 < x < 1.
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will be used:

Ai(x) ∼
{

1
2
√

π
x−1/4 e− 2

3 x3/2
, x > 0,

1√
π

(−x)−1/4 sin
[

2
3 (−x)3/2 + π

4

]
, x < 0.

(D5)

The expression containing ω in Eq. (D4) can now be studied in the limit ω → 0 with the above asymptotic forms; for positive
values of ζ (�/ν̄) the Airy function decays exponentially in 1/ω, and thus one should exclude the regions corresponding to
ζ (�/ν̄) > 0 in the integral (D4), while for negative values of ζ (�/ν̄) one has:

1

ω1/3
Ai2

[
ν̄2/3 ω−2/3 ζ
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)]
∼ 1
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{
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}
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4

}
. (D6)

The function ζ is negative when its argument is larger than 1, which means � > ν̄. Furthermore, the argument of the sin2

function in the above asymptotic form can be rewritten using the definition of ζ as:
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. (D7)

The function f is defined as f (x) = √
1 − x2 − x cos−1(x). It is a monotonic function of its argument [Fig. 5(b)], when 0 <

x < 1, because df /dx = − cos−1(x). We will use this point in what follows. Plugging the asymptotic form back into Eq. (D4),
one has:
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. (D8)

Since the function f does not have vanishing derivative in the domain of integration, and we are interested in the ω → 0 limit,
one can argue that the function sin2 oscillates very rapidly and thus can be substituted by its average value 1

2 . One finally can
write S as:

S = 1

π

∫ �

U−2
d ν̄

[
1(

�
ν̄

)2 − 1

]1/2
1

ν̄
Imgdh(U − ν̄). (D9)
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