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Coexistent spin-triplet superconducting and ferromagnetic phases induced by Hund’s rule coupling
and electronic correlations: Effect of the applied magnetic field
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The recently proposed local-correlation-driven pairing mechanism, describing ferromagnetic phases (FM1 and
FM2) coexisting with spin-triplet superconductivity (SC) within a single orbitally degenerate Anderson lattice
model, is extended to the situation with an applied Zeeman field. The model provides and rationalizes in a
semiquantitative manner the principal features of the phase diagram observed for UGe2 in the field absence [cf.,
Phys. Rev. B 97, 224519 (2018)]. As spin-dependent effects play a crucial role for both the ferromagnetic and SC
states, the role of the Zeeman field is to single out different stable spin-triplet SC phases. This analysis should thus
be helpful in testing the proposed real-space pairing mechanism, which may be regarded as complementary to
spin-fluctuation theory suitable for 3He. Specifically, we demonstrate that the presence of the two distinct phases,
FM1 and FM2, and the associated field-driven metamagnetic transition between them, induces a respective
metasuperconducting phase transformation. At the end, we discuss briefly how the spin fluctuations might be
incorporated as a next step in the renormalized quasiparticle picture considered herein.
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I. INTRODUCTION

The discovery of spin-triplet superconductivity (SC) inside
ferromagnetic (FM) phases of uranium compounds UGe2

[1–4], URhGe [5], UCoGe [6], and UIr [7] is directly re-
lated to the question of a pairing mechanism and the order-
parameter symmetry under such circumstances. Due to sub-
stantial correlations in the f -electron sector, the situation here
differs from that for superfluid 3He, where a normal (paramag-
netic) Landau-Fermi liquid is unstable against the formation
of a pure spin-triplet paired state induced by quantum spin
fluctuations below the (FM) Stoner instability [8–10]. The
uranium compounds may be regarded as those among the first
solid-state systems with clear spin-triplet pairing, as the strong
effective molecular field acting on spin degrees of freedom in
the FM phase, at least for UGe2, rules out any spin-singlet SC.
Therefore, it is important to see if different phases (A, A1, A2,
and B) may still appear in an applied magnetic field, in direct
correspondence with those observed in 3He. Yet, the SC states
in the present situation are intertwined with two FM states,
FM1 and FM2 [11], so we would like to single out the
different coexisting phases. In brief, the pairing mechanism
and order-parameter symmetry for uranium superconductors
have yet to be determined in joint theoretical and experi-
mental efforts. Here we explicitly identify the possible SC
states within the FM and paramagnetic (PM) phases, and we
estimate their gap relative magnitudes.
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Recently, we have proposed that pairing in UGe2 emerges
due to the combined effect of FM exchange interaction
(Hund’s-rule coupling) combined with interelectronic cor-
relations [12]. Reference [12] is regarded as Part I of our
analysis of UGe2 properties (hereinafter referred to as I).
The spin-paired A1 state proved to be the dominant phase
there with the pair spins opposite to those of average spin
polarization, a natural feature appearing in the half-metallic
phase [13]. Remarkably, within the approach, the A1-type
SC emerges in a discontinuous manner at the metamagnetic
transition between the two distinct FM phases (FM2 → FM1),
as is evidenced in the recent specific-heat measurements [14].
Finally, SC practically disappears at the boundary of the
PM phase, which requires invoking a strongly anisotropic
and pressure-dependent form of spin-fluctuation spectrum to
explain the character of the SC state in terms of pairing
by long-wavelength FM excitations [15]. Within our com-
bined correlation- and exchange-driven pairing scheme, all
the above features are explained in a unified manner, as both
the ferromagnetism and pairing are directly connected and
driven by the real-space correlations of the same origin. The
changes of applied pressure are theoretically mimicked by us
by varying the hybridization magnitude between the almost
localized U 5 f electrons and conduction bands, and regarded
as the primary factor inducing the observed evolution [16–19].

Studies of the ground-state properties as a function of
pressure alone are, however, insufficient to confirm fully the
relevance of real-space correlation-driven pairing. This is due
to the availability of extensive experimental data covering SC
and magnetic properties of UGe2 in the three-dimensional
parameter space spanned by pressure, temperature, and ap-
plied magnetic field [11]. In particular, any proposed pairing
mechanism should be minimally tested against the sequence
of magnetic-field-induced simultaneous metamagnetic and
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induced metasuperconducting transitions along the first-order
line on the field-pressure plane. In this paper, we carry out
this program and investigate possible spatially homogeneous
phases in the Zeeman magnetic field. The resultant phase
diagram agrees well with available data close to the pressure-
induced magnetic transitions. We also provide a model band
structure in the correlated state, as well as other charac-
teristics, such as the f -level filling. The latter parameter
points toward the almost localized nature of two out of three
U3+ 5 f electrons and one itinerant, originating from the
orbital-selective 5 f 3 → 5 f 2 (U3+ → U4+) valence transition
suggested by us. The f -state filling is close to an integer,
hence the term almost localized f electrons. As a reference
point, we provide the ground-state results within a more
general variational scheme [20] in zero applied magnetic field
and discuss its subsequent simplification (cf. Appendix A).
At the end, we outline possible extensions of our approach
to incorporate both the full Gutzwiller-type projection (cf.
Appendix A) and inclusion of the long-wavelength quantum
spin fluctuations (cf. Appendix B).

II. MODEL AND METHOD

We start from the four-orbital degenerate Anderson lattice
model, formulated in the real-space language, which takes
the form

H − μN̂e =
∑
i jlσ

ti j ĉ
(l )†
iσ ĉ(l )

jσ + V
∑
ilσ

(
f̂ (l )†
iσ ĉ(l )

iσ + H.c.
)

+ ε f
∑

il

n̂ f (l )
i + U

∑
il

n̂ f (l )
i↑ n̂ f (l )

i↓

+ U ′ ∑
i

n̂ f (1)
i n̂ f (2)

i

− 2J
∑

i

(
Ŝ f (1)

i · Ŝ f (2)
i +1

4
n̂ f (1)

i n̂ f (2)
i

)
− μN̂e,

(1)

where μ is the chemical potential for the Ne-electron N-site
system, and f̂ (l )†

iσ ( f̂ (l )
iσ ) is the creation (annihilation) operator

of the f electron on an orbital with l = 1, 2 on site i and
spin σ =↑,↓, hybridized with two species of conduction
electrons characterized by the corresponding operators ĉ(l )†

iσ

and ĉ(l )
iσ . Additionally, n̂ f (l )

iσ ≡ f̂ (l )†
iσ f̂ (l )

iσ is the particle number
operator for f electrons in the original local state |ilσ 〉, and
Ŝ f (l )

i ≡ (Ŝ f (l )+
i , Ŝ f (l )−

i , Ŝ f (l )z
i ) denotes the spin operator of the

f electron on orbital |il〉. In this minimal model, the first
term represents c-electron hopping, the second an intra-atomic
hybridization between the subsystems of f and c states, and
the third is the starting bare atomic f -level energy relative to
the center of the conduction band. The next two terms ex-
press, respectively, the intraorbital and interorbital Coulomb
interactions (both of intra-atomic nature), whereas the third
represents ferromagnetic (Hund’s-rule) exchange interaction
between f electrons. This model has been used by us before
to explain the magnetic properties, including classical and
quantum criticalities, as well as zero-field SC properties of
UGe2 [12,17,19,20]. Here we extend this approach with a
detailed analysis of coexisting magnetic and SC properties

in an applied Zeeman magnetic field, and we determine the
phase boundaries between them. Note that in an applied field,
two terms should be added to Eq. (1): −g f μ0μBH

∑
i Sz

i and
−gcμ0μBH

∑
i sz

i for f and c electrons, respectively, where
g f and gc are gyromagnetic factors, μ0 denotes material per-
meability, and sz

i is the zth spin component for the c electron.
Hereafter, for simplicity, we take g f = gc ≡ g and introduce
reduced field h ≡ gμ0μBH/2. Moreover, we include only
nearest- and next-nearest-neighbor hoppings t < 0 and t ′ =
0.25|t |, respectively, and set U ′ = U − 2J . The total electron
filling is taken as ntot = 3.25. Such a choice yields, at zero
field, the sequence of magnetic and SC states that match the
experimental phase diagram of UGe2 [12].

The model (1) is solved within the statistically consis-
tent Gutzwiller approximation (SGA) [12,17,19,20], which,
at zero temperature, is equivalent to an approximate (see
below) minimization of the ground-state-energy functional of
the form

EG ≡ 〈�G|H|�G〉
〈�G|�G〉 ≡ 〈�0|P̂GHP̂G|�0〉

〈�0|P̂2
G|�0〉

, (2)

where the correlated wave function is taken in the form

|�G〉 ≡ P̂G|�0〉 ≡
∏
iα

P̂Giα|�0〉. (3)

|�0〉 represents an uncorrelated state, and P̂Giα are operators
acting locally on orbitals α ∈ { f (1), f (2), c(1), c(2)} at site i,
introduced to account for local correlations. We adopt a diag-
onal correlator form P̂Giα ≡ λ0iα |0iα〉〈0iα| + λ↑iα |↑iα〉〈↑iα| +
λ↓iα |↓iα〉〈↓iα| + λ↑↓iα |↑↓iα〉〈↑↓iα|, where the λ-coefficients
serve as variational weights of local many-particle states. Note
that P̂Giα can be generalized to incorporate intraorbital s-
wave superconducting correlations [21]. In our case, however,
dominant pairing takes place between distinct 5 f orbitals,
thus we retain the diagonal correlator structure. Moreover, we
assume that P̂Giα respects lattice translational invariance, and
we omit the position index, i.

Computation of the expectation values, defined by Eq. (2),
is a complex many-body problem and may be carried out for
finite systems by variational Monte Carlo methods (see, e.g.,
[22]) or in thermodynamic limit by suitable diagrammatic
expansion [23–25]. Within the latter framework, eliminating
Hartree bubbles improves substantially series convergence
and is achieved by imposing an additional constraint [23,26]
P̂2

Giα ≡ 1 + x(α)d̂ (α)
HF , with d̂ (α)

HF = (n̂(α)
i↑ − n(α)

i↑ )(n̂(α)
i↓ − n(α)

i↓ ), so
that only one variational parameter (x(α)) prevails per orbital.
We used the compact notation n(α)

iσ ≡ 〈n̂(α)
iσ 〉0 ≡ 〈�0|n̂(α)

iσ |�0〉.
In the above formulation, already the leading diagrammatic
contribution tends to capture essential features of correlated
lattice models, and, to reduce computational cost, we discard
higher-order terms (the SGA approximation). Moreover, since
the correlations are most prominent in the f -electron sector,
we take x( f (1) ) = x( f (2) ) ≡ x and x(c(1) ) = x(c(2) ) = 0. In the fol-
lowing, we skip the orbital indices for the λ-coefficients as
they refer now exclusively to two equivalent f orbitals. For a
more complete discussion of the methodological aspects, see
Appendix A.

One feature of the approach should be underlined at this
point. Namely, the average in Eq. (2) involves an uncorrelated
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wave function (in the form of a Slater determinant in either
direct [27] or reciprocal [25] space). Therefore, by applica-
tion of the Wick theorem, the nontrivial averages may be
expressed in terms of n(α)

iσ , 〈Ŝz f (α)
i 〉0, 〈ĉ(l )†

iσ ĉ(l )
jσ 〉0, etc. When

executing this procedure, the projection part
∏

α,l �=i, j P̂Glα ,
acting on the sites that differ from the two-state term in the
starting Hamiltonian and generating higher-loop graphs, can
be neglected. In effect, we obtain the renormalized energy
functional

EG =
∑
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ĉ(l )†
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〉
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)
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〉
0
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〈
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0
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(
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2
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i

〉
0

〈
n̂ f (2)

i

〉
0

+
∑
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(ε f − hσ )
〈
n̂ f (l )

iσ

〉
0 + U

∑
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λ2
↑↓

〈
n̂ f (l )

i↑
〉
0

〈
n̂ f (l )

i↓
〉
0

− h
∑
ilσ

σ
〈
n̂c(l )

iσ

〉
0, (4)

where the renormalization factors

g1σ ≡ 2
(
λ2

↑↓ − λ2
σ̄

)(
λ2

σ + (
λ2

↑↓ − λ2
σ

)
n f (l )

σ̄ )n f (l )
σ̄ ,

g2σ ≡ (
λ2

↑↓ − λ2
σ̄

)2(
n f (l )

σ̄

)2 + (
λ2

σ + (
λ2

↑↓ − λ2
σ

)
n f (l )

σ̄

)2
,

and

qσ ≡ λ0λσ + (λ↑↓λσ̄ − λ0λσ )n f (l )
σ̄ (5)

appear in response to local electronic correlations
(σ̄ ≡ −σ ) [12].

This renormalized Hamiltonian of the single-quasiparticle
type with pairing should thus be diagonalized first, before the
ground-state energy (2) in the correlated state is evaluated
explicitly. Equivalently, optimization of EG over wave func-
tion |�0〉 yields an effective nonlinear Schrödinger equation
Heff |�0〉 = E |�0〉 with the following effective Hamiltonian:

Heff =
∑
k,σ

�
†
kσ

⎛
⎜⎜⎜⎜⎝

εkσ 0 qσV 0

0 −εkσ 0 −qσV

qσV 0 ε
f
σ �

f f
σσ

0 −qσV �
f f
σσ −ε

f
σ

⎞
⎟⎟⎟⎟⎠�kσ + E0,

(6)

which is expressed now in terms of Nambu spinor �
†
kσ ≡

(ĉ(1)†
kσ

, ĉ(2)
−kσ

, f̂ (1)†
kσ

, f̂ (2)
−kσ

) and leads to the expectation value
(2). Here

εkσ = 2t[cos(kx ) + cos(ky)]

+ 4t ′ cos(kx ) cos(ky) − μ − hσ (7)

is the Zeeman-split tight-binding dispersion relation for bare
conduction electrons,

ε f
σ ≡ ∂EG

∂n f (1)
iσ

= ε f + Uλ2
↑↓n f (1)

iσ̄ + (U ′ − J )n f (2)
iσ + U ′n f (2)

iσ̄

+
(

∂qσ̄

∂n f (1)
iσ

V
∑

l

〈
f̂ (l )†
iσ̄ ĉ(l )

iσ̄

〉
0 + c.c.

)

+
(

∂g1σ̄

∂n f (1)
iσ

U ′ + ∂g2σ̄

∂n f (1)
iσ

(U ′ − J )

)∣∣〈 f̂ (1)
iσ̄ f̂ (2)

iσ̄

〉
0

∣∣2

− μ − hσ (8)

determines the position of the renormalized f -electron level,
and E0 is the energy shift (that does not influence expecta-
tion values but contributes to the ground-state energy). The
effective gap parameter �

f f
σσ , and the effective SC coupling

constant Vσ (to be addressed below), are defined by the
relation

� f f
σσ ≡ Vσ

〈
f̂ (1)
iσ f̂ (2)

iσ

〉
0 ≡ ∂EG

∂
〈
f̂ (1)†
iσ f̂ (2)†

iσ

〉
0

= − [g1σU ′ + g2σ (U ′ − J )]
〈
f̂ (1)
iσ f̂ (2)

iσ

〉
0. (9)

The resultant integral Schrödinger-type equation is solved
numerically in the loop with minimization of the energy
functional [Eq. (4)] over the correlator parameter x. To avoid
finite-size effects that become severe for weak SC order,
considered here, we performed the calculations directly in
the thermodynamic limit using adaptive integration. Note
that the effective pairing potential Vσ can be attractive even
in the regime where its Hartree-Fock (unrenormalized) cor-
respondent VHF

σ = U − 3J is already repulsive [12]. In that
case, the pairing is induced by nontrivial correlation effects.

A methodological remark is in place at this point. The
above scheme employs correlator P̂G that acts separately
on each orbital. In a multiband system, such as the one
considered here, one could expect that the correlator should
allow for more general many-body states involving multiple
orbitals at once. Such an extension makes it difficult to achieve
numerical accuracy required to study SC order emerging on
the scale of the order of 1 K in uranium materials. We have,
nonetheless, performed such an extended analysis [20] for
zero field and a limited range of model parameters, with the
results very close to those obtained from the above simplified
scheme. The discussion of those formal issues is deferred to
Appendix A.

III. RESULTS AND DISCUSSION

A. Zero-field results as a reference point

The SC pairing discussed here is of local interorbital
nature, i.e., of odd parity in the orbital and even in the spin
indices, as was proposed before [20,28]. In Fig. 1(a) we draw
schematically the sequence of phases obtained in zero applied
field. The three SC states are labeled in a similar manner to
those for the case of superfluid 3He, with A1 being fully spin-
polarized (↓↓ Cooper pairs only), and A2 phase is that with
unequal order parameter amplitudes ↑↑ and ↓↓, which finally
equalize in the PM state and result in A-type SC. Formally, the
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FIG. 1. (a) Sequence of ferromagnetic (FM2, FM1) and non-
magnetic (PM) phases, coexisting with superconducting (A2, A1, A)
states, as a function of increasing hybridization magnitude (emulat-
ing pressure change [19]) for zero external magnetic field. (b) The
same as in (a), but for fixed hybridization and varying pressure, with
the most prominent FM1 + A1 phase taken as the starting point.
The boundaries mark transition points in both the magnetic and
superconducting sectors.

above SC states are characterized by nonvanishing anomalous
amplitudes detailed in Table I. The coexistent phase FM1 +
A1 is the most prominent; A2 and A states play only a very
minor, if not negligible, role in the field absence. We emulate
changing external pressure by the corresponding change in
hybridization magnitude (for a detailed discussion of this
particular point, see Part I and Ref. [19]). As shown below, the
role of the field is to enhance the presence of the A2 phase.

For the sake of completeness, in Table II we provide
selected numerical values of the effective SC gap parameters
for H = 0 in the A1, A2, and A phases. They are defined as
partial derivatives of the variational functional with respect to
anomalous amplitudes [cf. Eqs. (9), (A17), and (A18)] and
physically determine the spectrum of projected quasiparticle
excitations [25]. As the SC transition sequence A2 → A1 → A
takes place simultaneously with that corresponding to discon-
tinuous magnetic transitions (FM2 → FM1 → PM), they are
also discontinuous, but the former discontinuities are probably
too weak to be detected experimentally (note that the maximal
value of the SC transition temperature does not exceed 1 K in
all uranium systems) [1–7]. However, we obtain a clear sign
of metasuperconducting transition accompanying the corre-
sponding metamagnetic jumps. This issue is discussed below.

B. Discontinuous phase transition in an applied magnetic field

In Fig. 1(b) we have drawn schematically the sequence of
phases appearing with the increasing applied field, starting

TABLE I. Detailed structure of the anomalous local f - f ampli-
tudes for various coexistent magnetic and superconducting phases,
appearing for the four-orbital periodic Anderson model (1).

Phase Anomalous f - f amplitudes

PM + A 〈 f (1)†
i↓ f (2)†

i↓ 〉0 = 〈 f (1)†
i↑ f (2)†

i↑ 〉0 > 0
FM1 + A1 〈 f (1)†

i↓ f (2)†
i↓ 〉0 > 0, 〈 f (1)†

i↑ f (2)†
i↑ 〉0 = 0

FM2 + A2 〈 f (1)†
i↓ f (2)†

i↓ 〉0 > 〈 f (1)†
i↑ f (2)†

i↑ 〉0 > 0

TABLE II. Superconducting gap components as a function of
hybridization |V | for U = 4|t | and J = 1.6|t |. Estimated numerical
accuracy δ� f f

σσ /|t | is also provided in the last column.

V/t 100 × �
f f
↓↓/|t | 100 × �

f f
↑↑/|t | 100 × δ� f f

σσ /|t |
1.1666667 0.0000000 0.0000000 0.0000011
1.3000000 0.0038378 0.0000000 0.0000012
1.3333333 0.0225363 0.0000000 0.0000012
1.4000000 0.5660415 0.0001295 0.0000013
1.4500000 5.8775861 0.0000000 0.0000014
1.5000000 5.1822010 0.0000000 0.0000014
1.5500000 4.5934998 0.0000000 0.0000013
1.6000000 4.0906100 0.0000000 0.0000013
2.0000000 1.8155386 0.0000000 0.0000012
2.5000000 0.7775326 0.0000000 0.0000011
3.0000000 0.3706006 0.0000000 0.0000011
3.5000000 0.1909743 0.0000000 0.0000010
4.0000000 0.1049818 0.0000000 0.0000010
4.1500000 0.0887245 0.0000000 0.0000010
4.1000000 0.9525063 0.9525063 0.0000011
4.2000000 0.8016905 0.8016935 0.0000011
4.2500000 0.7355641 0.7355662 0.0000010
4.4000000 0.5685009 0.5685018 0.0000010
5.0000000 0.2062559 0.2062561 0.0000010

from the most prominent FM1 + A1. The high-field phase
is always pure high-moment FM2. To illustrate the situation
quantitatively, we have plotted in Figs. 2(a)–2(c) the total
magnetic moment mtot ≡ m f + mc [cf. panel (a)], �

f f
↓↓ [panel

(b)], and �
f f
↑↑ [panel (c)] SC amplitudes. All the transitions are

of discontinuous metamagnetic/metasuperconducting charac-
ter. The paired states disappear gradually as the magnetic mo-
ment increases in the FM2 phase. In that final state, both the
diagonal pairing correlation 〈 f̂ (1)†

iσ f̂ (2)†
iσ 〉0 and spin fluctuations

are suppressed by the magnetic-field-enforced moment satu-
ration. In Fig. 2 we show a representative situation near the
FM2-FM1 boundary. Note that the considered discontinuous
transitions may be easier to detect with the help of magnetic
methods rather than by specific-heat measurements.

The character of the transitions as a function of applied
field for a fixed value of hybridization is provided in Fig. 3.
In Fig. 3(a) the components of the total moment are dis-
played. Note that the negative (Kondo-like) c-electron mag-
netic moment is practically field-independent. In Fig. 3(b)
a pronounced A1 → A2 SC transition region is emphasized.
Insets to Figs. 3(a) and 3(b) are to visualize clearly the
discontinuities. This behavior may be compared with the
measurements of the upper critical field Hc2 as a function of
temperature close to the field-induced metamagnetic FM1 →
FM2 transition point (cf. Fig. 10 of Ref. [4]). Specifically,
for 13.5 kbar a sharp drop of SC transition temperature is
observed experimentally above μ0Hx ≈ 2 T, in qualitative
agreement with the theoretical result depicted in panel (b).
Also, the SC state is detected unambiguously on both sides
of the transition as is predicted by the local-correlation pair-
ing scenario elaborated here. In Fig. 3(c) we plot the spin-
dependent effective coupling constants Vσ (cf. I), defined
by the relation �

f f
σσ ≡ Vσ 〈 f̂ (1)

iσ f̂ (2)
iσ 〉0 [cf. Eq. (9)]. Note that
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FIG. 2. (a) Total magnetization, mtot = m f + mc (a) and super-
conducting gap components [(b) and (c)] vs hybridization magni-
tude. Solid lines correspond to field value h/|t | = 0.002, the dashed
lines represent the h = 0 situation [12]. The microscopic parame-
ters are U/|t | = 3.5, J/|t | = 1.1, T = 0 K, t ′/|t | = 0.25, ε f /|t | =
−4, ntot ≡ n f + nc = 3.25, and the field h = 0.002|t |, which
corresponds to μ0H = 6.9 T for the nearest-neighbor hopping
|t | = 0.2 eV.

the pairing potential (effective coupling constant) is only
moderately spin-dependent in an applied field, whereas the
spin components of the gap behave in a very different manner.
Such an asymmetry of the results for σ =↑,↓ components
of �

f f
σσ can be easily understood as, e.g., in the FM1 phase

the spin-majority subband is full and the system becomes
half-metallic, which implies �

f f
↑↑ ≡ 0. Finally, in panel (d)

we plot the factors qσ that renormalize the f -c hybridization
magnitude [cf. Eqs. (6) and (5)]. These coefficients turn out to
be of the order of unity, hence the major effect of correlations
is to renormalize the pairing coupling constant rather than the
single-particle dynamics.

To complete the picture, we have plotted in Figs. 4(a)
and 4(b) the overall f -level occupancy (n f ) and that of
the c band (nc); the details of n f evolution are shown in
panel (b). The f -orbital occupancy is very close to unity,
showing that those electrons have an almost localized nature.

FIG. 3. Selected properties in an applied magnetic field at zero
temperature. (a) Moments: mtot , total (black line); m f , f -electron
component (blue); mc, c-electron component (red). (b) Spin-triplet
f - f superconducting gap components: �

f f
↑↑, purple; �

f f
↓↓, green.

(c) Spin-dependent pairing potential Vσ . (d) Renormalization factors
qσ [cf. Eq. (5)]. Phase transition from FM1 + A1 to FM2 + A2

takes place at hx/|t | = 0.001 468, which corresponds to magnetic
field μ0Hx ≈ 5.1 T for |t | = 0.2 eV. The results are obtained for
the following set of parameters: U/|t | = 3.5, J/|t | = 1.1, T =
0 K, V/t = 1.26, t ′/|t | = 0.25, ε f /|t | = −4, ntot = 3.25. Insets in
(a) and (b) detail the discontinuous nature of the transitions. The
pairing coupling constant is only weakly spin-dependent, whereas
the gaps are due to the strong spin dependence of the electronic
structure (see the text).

Moreover, approximately one additional electron (per U) is ef-
fectively transferred to the conduction band (strictly speaking
nc ≈ 1.25). This conclusion confirms again our conjecture
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FIG. 4. Occupancies n f and nc as a function of applied magnetic
field for the same parameters as those adopted in Fig. 3. The f -orbital
occupancy is almost equal to unity showing an almost localized na-
ture of those electrons even in the presence of a sizable hybridization.

reached before [12] that in the case of U3+ each ion ef-
fectively turns into U4+ with two nearly localized electrons
and an itinerant electron created at the same time. Also, the
Hund’s-rule and intraorbital Coulomb-interaction contribu-
tions to the total energy depend relatively strongly on the
value of the applied field, as demonstrated in Fig. 5. This
feature supports further the strongly correlated nature of the
system, in which various contributions balance out (partially
compensate) each other in such a manner that a much smaller
Zeeman contribution plays the role of a tip of balance between
the localized and itinerant states of f -electrons [28]. Such a
circumstance is characteristic of a Hund metal, as elaborated
in I. Additionally, the SC in the relevant uranium systems
emerges at low temperatures, typically below 1 K [1–7].
The related discontinuous transformations in the field involve
even more subtle free-energy changes, as shown explicitly in
Fig. 6 for the situation with FM1 + A1 → FM2 + A2 phase
transformation. The corresponding total-energy change is of
the order 10−5|t |, which for |t | ∼ 0.2 eV is below the scale of
0.1 K. Nevertheless, the accuracy of our numerical results is
well below these values (cf. Fig. 6 of Part I [12]).

FIG. 5. Relative contributions of the renormalized Hund’s-rule
coupling and direct intraorbital Coulomb interactions to the ground-
state energy for the value of hybridization V/t = 1.26, i.e., at the
threshold of FM2 → FM1 transition, where the A1 SC phase appears
in an abrupt manner. The model parameters coincide with those
adopted in Fig. 3.

FIG. 6. The ground-state energies of the two phases marked
(a) with the phase-transformation point marked by the vertical
dashed line. The difference of energies of the two phases (b) is of
the order of 0.1 K. Note also that the transition is discontinuous as
the two lines in (a) have at hx slightly different slopes.

Finally, in Fig. 7 we plot the boundary line between the
FM1 + A1 and FM2 + A2 phases in the H-|V | plane. It has a
linear character in this narrow range of V/t encompassing the
FM2-FM1 discontinuous metamagnetic transition at H = 0 as
a starting point. This borderline may serve as an important
feature and, in particular, help to single out the relevant SC

FIG. 7. Calculated f -c hybridization dependence of the char-
acteristic transition field μ0Hx in the vicinity of the FM2-FM1
metamagnetic instability for H = 0. The weak discontinuity may
be detected by the magnetic susceptibility measurements across the
boundary for fixed pressure (V/t ratio).
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FIG. 8. Renormalized band structure for h/|t | = 0.002 and V/t = 1.26 in the FM2 + A2 phase (set of other parameters: U/|t | =
3.5, J/|t | = 1.1, T = 0 K, ntot = 3.25, t ′/|t | = 0.25, ε f /|t | = −4). The eigenenergies are represented by dotted lines. The partial
spectral-weight contributions from f -electrons [(a) and (b)] are marked in blue, whereas those for c-electrons [(c) and (d)] are in red. Color
intensity represents the spectral-weight magnitude. In panel (e) the spin-resolved density of states is presented.

phases with symmetry of the order parameter (A1 → A2)
changing in a discontinuous manner.

In summary, the observed SC discontinuities in an applied
magnetic field are relatively small. However, with the help
of sensitive magnetic measurements of ac susceptibility, they
should be detectable. Also, the appearance of the second
component of the SC gap at the A1 → A2 transition may
become observable in the pair tunneling spectroscopy. These
rather simple remarks require, however, a more quantitative
substantiation.

C. Electronic structure

FM and SC phase transitions have a substantial impact
on the electronic (renormalized-band) structure. Particularly
interesting is the situation near the boundary between FM2 +
A2 and FM1 + A1 states. To elucidate the changes on both
sides of the transition, in Figs. 8 and 9 we have plotted
an exemplary structure along the high-symmetry lines just
below (V/t = 1.26) and just above that value (V/t = 1.262)
for h = 2 × 10−3|t |. The slightly different magnitudes of V

FIG. 9. (a)–(d) Band structure for h/|t | = 0.002 and slightly larger hybridization V/t = 1.262 in the FM1 + A1 phase (the remaining
parameters are the same as in Fig. 8). Eigenenergies are represented by dotted lines, partial contributions from f -electrons are marked in blue,
whereas those from c-electrons are in red. Color intensity represents the spectral weight. (e) Orbital- and spin-resolved density of states.
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have been selected to visualize the situation on both sides
of the discontinuous FM1 → FM2 transition. The spin sub-
bands with the dominant f character are marked in blue.
The spin splitting is induced mainly by Hund’s rule and on-
site repulsion U (the effects of applied field and pairing are
of minor importance). Remarkably, the c electrons (marked
in red in the lower panel) exhibit also a comparable spin
splitting. This effect is caused by the circumstances in which
the c electrons are hybridized with their f -electron partners
and, therefore, the Hund’s rule interaction is transferred from
the f - to the c-system. Note that the occupancy of each of
the f orbitals is n f /2 = 1 ± δ, with δ � 1 [cf. Fig. 4(b)],
where the small portion δ comes from the upper spin subband,
which crosses the Fermi level (zero-energy level) near the 


point. This is explicitly visualized on the density of states
(right panel), where the f ↓ subband barely touches the Fermi
energy and the majority-spin subband is practically filled. To
a good accuracy, the system is thus a half metal with the
predominant spin-minority carriers at the Fermi level. This
is the reason why the A2 phase is stable then and with the
amplitudes �↓↓ � �↑↑. The situation turns into an extreme
case, with only �↓↓ �= 0 in the FM1 + A1 phase. The latter
result rationalizes nicely the related observation in the H = 0
situation [12]. Note, however, that the exact half-metallic
behavior, obtained in the present model, might be obscured
in the real material by other bands that are weakly coupled to
the considered f -c subsystem.

IV. OUTLOOK

A. Effect of spin fluctuations (tentative)

Our present approach, based on the first nontrivial order
(SGA) of treating the interelectronic correlations on a local
scale, cannot explain enhanced residual linear specific heat
appearing at temperatures well below Tc in UGe2 [14], as well
as the strong effective mass enhancement at the FM1 → FM2
transition there [11,29]. Additionally, NQR relaxation with an
anomalous temperature dependence is observed at the FM to
PM transition at low temperature [30]. All these features may
be explained qualitatively in terms of FM spin fluctuations
starting from our renormalized mean-field picture. Whereas
overall features of a transition from nonunitary to unitary SC
are well reproduced by our phase diagram (also for UTe2;
cf. Ref. [31]), the long-wavelength fluctuations should be in-
cluded, particularly for low-moment bearing systems UCoGe
and UIr.

A general way to extend our work is as follows. We start
from the effective Hamiltonian (1), but with renormalized
microscopic parameters Uλ2

↑↓ and Jg2σ [cf. Eq. (4)], and
we proceed with the Hubbard-Stratonovich transformation,
as outlined in Appendix B for the case of a FM state. To
incorporate fluctuations of the SC order parameter, one should
include also the bilinear representation of the spin part ∼Jg2σ ,
derived in Ref. [32]. However, a quantitative implementation
of this program is quite cumbersome, as it requires computa-
tion of renormalized coupling constants at each stage of the
analysis, before and after including the fluctuations in each
order. Nonetheless, we believe that such a solution is possible
to tackle, as the renormalized coupling parameters are reduced

in the process already at the level of SGA. It is tempting to
suggest that the effective picture should be not far away from
that based on a 1/N expansion with effective parameters U
and J (cf. Appendix B) calculated self-consistently within the
SGA [33].

B. Summary

In the preceding paper [12], referred to here as Part I, we
have constructed a fairly complete zero-magnetic-field phase
diagram composed of spin-triplet paired states coexisting
with the ferromagnetic FM1 and FM2 phases. The A2 and A
SC states appear in the field absence only with very small
amplitudes. In the present work, we have shown that the
applied magnetic field allows for fine-tuning of those phases
and is likely to make them observable. In this manner, one
can detect the states analogous to those seen clearly only
for the superfluid 3He [9]. However, in contrast to 3He, here
the pairing is of s-wave character, i.e., with an intra-atomic
spin-triplet and the orbital singlet to make the wave function
of the local pairs antisymmetric. It should be emphasized that
this picture is applied here for moderately correlated systems,
in which the pairing is induced by Hund’s rule combined
with direct short-range Coulomb interaction. In the strong-
correlation limit, this type of pairing would have intersite
(real-space) character with either spin-triplet or spin-singlet
nature, depending on the band filling [34,35].

The principal result of this and the preceding [12] work
is to describe, within a single (orbitally degenerate) Ander-
son lattice model, coexistent FM and spin-triplet SC phases
within a consistent picture. In this way, we extend the well-
established approaches to correlated normal and magnetic
systems [28] to include the SC states coexisting with them and
within a single mechanism. It must be emphasized that such
a renormalized mean-field theory may also be generalized to
a more involved systematic form of diagrammatic expansion,
DE-GWF [36,37]. However, such an approach becomes quite
involved in the multiorbital situation, particularly with multi-
ple coexisting phases [27,38]. Inclusion of higher-order cor-
relations introduces then an additional admixture of intersite
correlations to the present local pairing. This should be an
objective of a separate study.

At the end, we should mention that the present model ne-
glects spin-orbit coupling and magnetocrystalline anisotropy
in the uranium compounds addressed above [39,40]. From the
fact that the overall phase diagram and the coexistent phases
are reproduced correctly, we draw the conclusion that the
orbital moment may be frozen (we consider only spin-aligned
phases) and that the anisotropic character of the system is
enforced naturally by the presence of the long-range FM order
along the easy axis. Obviously, this may not be that simple if
we would like to discuss the situation in the field by changing
its orientation.
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APPENDIX A: STATISTICALLY CONSISTENT
GUTZWILLER APPROXIMATION (SGA):

SIMPLIFIED VERSUS FULL FORMS

In the preceding paper [12] (cf. Appendix A therein) we
have discussed in detail the SGA approximation. Here we
provide a more formal background. First, the multiband trial
function for the ground state is selected in the form

|�G〉 =
∏

i

P̂i|�0〉, (A1)

where |�0〉 is an antisymmetrized product (Slater determi-
nant) of single-particle wave functions, in general describing
a noncorrelated broken symmetry state, for which Wick’s the-
orem holds. Operator P̂i is the so-called Gutzwiller correlator
that changes the weights of various many-body configurations
in the variational wave function |�G〉. The general form of
P̂i is

P̂i =
∑
II ′

λi II ′ |I, i〉〈I ′, i|, (A2)

where the states {|I, i〉}I span the local Fock space of the
correlated orbitals at site i and the variational variables λiII ′

form a matrix, here taken in the real-valued and symmetric
form. Those correlated local spin-orbital states can be re-
presented as

|I, i〉 =
<∏

α∈I

f̂ †
iα|0, i〉, (A3)

where α = (l, σ ) labels combined spin-orbital indices, and
the symbol “<” indicates a specified selected ascending order
of the creation operators. Likewise,

〈I ′, i| =
>∏

α∈I ′
〈0, i| f̂iα (A4)

contains the annihilation operators in descending order
so that

|I, i〉〈I ′, i| =
<∏

α∈I

f̂ †
iα

>∏
β∈I ′

f̂iβ

∏
γ /∈I∪I ′

(
1 − n̂ f

iγ

)
. (A5)

The basic task is to compute the ground-state energy.
For that purpose, one needs to evaluate the averages of
the form

〈�G|Ôi|�G〉 = 〈�0|
(∏

j P̂j
)
Ôi

( ∏
j P̂j

)|�0〉
〈�0|

( ∏
j P̂j

)( ∏
j P̂j

)|�0〉
. (A6)

The products of local correlators can now be rearranged
by using the fact that P̂i and P̂j commute for i �= j.
In effect,

〈Ôi〉 =
〈( ∏

j �=i P̂ 2
j

)
P̂iÔiP̂i

〉
0〈 ∏

j P̂ 2
j

〉
0

, (A7)

where the averages with the subscript “0” are taken in the
uncorrelated state, so that when the Wick theorem is applied
to the averages in the uncorrelated 〈· · · 〉0 representation, we

obtain〈∏
j

P̂ 2
j

〉
0

〈Ôi〉 =
〈∏

j �=i

P̂ 2
j

〉
0

〈P̂iÔiP̂i〉0

+
∑
all pairs
of n.n.

contractions

〈∏
j �=i

P̂ 2
j

〉
0

〈P̂iÔiP̂i〉0 + · · · , (A8)

where the symbol

∑
all pairs
of n.n.

contractions

〈Â〉0〈B̂〉0 (A9)

represents all the nonzero pair contractions selected for a
given broken-symmetry state. A detailed procedure is quite
cumbersome and will not be detailed here [20,36,37].

Under the so-called Gutzwiller conditions [20,36,37]〈
P̂2

i

〉
0 = 1, (A10)

〈
P̂ 2

i f̂ †
iα f̂iβ

〉
0 = 〈

f̂ †
iα f̂iβ

〉
0, (A11)

and for large site-coordination number, a straightforward gen-
eral formula for the expectation values of local operators is
obtained,

〈�G|Ôi|�G〉 = 〈P̂iÔiP̂i〉0, (A12)

which can be used to evaluate 〈�G|H|�G〉 (note that all the
f -dependent terms are local).

In effect, we obtain Landau-type functional L, which, at
T = 0, is composed of 〈H〉

G
and incorporates the condi-

tion for the chemical potential, the enforced normalization
〈�G|�G〉 = 1, as well as the requirement of having the same
number of particles in the initial (|�0〉) and correlated (|�G〉)
states (before and after the projection with P̂G), namely

L ≡ 〈Ĥ〉G − μ
∑

i

(∑
α

〈
n̂ f

iα

〉 + ∑
β

〈
n̂c

iβ

〉 − ntot

)

+
∑

i

ηi
(〈

P̂ 2
i

〉
0 − 1

)

+
∑
iαβ

ηiαβ

(〈
P̂ 2

i f̂ †
iα f̂iβ

〉
0 − 〈

f̂ †
iα f̂iβ

〉
0

)
. (A13)

The functional L needs to be optimized with respect to all
λ and η parameters, representing additional constraints [20] in
the SGA approximation, as well as μ and |�0〉. Minimization
with respect to |�0〉 leads to an effective (renormalized) quasi-
particle Hamiltonian in an applied magnetic field h, which,
in the component Nambu representation [cf. Eq. (6)], can be
recast to the following form:

Heff =
∑
kσ

�
†
kσ

⎛
⎜⎜⎝

εkσ 0 Ṽσ �̃ f cσ

0 −εkσ �̃ f cσ −Ṽσ

Ṽσ �̃ f cσ ε̃ f σ �̃ f σ

�̃ f cσ −Ṽσ �̃ f σ −ε̃ f σ

⎞
⎟⎟⎠�kσ + E0,

(A14)
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with the renormalized parameters defined as

ε̃ f σ ≡ 1

2

∂L

∂n0
f σ

, (A15)

Ṽσ ≡ 1

4

∂L

∂v0
σ

, (A16)

�̃ f σ ≡ 1

2

∂L

∂A0
f σ

, (A17)

�̃ f cσ ≡ 1

4

∂L

∂A0
f cσ

, (A18)

and εkσ is given by Eq. (7). The bare parameters read

n0
f σ ≡ 〈 f̂ †

ilσ f̂ilσ 〉0, (A19)

n0
cσ ≡ 〈ĉ†

ilσ ĉilσ 〉0, (A20)

v0
σ ≡ 〈 f̂ †

ilσ ĉilσ 〉0, (A21)

A0
f σ ≡ 〈 f̂ †

i1σ f̂ †
i2σ 〉0, (A22)

A0
f cσ ≡ 〈 f̂ †

i1σ ĉ†
i2σ 〉0 = 〈ĉ†

i1σ f̂ †
i2σ 〉0. (A23)

Note that the averages (A19)–(A23) define the uncorrelated
broken-symmetry state, whereas Eqs. (A15)–(A18) define
the physical state. Also, the Hamiltonian (A14) is self-
consistent in which the quantities defining the physical state
are μ, �̃ f σ , �̃ f cσ , Ṽσ , ε̃ f σ , and the band dispersion relation of
εkσ for bare c electrons. They are determined from a system
of five self-consistent equations. Note also that in the effective
Hamiltonian (6) the anomalous averages �̃ f cσ are set to zero,
which means that the direct hybrid (c- f ) pairing is regarded as
negligible. This is not the case for the singlet-paired systems
[18,41,42].

In Figs. 10(a)–10(d) we display the selected properties
of the SC state on the basis of the full solution of the
self-consistent equations obtained with the help of Hamil-
tonian (A14), for the three selected values of the Hund’s
rule exchange integral J . Namely, in (a) we display the total
magnetic moment mtot. Panel (b) shows the dominant (spin-
down) pairing amplitude in FM1 + A1 and PM + A phases. In
panel (c) we draw the ground-state energy, whereas in (d) we
plot the condensation energy (the energy difference between
the SC state and that corresponding to the appropriate pure
FM phase). All these characteristics are quantitatively similar
to those obtained earlier within the simplified picture with
� f cσ ≡ 0. From that we draw the conclusion that the hybrid
pairing component has a negligible effect on SC. Also, the
component �0 of the pairing amplitude of f -electrons (i.e.,
the one with zero z spin-component of the pair) is suppressed
in this system with relatively large U . Hence, the simplified
solution detailed in Appendix A of Ref. [12] represents, to
a good accuracy, the full solution. The same type of picture
is used throughout the present paper for the case of nonzero
applied field.

FIG. 10. Exemplary phase diagram obtained with the multior-
bital correlator in the f -electron sector. (a) The total magnetization
m, (b) pairing amplitude Af ↓, (c) ground-state energy EG per lattice
site, and (d) SC condensation energy �E , all as a function of
hybridization for n = 3.2, ε f = −3|t |, U + J = 5|t |, square lattice
density of c states: t < 0, t ′ = 0.25|t |, and for three rations J/U =
0.5, 0.45, 0.4. Note that A1 phase is characterized by Af ↑ = 0,
whereas in A phase we have Af ↑ = Af ↓. The condensation energy for
J/U = 0.4 is so low that it is hardly visible on the scale. Note that de-
spite seemingly discontinuous behavior, �E does not exhibit jumps
across the joint metamagnetic and metasuperconducting transitions,
but it varies extremely rapidly in the narrow parameter range. For the
zero-field case, this has been detailed in Appendix D of Ref. [43].

APPENDIX B: INCORPORATION OF QUANTUM SPIN
FLUCTUATIONS IN AN ORBITALLY DEGENERATE

SYSTEM: AN OUTLINE

The atomic part of the Hamiltonian (1) for f electrons lo-
cated on orbitals l = 1, 2, . . . , d , where d is their degeneracy,
can be rewritten in the form

HI = U
∑

il

n̂ f (l )
i↓ n̂ f (l )

i↑ + K

2

∑
ill′
σσ ′

′
n̂ f (l )

iσ n̂ f (l ′ )
iσ ′ − J

∑
ill ′

Ŝ f (l )
i Ŝ f (l ′ )

i ,

(B1)
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where K = U ′ − J/2 and the primed summation is performed
over l �= l ′. Note that the interaction parameters U, K , and J
are taken as the same for each pair (l, l ′) of orthogonalized
orbitals. Therefore, we introduce next the global spin- and
particle-number operators as

Ŝ f
i ≡

d∑
l=1

Ŝ f (l )
i , n̂ f

i ≡
∑

σ

n̂ f
iσ ≡

∑
lσ

n̂ f (l )
iσ . (B2)

By expressing the orbital-dependent operators in Eq. (B1)
through their global correspondents [44], up to a constant, one
obtains

HI =1

2
K

∑
i

(
n̂ f

i

)2 − J
∑

i

(
Ŝ f

i

)2 + I
∑

il

n̂ f (l )
i↑ n̂ f (l )

i↓ (B3)

with I ≡ U − K − 3
2 J . Assuming the standard relation for d

electrons U ′ = U − 2J , we obtain K = U − 5
2 J, I = J/2. We

thus have decomposed the intra-atomic interaction into the
three parts: local charge, spin, and the Hubbard-type corre-
lations, respectively. Now, noticing that the first two terms
give a contribution of the order of d2, whereas the third one
∼d , and disregarding charge fluctuations, we have, to a first
approximation,

HI = −
(

J + I

3d

) ∑
i

(
Ŝ f

i

)2
, (B4)

i.e., the total local spin fluctuations provide the leading contri-
bution. In the FM state, one can take Ŝ f

i = 〈S f z
i 〉êz + ŝi, where

the static part of magnetization introduces a natural anisotropy
axis for spin fluctuations expressed by ŝi = ŝi(τ ), where τ is
the imaginary time. To include the dynamic fluctuations, one
utilizes the Hubbard-Stratonovich transformation

exp(â2) =
∫ ∞

−∞
dx exp(−πx2 − 2âx

√
π ) (B5)

for each spin-operator component Ŝ f α (τ ). By including also
the single-particle part Ĥ0, we obtain the following expression
for the system density matrix:

ρ = Te−βĤ0
∏

i

∫
Dξα

i (τ ) exp

(
−

∫ 1

0
dτ

(
ξα

i

)2

−
∫ 1

0
dτ 2i

√
πβJξα

i (τ )Aα
i (τ )

)
, (B6)

where Dξα
i (τ ) denotes functional integration over each Gaus-

sian random field ξα
i (τ ), β ≡ (kBT )−1, τ is in units of β, and

Aα
i (τ ) ≡ Ŝ f α

i (τ ). One can see that this form is of the same type
as that for the Hubbard model with the explicitly rotationally
invariant interaction term

Un̂i↑n̂i↓ = 1
4U (n̂i↑ + n̂i↓)2 − 1

3U Ŝ2
i (B7)

and fluctuating field Ŝα
i (τ ) [45]. Therefore, the spin-

fluctuation contribution can be calculated in the same manner
as in the Hubbard model with the part 〈Sz

i 〉 �= 0. However, in
order to incorporate the fluctuations starting from the SGA
(renormalized mean-field) solution, replacing the Hartree-
Fock solution as a saddle-point approximation, our coupling
constant must also be renormalized, J → JλJ , as contained

when solving the self-consistent equation for 〈S f z
i 〉0. Imple-

mentation of this program is quite involved, both analyt-
ically and numerically, so it should be analyzed in detail
separately. In any case, the spin-fluctuation contribution will
renormalize the SGA characteristics by not just an additive
contribution. However, a further generalization of expression
(B4) is required to include also the pairing fluctuations.
This can be implemented in the following manner. We start
from the binomial representation of the Hund’s rule part,
which, for the simplest spin S = 1 case (l = 1, 2), takes
the form

Ŝ f (l )
i Ŝ f (l ′ )

i + 3
4 n̂ f (l )

i n̂ f (l ′ )
i =

1∑
m=−1

Â f †
im Â f

im, (B8)

where the pairing amplitude components are defined as [32]

Â†
i1 ≡ f̂ (1)†

i↑ f̂ (2)†
i↑ ,

Â†
i0 ≡ 1√

2

(
f̂ (1)†
i↑ f̂ (2)†

i↓ + f̂ (1)†
i↓ f̂ (2)†

i↑
)
,

Â†
i−1 ≡ f̂ (1)†

i↓ f̂ (2)†
i↓ . (B9)

This bilinear form can be transformed to the corresponding
representation (B6) and will involve additional fluctuating
fields {ηm

i (τ )} (m = −1, 0,+1), which express three local
components of the pairing �

f
im. In general, one can decom-

pose the Hund’s rule term into two components, diagonal
(magnetic moment) and off-diagonal (pairing gap), according
to the prescription provided in Ref. [46].
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