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Chiral p-wave superconductivity in Pb1−xSnxTe: Signatures
from bound-state spectra and wave functions
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Surface superconductivity has recently been observed on the (001) surface of the topological crystalline
insulator Pb1−xSnxTe using point-contact spectroscopy and theoretically proposed to be of the chiral p-wave type.
In this paper, we closely examine the conditions for realizing a robust chiral p-wave order in this system rather
than conventional s-wave superconductivity. Further, within the p-wave superconducting phase, we identify
parameter regimes where impurity bound (Shiba) states depend crucially on the existence of the chiral p-wave
order and distinguish them from other regimes where the chiral p-wave order does exist but the impurity-induced
subgap bound states cannot be used as evidence for it. Such a distinction can provide an easily realizable
experimental test for chiral p-wave order in this system. As a possible application of our findings, we also
show that the zero-energy Shiba states in point defects possess an internal SU(2) rotational symmetry which
enables them to be useful as quantum qubits.
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I. INTRODUCTION

Topological superconductors [1–3] have received consid-
erable attention in recent times, motivated by the desire to
realize Majorana fermions in material systems [4–10]. While
there has been a tremendous effort toward engineering topo-
logical superconductivity by means of an induced p-wave
pairing, through, for instance, the proximity effect in topologi-
cal insulators [4,6] or hybrid structures of semiconductors and
superconductors [5,7,8] intrinsic topological superconductors
are still quite rare, with Sr2RuO4 [11–13] and CuxBi2Se3
[14–16] being popular candidates for realizing such a state.
There is considerable current interest in topological insulator
surfaces as an environment where two-dimensional topolog-
ical superconductivity can be realized, which is protected
against weak disorder by s-wave Cooper pairing in the bulk
[17]. This makes the superconductivity much more robust
than in, say, Sr2RuO4. Recently, we showed [18,19], using
a parquet renormalization group analysis [20], that in the
presence of weak correlations, the electronic ground state on
the (001) surface of the topological crystalline insulator (TCI)
Pb1−xSnxTe [21–27] corresponds to a chiral p-wave supercon-
ducting state. Low-lying Type-II Van Hove singularities [28],
peculiar to the (001) surface of this material, serve to enhance
the transition temperature to values parametrically higher than
those predicted by BCS theory [29]. Since the surface elec-
tronic bands are effectively spinless, s-wave superconductivity
is precluded, unless pairing occurs between electrons in differ-
ent time-reversed bands, which is ruled out at sufficiently low
carrier densities. Here the nontrivial Berry phases associated
with the electronic wave functions ultimately dictate the chiral
p-wave symmetry of the superconducting order parameter.
Pb1−xSnxTe thus provides a good meeting ground for various
desirable attributes, under extremely accessible conditions,
which is not commonly encountered.
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On the experimental front, recent point-contact spec-
troscopy measurements have confirmed the existence of su-
perconductivity of the (001) surface of this system, but the
nature of the superconducting order is yet to be ascertained.
The superconductivity is indicated by a sharp fall in the resis-
tance of the point contact below a characteristic temperature
(3.7–6.5 K) [30] and the appearance of a spectral gap with
coherence peaklike features and zero-bias anomalies [30,31].
However, contrary to the claim in Ref. [31], these zero-
bias peaks are not necessarily signatures of Majorana bound
states. Indeed, such features may appear in point-contact
spectroscopy measurements whenever the tunnel junction is
not in the ballistic regime [32]. Similarly, zero-bias anomalies
appearing in scanning tunneling spectra have been discussed
extensively as signatures of Majorana bound states [4–6,8] but
may often originate from other independent causes such as
band-structure effects [33] and stacking faults [34]. Moreover,
while it has been shown that Majorana bound states can indeed
be realized at the end points of linear defects in a chiral
p-wave superconductor [35], these may not exist for other
types of surface defects, such as pointlike ones, or may
be difficult to detect. An alternate strategy would be to go
beyond the Majorana states and instead look for Shiba-like
states [36–38] for probing the superconducting order [39–46].
However, in Pb1−xSnxTe, given the sensitivity of the under-
lying order to small changes in parameters such as doping
and time-reversal symmetry breaking fields, it is necessary
to examine under what circumstances Shiba-like states can
form and can be used to unambiguously establish topological
superconductivity in this system.

In this paper, we identify the parameter regimes where su-
perconductivity may exist on the (001) surface of Pb1−xSnxTe
and show that for small changes in doping, the nature of
the superconducting order can change from a topological
chiral p-wave type to a conventional s-wave type. Shiba-like
subgap states do not exist for potential defects in s-wave
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superconductors. On the other hand, in the chiral p-wave
superconducting state, we find two distinct parameter regimes,
only one of which can be used to reliably establish the
existence of chiral p-wave superconductivity using impurity-
induced Shiba-like states. In our treatment, we obtain exact
analytical expressions for the bound-state spectra and wave
functions, as a function of the parameters of the system, which
shed light on several notable characteristics of these bound
states. We show that the azimuthal angle-dependence of the
wave functions in point defects can be used to distinguish
between nodal and chiral superconductors. We have obtained
exact analytical expressions for the bound-state wave function
in a point defect, which qualitatively agree with Ref. [44],
with differences related to the localization length. Inciden-
tally, other approximate solutions proposed in the literature
based on different variational ansatzes [39,47] are inconsistent
with our exact solutions. For the case of point defects, we
find that the wave function corresponding to the zero-energy
bound state has an internal SU(2) rotational symmetry which
makes it useful as a quantum qubit. If chiral p-wave supercon-
ductivity is indeed established on the surface of Pb1−xSnxTe,
then such qubits would be relatively easy to realize and manip-
ulate using, say, STM tips [48]. The above properties, together
with the constraints that we impose on the parameter regimes,
can help identify the nature of the surface superconducting
order in Pb1−xSnxTe.

The rest of the paper is organized as follows. In Sec. II,
we describe the surface band structure in the vicinity of the X
points on the (001) surface in the presence of a time-reversal
symmetry breaking perturbation, discuss the various parame-
ter regimes for the existence and nature of the surface super-
conductivity, and introduce the Bogoliubov–de Gennes (BdG)
Hamiltonian that is considered in the rest of the analysis. In
Sec. III, we discuss impurity-induced bound states in doped
semiconductors and the existence of subgap bound states in
certain parameter regimes, both in the presence and absence
of chiral p-wave order. In Sec. IV, we derive the general
condition for realizing subgap bound states trapped in isolated
potential defects in a chiral p-wave superconductor, obtain
analytical expressions for the bound-state spectra and wave
functions and show that no such in-gap states are possible
in the presence of s-wave superconductivity. In Sec. V, we
derive the corresponding expressions for the specific case
of Pb1−xSnxTe, for both point and linear defects, when the
chemical potential is either tuned within the gap created by

the Zeeman field or intersects the lower surface conduction
band. Finally, in Sec. VI, we discuss the primary imports of
our work, possible issues related to its practical realization,
and future directions.

II. SURFACE BAND STRUCTURE AND
ELECTRONIC INSTABILITIES

The band-gap minima of IV-VI semiconductors are located
at the four equivalent L points in the FCC Brillouin zone. In
Ref. [24], these are classified into two types: Type-I, for which
all four L points are projected to the different time-reversal
invariant momenta in the surface Brillouin zone, and Type-II,
for which pairs of L points are projected to the same surface
momentum. The (001) surface belongs to the latter class of
surfaces, for which the L1 and L2 points are projected to the
X1 point on the surface, and the L3 and L4 points are projected
to the symmetry-related X2 point. This leads to two coexisting
massless Dirac fermions at X1 arising from the L1 and the L2

valley, respectively, and likewise at X2. The k.p Hamiltonian
close to the point X1 on the (001) surface is derived on the
basis of a symmetry analysis in Ref. [24] and is given by

HX1
(k) = (vxkxsy − vykysx ) + mτx + δsxτy, (1)

where k is measured with respect to X1, −→s is a set of Pauli
matrices associated with the two j = 1

2 angular momentum
components for each valley, τ operates in valley space, and the
terms m and δ account for single-particle intervalley scattering
processes. In our analysis, we shall focus entirely on the
surface band structure in the vicinity of these two inequivalent
points, which are henceforth referred to as X . The surface
Hamiltonian corresponding to each of the X points consists of
four essentially spinless bands. The two bands lying closest
to the chemical potential of the parent material each feature
two Dirac points at (0,±√

m2 + δ2/vy) as well as two Van
Hove singularities at (±m/vx, 0), while the bands lying farther
away in energy have a single Dirac-cone structure. The two
positive energy bands (and likewise the two negative energy
ones) touch each other at the X point (due to time-reversal
symmetry), with a massless Dirac-like dispersion in its vicin-
ity. We introduce a Zeeman spin-splitting term Msz in the
noninteracting surface Hamiltonian [19] in Eq. (1), which lifts
the degeneracy between the two bands at the X point and
results in the following dispersions for the four surface bands:

εk,± = ±
√

k2
x v

2
x + k2

y v
2
y + m2 + δ2 + M2 ± 2

√
M2m2 + k2

x m2v2
x + k2

y (m2 + δ2)v2
y . (2)

For surface momenta (kx, ky ) in the vicinity of the X point,
we now have a massive Dirac-like dispersion, which can be
approximately written as

εkx,ky = C − A
(
k2

x + k2
y

)
, (3)

for the lower energy surface band, with C =
√

(M − m)2 + δ2

and A ∼ 1/(MC), measured with respect to the pair of Dirac
points lying on either side of the X point. Since we are inter-
ested in low values of doping, we will confine our attention the

regime corresponding to small momenta (kx, ky), where
M < m. Figure 1 shows the surface band structure in the vicin-
ity of the X point for various values of the spin-splitting M.

Electron correlations can lead to electronic instabilities
of various kinds on the (001) surface of Pb1−xSnxTe. Since
the Fermi surface is approximately nested, Fermi surface
instabilities of both particle-particle and particle-hole type can
occur in the lower surface conduction band. In Refs. [18] and
[19], we studied electronic phase competition for electrons in
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FIG. 1. The band structure of the two upper surface bands in the vicinity of the X point as a function of (kx, ky ) in the presence of a Zeeman
spin-splitting of magnitude M of different strengths; (a) M = 0.0, (b) M = 0.005, (c) M = 0.01, (d) M = 0.05, and (e) M = 0.1 (in eV). Note
that a gap is introduced at the X point as M is turned on, and with increasing values of M, this gap increases, and the curvature of the lower
band gradually changes sign. A change in the curvature can also affect the nature of the impurity-induced bound states realized in the chiral
p-wave superconducting state. In the paper, we work in the regime M < m, where the mass term m = 0.07 eV determines the value of the
energy at the X point measured with respect to the pair of Dirac points.

this band by treating both these types of channels on an equal
footing. In almost all situations where an instability occurs,
we found that chiral p-wave superconductivity is favored as
long as interband scattering is neglected.

In our analysis of impurity-induced bound states in the
chiral p-wave superconducting state, we will work with the
following BdG Hamiltonian:

H0(k) =
[

εkx,ky − μ �(kx − iky)

�(kx + iky) −εkx,ky + μ

]
, (4)

where εkx,ky refers to the noninteracting dispersion in Eq. (3)
and μ refers to the chemical potential. This Hamiltonian
acts in the Nambu space (ck, c†

−k ), where ck are the effec-
tively spinless fermions in the lower-energy surface band and
�k ≡< ckc−k >= �(kx − iky) is the superconducting order
parameter. In the absence of �, Eq. (4) would correspond
to two copies of the Hamiltonian of a nonrelativistic particle
whose energies are reckoned from an arbitrary value μ. This
situation is explained in more detail in Sec. III below.

Substituting the expression for εkxky from Eq. (3) above, the
spectrum corresponding to the Nambu Hamiltonian in Eq. (4)
is given by E = ±

√
(Ak2 + μ′)2 + �2k2, where k2 = k2

x + k2
y

and μ′ = μ − C is an effective chemical potential reckoned
from the top of the band, corresponding to the energy value
closest to the higher energy surface band. We introduce di-
mensionless quantities

λ = �2

2A|μ′| (5)

and

ε = E

|μ′| , (6)

which appear frequently in the rest of our analysis. For
nonzero values of μ, the spectrum of the BdG Hamiltonian
is gapped if � is finite. We look specifically for bound states
which lie within the gap.

In general, the nature of surface electronic instabilities,
and their consequences for impurity-induced bound states,
depend crucially on the position of the chemical potential with

respect to the surface bands. A schematic of the band structure
around the X point on the (001) surface, together with various
representative positions for the chemical potential is shown
in Fig. 2. If the gap is sufficiently large and the Fermi level
does not intersect the upper band, then (interband) s-wave
superconductivity, which occurs in case (a) of Fig. 2, is
precluded. In the rest of the paper, we shall work in this
regime. For the case (b) in Fig. 2 where the chemical potential
does not intersect the lower surface conduction band, the
band gap is conventional, as in, say, a semiconductor, and we

a

b

c

FIG. 2. Schematic illustration of the band structure in the vicinity
of the X point, and three different doping regimes that can either
result in qualitatively different electronic instabilities on the (001)
surface of Pb1−xSnxTe (i.e., either conventional s-wave or chiral
p-wave order) or lead to a difference in the nature of impurity-
induced bound states realized in a chiral p-wave superconducting
state. In (a), the Fermi level intersects two of the surface bands,
which are time-reversed counterparts. In this case, interband pairing
of electrons gives rise to s-wave superconductivity, and no Shiba-like
states exist for potential defects on the surface. In (b) and (c), the
pairing of the surface electrons is of the chiral p-wave type. We
show in the paper that only the latter case, (c), when the Fermi
level intersects the lower surface conduction band, Shiba-like subgap
states can be unambiguously attributed to the presence of topological
superconductivity.
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(a) (b)

FIG. 3. Schematic illustration of the Nambu bands when (a) μ < 0, and the chemical potential lies in the gap (b) μ > 0 and the chemical
potential intersects the bands, in the absence of the chiral p-wave order parameter �. The bound-state energies denoted by the red and purple
lines lie within the gap in (a) and intersect the bands in (b). The chemical potential μ lies in the center and is denoted by the blue line in (a) and
the green line in (b). The filled and empty part of the bands are represented by solid and dashed lines, respectively. Clearly, in (a) both the
bands as well as the impurity states are empty.

call it normal. For the case (c) in Fig. 2, where it intersects
this band, an additional band gap opens up at the points of
intersection (not depicted in Fig. 2), due to the presence of the
chiral p-wave superconducting order. This corresponds to an
inverted band gap.

In the next section, we will try to understand the origin
of impurity-induced states in the regimes (b) and (c) and
how they differ from each other in the presence and absence
of a chiral p-wave order. The role played by the distinc-
tion between these regimes in identifying the chiral p-wave
nature of the superconducting order forms a crucial part of
our paper.

III. IMPURITY STATES IN DOPED SEMICONDUCTORS

It is well known that in one dimension, a bound state
always exists for a nonrelativistic particle in the presence of
an attractive Delta-function potential. Consider a single im-
purity in a semiconductor, and writing down the Schrodinger
equation in momentum space, we have

(εk − μ)ψk +
∫

dk′Vk,k′ψk′ = Eψk, (7)

where Vk,k′ = V0 and μ denotes the chemical potential. Using

ψk = −V0
∫

dk′ψk′

(εk − μ − E )

and integrating both sides over the momentum k, we obtain
the following condition on the defect potential strength V0 for
realizing impurity-induced bound states:

V0 = −1∫
dk

(εk−μ−E )

,

which always gives rise to a solution, provided the integrand
does not have any real poles. When such impurity bound
states are present, they appear at an energy value proportional
to

√
V0 below the bottom of the conduction band and move

further downward as V0 increases. If εk is the valence band of
a semiconductor, then the V0 must be positive, and the bound
states appear above the top of the valence band. The existence

of the impurity band is independent of the chemical potential
μ, but the chemical potential determines whether the impurity
band is occupied or not.

Now the same problem can be reexpressed in the Nambu
representation by introducing another copy of the problem
which is related to the first one by a particle-hole transforma-
tion. In the Nambu representation, the impurity bound states
appear exactly as discussed above, except that since there
are now two copies, for each positive impurity level, there
is a corresponding negative one with the same magnitude.
Consider the example of an impurity bound state arising from
donor dopants in a semiconductor, and εk > 0 corresponds to
the conduction band. The chemical potential is the reference
energy from which all energies are measured, and in this case,
the negative value of μ implies that the chemical potential
does not intersect the bands, and both the bands are empty.
This is illustrated in Fig. 3(a) above. On the other hand, when
μ > 0, the bands as well as the impurity levels cross the
Fermi level and become occupied, resulting in a new situation
depicted in Fig. 3(b). This is merely an artifact of the chemical
potential changing sign and the levels that have crossed are
those whose nature has changed from being empty to being
occupied.

The situation changes dramatically in the presence of a
chiral p-wave superconducting order. If the chemical potential
μ < 0, then the impurity levels remain empty but the bands
shift in magnitude, as shown in Fig. 4(a). Here we continue to
obtain subgap states and the impurity levels are indistinguish-
able from those in semiconductors. However, when μ > 0,
the presence of superconductivity introduces a gap at the
points where the two dispersing bands intersected, as shown
in the Fig. 4(b). In this regime, the impurity levels which were
formerly present only near the extrema of the upper and lower
Nambu bands abruptly collapse to take values within the gap,
and therefore we now obtain subgap states.

Thus, in the presence of a chiral p-wave order, if μ < 0,
then one continues to obtain subgap states which are indis-
tinguishable from impurity states in semiconductors, while if
μ > 0, then new subgap states appear due to the supercon-
ducting order in the system. In the rest of the paper, we refer
to the former regime of parameters as the normal gap regime
and the latter as the inverted gap regime.
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(a) (b)

FIG. 4. Schematic illustration of the Nambu bands when (a) μ < 0, and the chemical potential lies in the gap (b) μ > 0 and the chemical
potential intersects the bands, in the presence of the chiral p-wave order parameter �. Clearly, an additional band gap opens in (b) due to the
superconducting order. The impurity levels denoted by the red and purple lines in (a) lie within the gap, while in (b), a pair of impurity levels
denoted by blue and yellow lines lie within the smaller gap while another pair intersects the two bands. The chemical potential μ lies in the
center and is denoted by the blue line in (a) and the purple line in (b). The filled and empty part of the bands are represented by solid and
dashed lines respectively. In (a), both the bands as well as the impurity states are empty. These cases are discussed in detail in Secs. IV and V.

IV. CONDITIONS FOR SUBGAP BOUND STATES
WITH δ-POTENTIAL DEFECTS

We now derive the general condition for realizing subgap
bound states localized in one or more directions, associated
with point or linear defects on the surface of the TCI. We
model such defects by a multidimensional Dirac delta func-
tion V (xi ) = V0

∏
i δ(xi ), where i refers to the dimension, and

V0 represents the strength of the defect potential. The delta-
function approximation for the potential defects is justified,
provided that the defect potential is sufficiently smooth on
the scale of the lattice constant (to avoid scattering processes
between the X1 and X2 points) but, nevertheless, short-ranged
compared to the wavelength of the electrons.

The Schrödinger equation in momentum space, in the
presence of the defect potential, is given by

H0(k)ψk +
∫

(dd k′)Vk,k′ψk′ = Eψk, (8)

where H0(k) is defined in Eq. (4) above, E refers to the value
of the bound-state energy, and Vk,k′ = V0σz for the case of a
point defect and 2πV0δ(ky − k′

y)σz for a linear defect along the
y direction. In the latter case, the integration over k′

y gets rid of
the Delta function, leading to an equation which is diagonal in
ky but mixes the kx components.

Inverting Eq. (8), we have

ψk = −[H0(k) − EI]−1V0σz

∫
(dd k′)ψk′ , (9)

where it is understood in Eq. (9) above and also in the analysis
that follows that the integration runs only over kx for a linear
defect along the y direction. Next, we integrate both sides over
k, cancel the common term

∫
(dd k)ψk on both sides, and arrive

at the following condition:

Det

{
−

∫
(dd k)[H0(k) − EI]−1V0σz − I

}
= 0, (10)

for the bound state. Here the integration over each component
of k ranges from −∞ to ∞. Note that when

∫
(dd k)ψk = 0,

the wave function vanishes at the origin, and the above
condition is no longer applicable, since we cannot cancel the
common terms. This is, for example, true for topologically

nontrivial zero-energy Majorana bound states in linear de-
fects, for which the real-space wave function acquires its peak
values at the physical ends of the defect and decays into the
interior. When the defect being considered is infinitely long
in one of the directions, the ends not being a part of the
system, one cannot mathematically realize Majorana bound
states within this approach. Here we have explicitly excluded
such states from consideration.

Using the expression for H0(k) in Eq. (4), the condition in
Eq. (10) translates to

Det

[−V0I1(0, 0, E ) − 1 V0I3(0, 0, E )

−V0I4(0, 0, E ) −V0I2(0, 0, E ) − 1

]
= 0, (11)

where we define

I1,2(x, y, E ) =
∫ ∞

−∞
(dkx )(dky) exp[ikxx] exp[ikyy]

× εkx,ky − μ ± E(
εkx,ky − μ

)2 − E2 + �2
(
k2

x + k2
y

) , (12)

and

I3,4(x, y, E ) =
∫ ∞

−∞
(dkx )(dky) exp[ikxx] exp[ikyy]

× �(kx ∓ iky)(
εkx,ky − μ

)2 − E2 + �2
(
k2

x + k2
y

) . (13)

Let us consider first the case of point defects. From Eq. (11),
we obtain the following condition for the strength of the defect
potential V0 that gives a bound state at energy E :

[V0I1(0, 0, E ) + 1)(V0I2(0, 0, E ) + 1] = 0. (14)

From Eq. (14), it is evident that for a given value of V0, we
have a pair of bound states with energies ±E , which is a
reflection of particle-hole symmetry of the BdG Hamiltonian.
Conversely, for every value of the bound-state energy there
exist two possible values for the strength of the defect poten-
tial, V0, which do not in general have the same magnitude, for
which one may realize such a state.

For a line defect of infinite length along, say, the y direc-
tion, the defect potential may be written as V (x) = V0δ(x),
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such that the translational symmetry is broken only along the x
direction. In this case, we obtain, from Eq. (11), the following
condition for realizing a subgap bound state with an energy E ,
where ky is conserved and takes real values,

[V0I1(0, 0, E ) + 1][V0I2(0, 0, E ) + 1]

+V 2
0 I3(0, 0, E )I4(0, 0, E ) = 0. (15)

The relation between V0 and E is

V0(E ) = −(I1 + I2) ±
√

(I1 − I2)2 − 4I3I4

2(I1I2 + I3I4)
. (16)

Since V0 is real, the discriminant must be positive, resulting
in a condition which relates the allowed values of the bound-
state energy to the quantum number ky, i.e., min[E2

g , (μ′)2] �
E2 � �2k2

y . The lowest-energy bound states clearly corre-
spond to the case where ky = 0. This leads to the conditions
1 + I1V0 = 0 or 1 + I2V0 = 0.

From Eq. (9), we can also obtain expressions for the bound-
state wave functions. Taking an inverse Fourier transform on
both sides, we obtain the following expression for the wave
function in real space:

ψ (x, y)=
[

a(x, y)

b(x, y)

]
= (−V0)

[
I1(x, y, E )a0 − I3(x, y, E )b0

I2(x, y, E )b0 + I4(x, y, E )a0

]
,

(17)

where ψ0 = (a0
b0

) is the real-space wave function at the origin,
i.e., ψ (0, 0), and I1,2(x, y, E ) and I3,4(x, y, E ) are as defined in

Eqs. (12) and (13). The normalization condition is∫
dx

∫
dy[|a(x, y)|2 + |b(x, y)|2] = 1. (18)

For the case of a point defect, we find that, for any nonzero
value of the bound-state energy E , putting x = y = 0 on
both sides of Eq. (17) above results in the elimination of one
of the components a0 or b0 when the condition in Eq. (14)
is satisfied. For E = 0, however, it simply gives rise to a
consistency condition without yielding any new information
about the components at the origin, and the only constraint
on the constants a0 and b0 is then the normalization condition
in Eq. (18). This is a manifestation of an internal SU(2)
rotational symmetry (in particle-hole space), which makes the
zero-energy state centered at the origin useful as a possible
quantum qubit. A similar condition is also obtained for a
linear defect, but in the specific case where ky = 0. Since
there are arbitrarily close bound states parametrized by
nonzero ky, the zero-energy state is not useful as a qubit for
the case of linear defects.

A. Absence of subgap states for s-wave superconductivity

As discussed in Sec. II, pairing between time-reversed
surface bands can lead to s-wave superconductivity on the
(001) surface. We shall now show that subgap bound states
in isolated potential defects can no longer be realized for a
conventional s-wave superconducting order in this system.

The s-wave order parameter can be written as �, which is
a momentum-independent constant. Following Eq. (11), the
condition for realizing subgap bound states with an energy E
in the presence of surface potential defects in this case is given
by

Det

⎡
⎣−V0

∫
(dkx )(dky)

εkx ,ky −μ+E
(εkx ,ky −μ)2−E2+�2 − 1 V0

∫
(dkx )(dky) �

(εkx ,ky −μ)2−E2+�2

−V0
∫

(dkx )(dky) �
(εkx ,ky −μ)2−E2+�2 −V0

∫
(dkx )(dky)

εkx ,ky −μ−E
(εkx ,ky −μ)2−E2+�2 − 1

⎤
⎦ = 0. (19)

From Eq. (19), the possible values of V0(E ) are given by

V0 = −(a + b) ±
√

(a − b)2 − 4c2

2(ab + c2)
,

where a, b = ∫
(dkx )(dky)(εkx,ky − μ ± E )/[(εkx,ky − μ)2 −

E2 + �2] and c = ∫
(dkx )(dky){�/[(εkx,ky − μ)2 − E2 +

�2]}. Clearly, real values of V0 require the discriminant to
be positive, i.e., |E | � �, and thus no subgap bound states
are possible. The above arguments also hold true for a mixed
s + p–wave superconducting order.

V. BOUND-STATE SPECTRA AND WAVE FUNCTIONS

We now use the results obtained in Sec. IV above in the
context of subgap impurity bound states in Pb1−xSnxTe. In
the analysis that follows, we shall distinguish between the
situations where the chemical potential lies within the conven-
tional or normal band gap between the pair of surface bands
and those where it intersects the lower surface conduction
band, giving rise to an inverted band gap at small momenta.

We shall find that the subgap states that arise in the inverted
band gap situation crucially depend on the existence of the
chiral p-wave order. On the other hand, in the normal band
gap situation, the impurity bound states are not qualitatively
affected in the limit where the chiral p-wave order is absent.
Note that in what follows, we will be working with the valence
band, as that is the physical situation prevailing in our system,
and without loss of generality, the considerations discussed in
Sec. III are carried through.

A. Point defects

Let us first consider the case of a point defect. In plane
polar coordinates, Eq. (14), relating the impurity strength to
the bound-state energy E , takes the form

1

V0
= 1

4π

∫ 
2

0
dυ

(Aυ + μ′) ∓ E

(Aυ + μ′)2 − E2 + �2υ
, (20)

where υ = k2 and μ′ ≡ μ − C, and 
 is the large momentum
cutoff, physically corresponding to the inverse of the width
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of the potential well, which is approximated to be a Delta-
function potential in our treatment. We now examine Eq. (20)
respectively in the normal and inverted band gap regimes.

1. Conditions for bound states in different parameter regimes

(a) Normal band gap: μ′ > 0. When the chemical poten-
tial μ > C (or μ′ > 0), the condition for subgap bound states
in Eq. (20) above evaluates to

1

V0
≈ 1

2A
√

(λ + 1)2 − (1 − ε2)

×
{

(λ ± ε) ln

∣∣∣∣∣λ + 1 −
√

(λ + 1)2 − (1 − ε2)

λ + 1 +
√

(λ + 1)2 − (1 − ε2)

∣∣∣∣∣
+

√
(λ + 1)2 − (1 − ε2)

[
ln

∣∣∣∣ A2
4

|μ′|2(1 − ε2)

∣∣∣∣
]}

. (21)

For any value of the bound-state energy |E | < μ′, we find that
(λ ± ε) <

√
(λ + 1)2 − (1 − ε2), implying that V0 is always

a positive quantity. Physically, this corresponds to impurity
(hole) states near the valence band of a semiconductor, and in
this regime, one always obtains subgap states, even when � is
turned off. The impurity levels here lie in the manner shown
in Fig. 4(a).

(b) Inverted band gap: μ′ < 0. Here the chemical poten-
tial μ < C, or μ′ < 0, and this corresponds to the inverted
band gap situation, which corresponds to the expression in
Eq. (21) above, with λ → −λ. In this case, a gap opens either
at k = 0 or at the points of intersection of the two Nambu
bands [see Fig. 4(b)]. If, in this regime, � is turned off, this
gap will close and the impurity levels will be pushed away
to the positions originally predicted for impurity states in a
semiconductor [see Fig. 3(b)].

2. Quasilocalized bound-state wave functions for point defects

Let us now calculate the expressions for the bound-state
wave functions for the case of a point defect. From Eq. (17),
it can be seen that the spatial dependence of the bound-state
wave functions is determined by the integrals I1,2(x, y, E ) and
I3,4(x, y, E ), defined in Eqs. (12) and (13), respectively. In
plane polar coordinates, these equations assume the form

I1(r) = − 1

(2π )2

∫
dkdφ k exp{ikr cos[θ − φ]}

× (Ak2 + μ′) ∓ E

(Ak2 + μ′)2 − E2 + �2k2
(22)

and

I2(r, θ ) = 1

(2π )2
exp[iθ ]

∫
dkdφ k exp{ikr cos[φ]} exp[iφ]

× �k

(Ak2 + μ′)2 − E2 + �2k2
, (23)

where μ′ ≡ μ − C, k =
√

k2
x + k2

y , and tan[φ] = y/x. We il-
lustrate the specific case of E = 0 where simple analytical
expressions for the wave functions can be obtained in terms
of elementary functions. Qualitatively similar results are ex-
pected for other bound-state energies with E 
= 0. We once

again consider regimes with a normal and an inverted band
gap.

(a) Normal band gap: μ′ > 0. Using the well-known re-
sult

∫
dφ exp{ikr cos[θ − φ]} = 2πJ0(kr), the expression of

I1(r) from Eq. (22) is as follows:

I1(r) = 1

4π

∫
dkkJ0(kr)

2

A(α + β )

(
α

k2 + α2
+ β

k2 + β2

)

= − 1

2πA(α + β )
[αK0(αr) + βK0(βr)], (24)

where α, β = √
μ′/A[(

√
(λ + 2 ± √

λ)/
√

2].
Thus, we find that I1(r) is an exponentially decaying func-

tion of at large distances r from the position of the defect.
Note that when � = 0, i.e., λ = 0, α and β are real, giving
rise to exponentially decaying states.

Similarly, using the result
∫

dφ exp{ikr cos[θ −
φ]} exp[iφ] = i exp[iθ ]2πJ1(kr), we may simplify the
expression for I2 given in Eq. (23) as

I2(r, θ )= −i exp[iθ ]

2πA(α + β )

∫
dx

r
J1(x)

(
x2

x2 + α2r2
− x2

x2 + β2r2

)

= −i exp[iθ ]

2πA(α + β )

1

r
[K1(αr) − K1(βr)], (25)

where kr ≡ x, α, β = √
μ′/A[(

√
λ + 2 ± √

λ)/
√

2], and in
the second line we have used the relation [49]∫ ∞

0
dx

xJ0(ax)

x2 + α2r2
= K0(aαr), (26)

and differentiated both sides with respect to the parameter
a and taken the limit a → 1, to obtain Eq. (25) above. We
therefore find that the function I2(r, θ ) decays exponentially
at large distances.

(b) Inverted band gap: μ′ < 0. Here we consider a situa-
tion where μ < C, or μ′ < 0, and repeat the analysis of the
previous section by replacing μ′ by −|μ′| in Eqs. (22) and
(23).

For λ � 2, we then have

I1(r) = 1

2π

∫
dk kJ0(kr)

1

A(α − β )

(
2α

k2 + α2
− 2β

k2 + β2

)

= 1

2πA(β − α)
[αK0(αr) − βK0(βr)],

where now α, β = √
μ′/A[(

√
λ ± √

λ − 2)/
√

2]. Similarly,
from Eq. (23), we write the expression for I2(r, θ ) as

I2(r, θ ) = i

2π
exp[iθ ]

∫
dk J1(kr)

1

(A)

1

(β − α)

×
(

x2

x2 + α2r2
− x2

x2 + β2r2

)

= i exp[iθ ]

2πA(β − α)

1

r
[K1(αr) − K1(βr)],

where α, β = √
μ′/A[(

√
λ ± √

λ − 2)/
√

2], following steps
similar to the previous case, where μ′ > 0. The results
obtained are identical for λ < 2 but with α, β =√|μ′|/A[(

√
λ ∓ i(

√
2 − λ]/

√
2). Please refer to Appendix B
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for a detailed derivation of the asymptotic forms of the
bound-state wave functions.

In contrast to a chiral superconductor, a nodal supercon-
ductor gives a qualitatively different wave function for the
impurity bound state. For instance, when the superconducting
order parameter �k = �k cos[φ], we have

I2(r, θ ) = cos[θ ]

(2π )

∫
dk k

�k

(Ak2 + μ′)2 + �2k2
iJ1(kr).

Similarly, for �k = �k sin[φ],

I2(r, θ ) = sin[θ ]

(2π )

∫
dk k

�k

(Ak2 + μ′)2 + �2k2
iJ1(kr).

Thus, unlike a chiral p-wave superconductor, the above types
of superconducting order feature nodal lines in the bound-
state wave function, at large distances from the position of the
defect. One could use STM imaging of the bound-state wave
functions as a means to distinguish between nodal and chiral
p-wave order on the surface.

Incidentally, our results qualitatively differ from the bound-
state wave functions proposed earlier in this context using
a variational ansatz [39,47]. The asymptotic behavior of the
bound-state wave functions in a point defect has also been
calculated in a recent work and found to be exponentially
decaying [44]. The treatment there, however, assumes a con-
stant density of states at the Fermi surface to evaluate integrals
analogous to those in Eqs. (22) and (23). This is a questionable
assumption, given that the large-distance behavior is governed
by small momenta, where the density of states goes to zero
linearly with momentum. As a result of this approximation,
the characteristic length scale over which the wave function
decays has a parameter dependence that is different from ours.

B. Line defects

Here we study the nature of bound states for long linear
defects. In this case, we write the defect potential as V (x, y) =
V0δ(x cos[α] + y sin[α]) and consider the special case of

α = 0, i.e., V (x) = V0δ(x). Once again, we study the two
regimes with a normal and an inverted band gap, respectively.

1. Normal band gap: μ′ > 0

Following Eq. (15), the relation between V0 and the bound-
state energy E (for ky = 0) is given by

1

V0
= 1

(2π )

∫ ∞

0

dy

2
√

y

(−Ay − μ′ ± E )

A2(y + a)(y + b)
, (27)

where μ′ ≡ μ − C, y = k2
x , and a, b = (μ′/A)(λ + 1 ∓√

[(λ + 1)2 − (1 − ε2)]). Evaluating the integral in Eq. (27),
we arrive at

V0,± = 4A(
√

a + √
b)

[1 + √
(1 ∓ ε)/(1 ± ε)]

, (28)

with
√

ab = |μ′|√1 − ε2/A. The variation of V0 as a function
of the bound-state energy E is shown in Fig. 5. Here we find a
trivial crossing of the energy level with the chemical potential
as V0 is tuned, which does not depend on the presence of
superconductivity. A similar crossing has also been observed
in Ref. [41], where it has been used to characterize the
topological superconducting phase. We emphasize here that
the crossing that we observe is an artifact of the Nambu
representation and would appear even in the absence of su-
perconductivity. The origin of the zero-energy crossings has
also been discussed in Sec. III above.

The subgap bound states in this case form a part of a
continuum of states parametrized by different values of ky.
The corresponding expression obtained by solving Eq. (15)
for a finite, real value of ky is given by

V0,± = 2A(
√

a + √
b)

√
1 ± εe(

√
1 ∓ εe + √

1 ± εe)(√
1 − ε2

e + 1
) ,

with a, b = (μe/A)[λe + 1 ∓ √
(λe + 1)2 − (1 − ε2

e )], μe =
μ′ + Ak2

y , E2
e = E2 − �2k2

y , and λe = �2/(2A|μe|). Clearly,

(a) (b)

FIG. 5. The figure showing the variation in the strength of the defect potential V0 required to give a subgap bound state as a function
of the magnitude of the bound-state energy E for a line defect. The cases considered are as follows: (a) μ′ > 0 for a normal band gap and
(b) μ′ < 0 for an inverted band gap. The parameters chosen are A = 4.0eV Å, μ′ = 20 meV, and � = 5 meV Å. We find the behavior to be
qualitatively different in the two cases. In the latter case, V0 → ∞ as E → 0 and the defect potential strength V0 can change sign, which opens
up the possibility of realizing subgap bound states for both potential wells and barriers of various sizes. Here, 1 and 2, denoted by the solid
and dashed curves, respectively, refer to the two solutions obtained for the strength of the potential V0. The dashed line refers to the value of
the energy gap, which is given by 2|μ′| for the topologically trivial regime in (a) and 2Eg for the topologically nontrivial regime in (b). See
discussion in main text for a comparison with the result in Ref. [41].
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V0 is always positive in this case, corresponding to holelike
states near the valence band.

2. Inverted band gap: μ′ < 0

When the chemical potential intersects the lower surface
conduction band, we have μ′ < 0. Evaluating the resulting
integral from Eq. (15), we obtain the relation

V0,± = 4A(
√

a + √
b)

[1 − √
(1 ± ε)/(1 ∓ ε)]

, (29)

where a, b=(|μ′|/A)[λ−1 ∓
√

(λ−1)2 − (1 − ε2)]. Clearly,
in this case, the amplitude of the defect potential may change
sign depending on the value of the bound-state energy E under
consideration, and in general, subgap bound states can be
realized for both potential wells and barriers, corresponding to
particle-like and holelike states, as is also evident from Fig. 5.
The defect potential strength corresponding to the bound-
state solutions move further away as we approach ε → 0, as
illustrated in Fig. 5(b). In the limit V0 → ∞, we find a doubly
degenerate zero-energy bound state, reminiscent of twofold
degenerate zero-energy bound states in the honeycomb Kitaev
model with a missing site [50,51]. Such a correspondence
is perhaps unsurprising, given that the honeycomb Kitaev
model sits on the verge of a transition to a chiral p-wave
superconductor [52].

Similarly, for a finite, real value of ky, we obtain the relation

V0,± = 2A(
√

a + √
b)

√
1 ∓ εe(

√
1 ± εe − √

1 ∓ εe)(√
1 − ε2

e − 1
) ,

where μe = μ′ − Ak2
y , E2

e = E2 − �2k2
y , and a, b =

(|μe|/A)[λe − 1 ∓ √
(λe − 1)2 − (1 − ε2

e )]. Note that the
above expression is only applicable in the regime where
ε2

e < 1.
On the other hand, for ε2

e > 1, which can only be satisfied
for μ′ < 0, we have the alternate expression

V0,± = 4A2
√

b(b + a)[Ab + |μe|(1 ± εe)][
A2b2 + 2A|μe|b + μ2

e

(
1 − ε2

e

)] , (30)

where a, b = (μe/A)[
√

(λe − 1)2 − (1 − ε2
e ) ∓ (λe − 1)].

The right-hand side in Eq. (30) may change sign for
bound-state energies satisfying the condition |εe| > λe.

Apart from the above two kinds of isolated potential de-
fects, one can also consider situations where the surface of the
topological crystalline insulator is homogeneously disordered.
In Appendix-A, we have determined the optimal potential
fluctuation for realizing zero-energy bound states by adapting
a Lifshitz-tail like treatment from the literature on disordered
conductors. For homogeneously distributed one-dimensional
defects (with translational symmetry preserved along one of
the directions), we have confirmed that no zero-energy states
can be realized in the topologically nontrivial situation where
the chemical potential intersects the lower surface conduction
band.

VI. CONCLUSIONS

In summary, we have examined the parameter regimes
where a stable chiral p-wave superconducting order can

exist on the (001) surface of Pb1−xSnxTe, depending on the
position of the chemical potential and the strength of the
Zeeman splitting. Within the chiral p-wave regime, we further
identified two situations, corresponding to the normal and the
inverted band gap and showed that while Shiba-like states
can exist in both these regimes, only in the latter case can the
subgap states be attributed to the presence of a chiral p-wave
superconducting order. By tuning the chemical potential in
the latter regime, one can use local probes to identify the
nature of the superconducting order observed on the (001)
surface of Pb1−xSnxTe. Shiba-like states could be a more
reliable probe for detecting topological superconductivity in
this material, as compared to the conventional strategy of
detecting zero-bias anomalies, putatively Majorana bound
states. This is particularly important since it has been shown in
recent studies of Pb1−xSnxTe that even at high temperatures,
when superconductivity is absent, zero-bias anomalies
sharing many features that are traditionally attributed to
Majorana bound states can appear, due to the presence of
stacking faults [34,53]. The possibility of such errors arising
in the interpretation of zero-bias anomalies have also been
discussed in the context of other topological materials [33].

As a possible application of our results, we show that for
the case of point defects, the wave functions corresponding to
the zero-energy bound states have an internal SU(2) rotational
symmetry, which makes them useful as possible quantum
qubits. In an earlier work [41], the crossing of the particle-like
and holelike impurity bound-state solutions at zero energy
was identified as a signature for topological superconductivity,
and we show that this is an artifact related to the BdG struc-
ture of the Hamiltonian and would occur even when applied
to a nonsuperconducting system such as a semiconductor.
The asymptotic behavior of the bound-state wave functions
has also been calculated in the literature and found to be
exponentially decaying [44]; however, this work assumes a
constant density of states at the Fermi level, and this difference
manifests itself in different decay lengths obtained for the
exponential decay in the two cases. Interestingly, we found
similarities between properties of the bound states realized
on the surface of the TCI, and those associated with missing
sites in the honeycomb Kitaev model [50,51,54,55], possibly
arising from the fact that the latter sits on the verge of a chiral
p-wave superconducting transition and can indeed be made to
exhibit it on doping [52]. These similarities will be explored
further in future work.

This analytical strategy could also be used to study bound
states in defects with other symmetries. One interesting case
to consider would be that of a semi-infinite line defect, mod-
eled by a two-dimensional Delta-function potential V (r, φ) =
λδ(φ). The interesting thing here would be to look for the
zero-energy Majorana bound state at r = 0 and obtain its wave
function analytically. One can also study problems involving
junctions of line defects or regular arrays of defects. Our
approach can also be applied to other types of unconventional
superconductivity, such as a chiral d-wave order.
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APPENDIX A: OPTIMAL POTENTIAL FLUCTUATION FOR HOMOGENEOUSLY DISTRIBUTED DEFECTS

We consider homogeneously distributed one-dimensional defects on the surface of the TCI, such that translational symmetry
is preserved along one of the directions. We first discuss the approach used for determining the optimal potential fluctuation
in the case of a spatially uncorrelated potential disorder with a Gaussian distribution. We follow a statistical approach (see, for
example, Ref. [56]), assuming that the disorder may be represented by a random potential U (x) with a short-range Gaussian
distribution, whose statistical properties are described by a probability measure P[U ], i.e.,

P[U ] = exp

[
− 1

2γ 2

∫
dd xdd x′ U (x)K−1(x − x′)U (x′)

]
, (A1)

where the spatial correlation function for the disorder is given by < U (x)U (x′) >= γ 2K (x − x′) ≡ γ 2δ(x − x′).
In order to obtain the most probable potential distribution, at a fixed value for the bound-state energy E , we need to minimize

the following functional over U (x),

F [U (x), ψ (x)] =
∫

d� U 2(x) − η

∫
d� ψ†(x)(H − E )ψ (x),

where H = Aσ3∇2 − i�σ1∇ − μ′σ3 + U (x)σ3 for a parabolic dispersion, which gives us the relation U (x) = η

2 ψ†(x)σ3ψ (x).
Using this condition to eliminate η, we now self-consistently solve the Schrödinger equation in the presence of chiral p-wave
superconductivity on the surface and calculate the optimal potential distribution U (x).

In the presence of a chiral p-wave superconducting order on the surface, the Schrödinger equation may be written as
follows:

Aσ3
d2ψ

dx2
− i�σ1

dψ

dx
− μ′σ3ψ + V0(ψ†σ3ψ )σ3ψ = 0, (A2)

where V0 = η/2, and we specifically consider a zero-energy bound state, such that ky = 0. The process of solving Eq. (A2) is
enormously simplified by performing a gauge transformation, given by ψ = exp[iW (x − x0)]�. Note that such a transformation
becomes necessary only due to the presence of the chiral p-wave superconducting order. The same transformation works in the
absence of p-wave superconductivity, with W = 0.

The matrix W may be chosen such that the coefficient of d�/dx vanishes, i.e., 2Aσ3(W ) = �σ1 and W = [1/(2A)]�iσ2.
Substituting this back into Eq. (A2), we find

Aσ3W
2 exp[iW (x − x0)]� + Aσ3 exp[iW (x − x0)]

d2�

dx2
− μ′σ3 exp[iW (x − x0)]�

+V0(�† exp[−iW †(x − x0)]σ3 exp[iW (x − x0)]�)σ3 exp[iW (x − x0)]� = 0. (A3)

The gauge-transformation leaves σ3 invariant, i.e., exp[−iW †(x − x0)]σ3 exp[iW (x − x0)] = σ3.
Multiplying Eq. (A3) by exp[−iW †(x − x0)] throughout and replacing W 2 by (−�2/(4A2))I , we arrive at the condition

−�2

4A
σ3� + Aσ3

d2�

dx2
− μ′σ3� + V0(�†σ3�)σ3� = 0. (A4)

The Hermitian conjugate of the above equation is given by

−�2

4A
�†σ3 + A

d2�†

dx2
σ3 − μ′�†σ3 + V0(�†σ3�

†)σ3� = 0. (A5)

We multiply Eq. (A4) on the left by d�†/dx and Eq. (A5) on the right by d�/dx and, adding the resulting set of equations,
arrive at the expression

A
d�†

dx
σ3

d�

dx
= μ′

(
∓λ

2
+ 1

)
(�†σ3�) − V0

2
(�†σ3�)2, (A6)

where λ is as defined in Eq. (5) and the signs ∓ correspond to μ′ < 0 and μ′ > 0, respectively. For simplicity, let us consider a
solution of the form � = (a

b), where a(x) and b(x) are assumed to be real functions. Then, Eq. (A6) gives us the condition

A

[(
da

dx

)2

−
(

db

dx

)2]
= μ′

(∓λ

2
+ 1

)
(a2 − b2) − V0

2
(a2 − b2)2.
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We find that one may obtain solutions for the special cases where a = 0 or b = 0, i.e., � = (a
0) or � = (0

b). This leads to the
following set of equations:

A

(
da

dx

)2

= μ′
(

∓λ

2
+ 1

)
a2 − V0

2
a4, (A7)

A

(
db

dx

)2

= μ′
(

∓λ

2
+ 1

)
b2 + V0

2
b4. (A8)

It can be seen from Eqs. (A7) and (A8) that in the topologically nontrivial regime with μ′ < 0, where λ � 2, the above equations
cannot give rise to zero-energy bound-state solutions for any value of V0.

Now, simplifying Eq. (A7), we have

1√
C1

da

dx
= ξ

a√
C1

√
1 − a2

C1
,

where C1 = 2μ′[∓(λ/2) + 1]/V0. This can be rewritten as

dα

α
√

1 − α2
= ξdx,

where α(x) = a(x)/
√

C1 and ξ = √
V0/(2A)

√
C1 = √

(μ′/A)[∓(λ/2) + 1]. Integrating both sides, we find

ArcSech[α0] − ArcSech[α(x)] = ξ (x − x0),

where α0 = α(x0). Let us define 
0 = ArcSech[α0]. Then the solution for a(x) is given by

a(x) =
√

C1

cosh[
0 − ξ (x − x0)]
. (A9)

A similar procedure can be followed for Eq. (A8) above, provided V0 < 0.

APPENDIX B: DERIVATION OF THE ASYMPTOTIC FORM OF THE BOUND-STATE
WAVE FUNCTIONS FOR POINT DEFECTS

Here we derive the expressions for the asymptotic form of the bound-state wave functions in the case of a point defect.
The expression for the bound-state wave functions for point defects involves the following integrals:

I1(r) = − 1

(2π )2

∫
kdkdφ exp{ikr cos[θ − φ]} (Ak2 + μ′)

(Ak2 + μ′)2 + �2k2

and

I2(r, θ ) = 1

(2π )2

∫
kdkdφ exp{ikr cos[θ − φ]} exp[iφ]

�k

(Ak2 + μ′)2 + �2k2
,

where k =
√

k2
x + k2

y , tan[φ] = y
x . Let us now consider the integral I1. Using the result

∫
dφ exp{ikr cos[θ − φ]} = 2πJ0(kr),

we have

I1(r) = − 1

(2π )2

∫
kdk

Ak2 + μ′

(Ak2 + μ′)2 + �2k2
2πJ0(kr).

The above expression may be rewritten as

I1 = − 1

2π

∫
kdk

1
2 (Ak2 + μ′ + i�k) + 1

2 (Ak2 + μ′ − i�k)

(Ak2 + μ′)2 + �2k2
J0(kr)

= − 1

4π

∫
dkkJ0(kr)

1

A

[
1

(k − k1)(k − k2)
+ 1

(k − k3)(k − k4)

]
,

where k1 = i
√

μ′
A

√
λ+2+√

λ√
2

, k2 = i
√

μ′
A

√
λ−√

λ+2√
2

, k3 = i
√

μ′
A

√
λ+2−√

λ√
2

= −k2, k4 = −i
√

μ′
A

√
λ+2+√

λ√
2

= −k1. This can further be
simplified as

− 1

4π

∫
dkkJ0(kr)

1

A(k1 − k2)

(
2k1

k2 − k2
1

− 2k2

k2 − k2
2

)
.
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Let us now rewrite k1 = iα, k2 = −iβ, where α and β are real, and α, β > 0 (α =
√

μ′
A

√
λ+2+√

λ√
2

, β =
√

μ′
A

√
λ+2−√

λ√
2

). The above
equation can be rewritten as

− 1

4π

∫
dkkJ0(kr)

2

A(α + β )

(
α

k2 + α2
+ β

k2 + β2

)
.

To evaluate the above expression, we shall use the standard integral [49].∫ ∞

0
dk

kJ0(kr)

k2 + α2
= K0(αr),

which is applicable in our case, since r > 0, α, β are real and Re[α], Re[β] > 0. The asymptotic form of the right-hand side is
given by

K0(αr) ∼
(

π

2αr

)1/2

exp[−αr]
∞∑

n=0

an(0)

(αr)n
,

where an(ν) = (4ν2−12 )(4ν2−32 )...[4ν2−(2n+1)2]
(n+1)! [ 1

4ν2−12 + 1
4ν2−22 + ... 1

4ν2−(2n+1)2 ]. Using these results, we find

I1(r) = − 1

2πA(α + β )
[αK0(αr) + βK0(βr)],

which is an exponentially decaying function at large values of r.
Similarly, using the result

∫
dφ exp{ikr cos[θ − φ]} exp[iφ] = i2πJ1(kr) exp[iθ ], we may simplify the expression for I2 as

I2(r, θ ) = exp[iθ ]

(2π )2

∫
kdk

�k

(Ak2 + μ′)2 + �2k2
i2πJ1(kr)

= exp[iθ ]

2π

∫
dkkJ1(kr)

1

2

(
1

Ak2 + μ′ − i�k
− 1

Ak2 + μ′ + i�k

)

= exp[iθ ]

4π

∫
dkkJ1(kr)

1

A(k1 − k2)

(
1

k − k1
− 1

k − k2
+ 1

k + k1
− 1

k + k2

)

k1 = i
√

μ′
A

√
λ+2+√

λ√
2

, k2 = i
√

μ′
A

√
λ−√

λ+2√
2

, k3 = i
√

μ′
A

√
λ+2−√

λ√
2

= −k2, k4 = −i
√

μ′
A

√
λ+2+√

λ√
2

= −k1. This can be rewritten as

exp[iθ ]

4π

∫
dkkJ1(kr)

1

A(k1 − k2)

(
2k

k2 − k2
1

− 2k

k2 − k2
2

)
.

Again, replacing k1 by iα and k2 by −iβ, where α and β are real, and α, β > 0 (α =
√

μ′
A

√
λ+2+√

λ√
2

, β =
√

μ′
A

√
λ+2−√

λ√
2

), we find

I2 = exp[iθ ]

4π

∫
dkJ1(kr)

2

Ai(α + β )

(
k2

k2 + α2
− k2

k2 + β2

)
.

Let us rewrite the variable of integration as kr ≡ x. Then

I2 = exp[iθ ]

2πAi(α + β )

∫
dx

r
J1(x)

(
x2

x2 + α2r2
− x2

x2 + β2r2

)
. (B1)

To evaluate the above Eq. (B1), we shall use the standard integral [49],∫ ∞

0
dx

xJ0(ax)

x2 + α2r2
= K0(aαr),

where r > 0, α, β are real and Re[α], Re[β] > 0. Here we differentiate both sides with respect to a and then take the limit
a → 1, we have ∫ ∞

0

x2J1(x)

x2 + α2r2
dx = K1(αr). (B2)
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Thus, using Eq. (B2) in Eq. (B1), we have

I2 = exp[iθ ]

2πAi(α + β )r
[K1(αr) − K1(βr)].

The asymptotic form of the function on the right-hand side is given by

K1(αr) ∼
(

π

2αr

)1/2

exp[−αr]
∞∑

n=0

an(1)

(αr)n
.

where an(ν) = (4ν2−12 )(4ν2−32 )...[4ν2−(2n+1)2]
(n+1)! [ 1

4ν2−12 + 1
4ν2−22 + · · · 1

4ν2−(2n+1)2 ], which is exponentially decaying in nature.

[1] M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27,
124003 (2012).

[2] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[3] M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).
[4] Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin,

J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z.
Chen, T. Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia, and
K. L. Wang, Science 357, 294 (2017).

[5] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, Nat. Rev. Mater. 3, 52
(2018).

[6] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[7] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. Lett. 104, 040502 (2010).
[8] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[9] A. Y. Kitaev, Phys.- Usp. 44, 131 (2001).

[10] R. Aguado, La Rivista del Nuovo Cimento 40, 523 (2017).
[11] C. Kallin and A. J. Berlinsky, J. Phys.: Condens. Matter 21,

164210 (2009).
[12] Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida,

J. Phys. Soc. Jpn. 81, 011009 (2012).
[13] C. Kallin, Rep. Prog. Phys. 75, 042501 (2012).
[14] S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato,

and Y. Ando, Phys. Rev. Lett. 107, 217001 (2011).
[15] Y. Ando, K. Segawa, S. Sasaki, and M. Kriener, J. Phys.: Conf.

Ser. 449, 012033 (2013).
[16] M. Kriener, K. Segawa, Z. Ren, S. Sasaki, and Y. Ando, Phys.

Rev. Lett. 106, 127004 (2011).
[17] Superconductivity does not exist in the bulk as the bulk bands

are completely occupied in the topological insulator state.
[18] S. Kundu and V. Tripathi, Phys. Rev. B 96, 205111 (2017).
[19] S. Kundu and V. Tripathi, Eur. Phys. J. B 91, 198 (2018).
[20] N. Furukawa, T. M. Rice, and M. Salmhofer, Phys. Rev. Lett.

81, 3195 (1998).
[21] Y. Tanaka, T. Shoman, K. Nakayama, S. Souma, T. Sato, T.

Takahashi, M. Novak, K. Segawa, and Y. Ando, Phys. Rev. B
88, 235126 (2013).

[22] Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T.
Takahashi, K. Segawa, and Y. Ando, Nat. Phys. 8, 800 (2012).

[23] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat.
Commun. 3, 982 (2012).

[24] J. Liu, W. Duan, and L. Fu, Phys. Rev. B 88, 241303(R)
(2013).

[25] S.-Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I.
Belopolski, J. Denlinger, Y. Wang, H. Lin, L. Wray et al., Nat.
Commun. 3, 1192 (2012).

[26] P. Dziawa, B. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow,
M. Szot, E. Łusakowska, T. Balasubramanian, B. M. Wojek, M.
Berntsen et al., Nat. Mater. 11, 1023 (2012).

[27] Y. J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M. Z.
Hasan, and A. Bansil, Phys. Rev. B 87, 235317 (2013).

[28] H. Yao and F. Yang, Phys. Rev. B 92, 035132 (2015).
[29] I. Dzyaloshinskii, JETP Lett. 46, 118 (1987).
[30] S. Das, L. Aggarwal, S. Roychowdhury, M. Aslam, S. Gayen,

K. Biswas, and G. Sheet, Appl. Phys. Lett. 109, 132601
(2016).

[31] G. Mazur, K. Dybko, A. Szczerbakow, M. Zgirski, E.
Lusakowska, S. Kret, J. Korczak, T. Story, M. Sawicki, and T.
Dietl, arXiv:1709.04000.

[32] G. Sheet, S. Mukhopadhyay, and P. Raychaudhuri, Phys. Rev.
B 69, 134507 (2004).

[33] Y.-C. Yam, S. Fang, P. Chen, Y. He, A. Soumyanarayanan, M.
Hamidian, D. Gardner, Y. Lee, M. Franz, B. I. Halperian, E.
Kaxiras, and J. E. Hoffman, arXiv:1810.13390.

[34] P. Sessi, D. Di Sante, A. Szczerbakow, F. Glott, S. Wilfert,
H. Schmidt, T. Bathon, P. Dziawa, M. Greiter, T. Neupert, G.
Sangiovanni, T. Story, R. Thomale, and M. Bode, Science 354,
1269 (2016).

[35] M. Wimmer, A. R. Akhmerov, M. V. Medvedyeva, J.
Tworzydlo, and C. W. J. Beenakker, Phys. Rev. Lett. 105,
046803 (2010).

[36] Y. Luh, Acta Phys. Sin. 21, 75 (1965).
[37] H. Shiba, Prog. Theor. Phys. 40, 435 (1968).
[38] A. Rusinov, JETP Lett. (USSR) 9, 146-9 (1969).
[39] K. Maki and S. Haas, Phys. Rev. B 62, R11969 (2000).
[40] Q.-H. Wang and Z. D. Wang, Phys. Rev. B 69, 092502 (2004).
[41] J. D. Sau and E. Demler, Phys. Rev. B 88, 205402 (2013).
[42] M. Mashkoori, K. Bjornson, and A. M. Black-Schaffer, Sci.

Rep. 7, 44107 (2017).
[43] F. Wang, Q. Liu, T. Ma, and X. Jiang, J. Phys.: Condens. Matter

24, 455701 (2012).
[44] V. Kaladzhyan, C. Bena, and P. Simon, J. Phys.: Condens.

Matter 28, 485701 (2016).
[45] V. Kaladzhyan, J. Röntynen, P. Simon, and T. Ojanen, Phys.

Rev. B 94, 060505(R) (2016).
[46] V. Kaladzhyan, C. Bena, and P. Simon, Phys. Rev. B 93, 214514

(2016).
[47] S. Haas and K. Maki, Phys. Rev. Lett. 85, 2172 (2000).
[48] In contrast, in long linear defects, these impurity bound states

form a band, which makes it harder to isolate the qubit from the
environment. The two qubits are, however, of different types,
and the latter is specifically relevant for topological quantum
computation.

205105-13

https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1088/0953-8984/21/16/164210
https://doi.org/10.1088/0953-8984/21/16/164210
https://doi.org/10.1088/0953-8984/21/16/164210
https://doi.org/10.1088/0953-8984/21/16/164210
https://doi.org/10.1143/JPSJ.81.011009
https://doi.org/10.1143/JPSJ.81.011009
https://doi.org/10.1143/JPSJ.81.011009
https://doi.org/10.1143/JPSJ.81.011009
https://doi.org/10.1088/0034-4885/75/4/042501
https://doi.org/10.1088/0034-4885/75/4/042501
https://doi.org/10.1088/0034-4885/75/4/042501
https://doi.org/10.1088/0034-4885/75/4/042501
https://doi.org/10.1103/PhysRevLett.107.217001
https://doi.org/10.1103/PhysRevLett.107.217001
https://doi.org/10.1103/PhysRevLett.107.217001
https://doi.org/10.1103/PhysRevLett.107.217001
https://doi.org/10.1088/1742-6596/449/1/012033
https://doi.org/10.1088/1742-6596/449/1/012033
https://doi.org/10.1088/1742-6596/449/1/012033
https://doi.org/10.1088/1742-6596/449/1/012033
https://doi.org/10.1103/PhysRevLett.106.127004
https://doi.org/10.1103/PhysRevLett.106.127004
https://doi.org/10.1103/PhysRevLett.106.127004
https://doi.org/10.1103/PhysRevLett.106.127004
https://doi.org/10.1103/PhysRevB.96.205111
https://doi.org/10.1103/PhysRevB.96.205111
https://doi.org/10.1103/PhysRevB.96.205111
https://doi.org/10.1103/PhysRevB.96.205111
https://doi.org/10.1140/epjb/e2018-90345-8
https://doi.org/10.1140/epjb/e2018-90345-8
https://doi.org/10.1140/epjb/e2018-90345-8
https://doi.org/10.1140/epjb/e2018-90345-8
https://doi.org/10.1103/PhysRevLett.81.3195
https://doi.org/10.1103/PhysRevLett.81.3195
https://doi.org/10.1103/PhysRevLett.81.3195
https://doi.org/10.1103/PhysRevLett.81.3195
https://doi.org/10.1103/PhysRevB.88.235126
https://doi.org/10.1103/PhysRevB.88.235126
https://doi.org/10.1103/PhysRevB.88.235126
https://doi.org/10.1103/PhysRevB.88.235126
https://doi.org/10.1038/nphys2442
https://doi.org/10.1038/nphys2442
https://doi.org/10.1038/nphys2442
https://doi.org/10.1038/nphys2442
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1103/PhysRevB.88.241303
https://doi.org/10.1103/PhysRevB.88.241303
https://doi.org/10.1103/PhysRevB.88.241303
https://doi.org/10.1103/PhysRevB.88.241303
https://doi.org/10.1038/ncomms2191
https://doi.org/10.1038/ncomms2191
https://doi.org/10.1038/ncomms2191
https://doi.org/10.1038/ncomms2191
https://doi.org/10.1038/nmat3449
https://doi.org/10.1038/nmat3449
https://doi.org/10.1038/nmat3449
https://doi.org/10.1038/nmat3449
https://doi.org/10.1103/PhysRevB.87.235317
https://doi.org/10.1103/PhysRevB.87.235317
https://doi.org/10.1103/PhysRevB.87.235317
https://doi.org/10.1103/PhysRevB.87.235317
https://doi.org/10.1103/PhysRevB.92.035132
https://doi.org/10.1103/PhysRevB.92.035132
https://doi.org/10.1103/PhysRevB.92.035132
https://doi.org/10.1103/PhysRevB.92.035132
https://doi.org/10.1063/1.4963698
https://doi.org/10.1063/1.4963698
https://doi.org/10.1063/1.4963698
https://doi.org/10.1063/1.4963698
http://arxiv.org/abs/arXiv:1709.04000
https://doi.org/10.1103/PhysRevB.69.134507
https://doi.org/10.1103/PhysRevB.69.134507
https://doi.org/10.1103/PhysRevB.69.134507
https://doi.org/10.1103/PhysRevB.69.134507
http://arxiv.org/abs/arXiv:1810.13390
https://doi.org/10.1126/science.aah6233
https://doi.org/10.1126/science.aah6233
https://doi.org/10.1126/science.aah6233
https://doi.org/10.1126/science.aah6233
https://doi.org/10.1103/PhysRevLett.105.046803
https://doi.org/10.1103/PhysRevLett.105.046803
https://doi.org/10.1103/PhysRevLett.105.046803
https://doi.org/10.1103/PhysRevLett.105.046803
https://doi.org/10.1143/PTP.40.435
https://doi.org/10.1143/PTP.40.435
https://doi.org/10.1143/PTP.40.435
https://doi.org/10.1143/PTP.40.435
https://doi.org/10.1103/PhysRevB.62.R11969
https://doi.org/10.1103/PhysRevB.62.R11969
https://doi.org/10.1103/PhysRevB.62.R11969
https://doi.org/10.1103/PhysRevB.62.R11969
https://doi.org/10.1103/PhysRevB.69.092502
https://doi.org/10.1103/PhysRevB.69.092502
https://doi.org/10.1103/PhysRevB.69.092502
https://doi.org/10.1103/PhysRevB.69.092502
https://doi.org/10.1103/PhysRevB.88.205402
https://doi.org/10.1103/PhysRevB.88.205402
https://doi.org/10.1103/PhysRevB.88.205402
https://doi.org/10.1103/PhysRevB.88.205402
https://doi.org/10.1038/srep44107
https://doi.org/10.1038/srep44107
https://doi.org/10.1038/srep44107
https://doi.org/10.1038/srep44107
https://doi.org/10.1088/0953-8984/24/45/455701
https://doi.org/10.1088/0953-8984/24/45/455701
https://doi.org/10.1088/0953-8984/24/45/455701
https://doi.org/10.1088/0953-8984/24/45/455701
https://doi.org/10.1088/0953-8984/28/48/485701
https://doi.org/10.1088/0953-8984/28/48/485701
https://doi.org/10.1088/0953-8984/28/48/485701
https://doi.org/10.1088/0953-8984/28/48/485701
https://doi.org/10.1103/PhysRevB.94.060505
https://doi.org/10.1103/PhysRevB.94.060505
https://doi.org/10.1103/PhysRevB.94.060505
https://doi.org/10.1103/PhysRevB.94.060505
https://doi.org/10.1103/PhysRevB.93.214514
https://doi.org/10.1103/PhysRevB.93.214514
https://doi.org/10.1103/PhysRevB.93.214514
https://doi.org/10.1103/PhysRevB.93.214514
https://doi.org/10.1103/PhysRevLett.85.2172
https://doi.org/10.1103/PhysRevLett.85.2172
https://doi.org/10.1103/PhysRevLett.85.2172
https://doi.org/10.1103/PhysRevLett.85.2172


S. KUNDU AND V. TRIPATHI PHYSICAL REVIEW B 99, 205105 (2019)

[49] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products, 7th ed. (Elsevier/Academic Press, Amsterdam,
2007).

[50] A. J. Willans, J. T. Chalker, and R. Moessner, Phys. Rev. B 84,
115146 (2011).

[51] A. J. Willans, J. T. Chalker, and R. Moessner, Phys. Rev. Lett.
104, 237203 (2010).

[52] Y.-Z. You, I. Kimchi, and A. Vishwanath, Phys. Rev. B 86,
085145 (2012).

[53] D. Iaia, C.-Y. Wang, Y. Maximenko, D. Walkup, R. Sankar, F.
Chou, Y.-M. Lu, and V. Madhavan, Phys. Rev. B 99, 155116
(2019).

[54] K. Dhochak, R. Shankar, and V. Tripathi, Phys. Rev. Lett. 105,
117201 (2010).

[55] S. D. Das, K. Dhochak, and V. Tripathi, Phys. Rev. B 94,
024411 (2016).

[56] A. Altland and B. D. Simons, Condensed Matter Field Theory,
2nd ed. (Cambridge University Press, Cambridge, 2010).

205105-14

https://doi.org/10.1103/PhysRevB.84.115146
https://doi.org/10.1103/PhysRevB.84.115146
https://doi.org/10.1103/PhysRevB.84.115146
https://doi.org/10.1103/PhysRevB.84.115146
https://doi.org/10.1103/PhysRevLett.104.237203
https://doi.org/10.1103/PhysRevLett.104.237203
https://doi.org/10.1103/PhysRevLett.104.237203
https://doi.org/10.1103/PhysRevLett.104.237203
https://doi.org/10.1103/PhysRevB.86.085145
https://doi.org/10.1103/PhysRevB.86.085145
https://doi.org/10.1103/PhysRevB.86.085145
https://doi.org/10.1103/PhysRevB.86.085145
https://doi.org/10.1103/PhysRevB.99.155116 
https://doi.org/10.1103/PhysRevB.99.155116 
https://doi.org/10.1103/PhysRevB.99.155116 
https://doi.org/10.1103/PhysRevB.99.155116 
https://doi.org/10.1103/PhysRevLett.105.117201
https://doi.org/10.1103/PhysRevLett.105.117201
https://doi.org/10.1103/PhysRevLett.105.117201
https://doi.org/10.1103/PhysRevLett.105.117201
https://doi.org/10.1103/PhysRevB.94.024411
https://doi.org/10.1103/PhysRevB.94.024411
https://doi.org/10.1103/PhysRevB.94.024411
https://doi.org/10.1103/PhysRevB.94.024411

