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A prominent feature of some one-dimensional non-Hermitian systems is that all right eigenstates of the non-
Hermitian Hamiltonian are localized in one end of the chain. The topological and trivial phases are distinguished
by the emergence of zero-energy modes within the skin states in the presence of chiral symmetry. Skin states
are formed when the system is nonreciprocal, where it is said to be nonreciprocal if the absolute values of the
right- and left-going hopping amplitudes are different. Indeed, zero-energy edge modes emerge at both edges in
the topological phase of a reciprocal non-Hermitian system. Then, analyzing higher-order topological insulators
in nonreciprocal systems, we find the emergence of topological zero-energy modes within the skin states formed
in the vicinity of one corner. Explicitly, we explore the anisotropic honeycomb model in two dimensions and
the diamond lattice model in three dimensions. We also study an electric-circuit realization of these systems.
Electrical circuits with (without) diodes realize nonreciprocal (reciprocal) non-Hermitian topological systems.
Topological phase transitions are observable by measuring the impedance resonance due to zero-admittance
topological corner modes.
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Introduction. Topological physics is one of the most im-
portant achievements in contemporary physics, among which
there are topological insulators and its generalization to
higher-order topological insulators [1–12]. They are charac-
terized by bulk topological numbers, where the bulk-boundary
correspondence and its generalization play a key role. In
particular, topological zero-energy corner modes emerge for
second-order topological insulators in two dimensions and for
third-order topological insulators in three dimensions. They
have been studied not only in condensed matter physics but
also in various systems such as photonic [13–15], phononic
[16–20], and microwave [21,22] systems. LC electric circuits
also have topological phases [23–28].

Recently, non-Hermitian topological systems have been
attracting increasing attention [29–42]. They are real-
ized in photonic systems [43–46], microwave resonators
[47], waveguides [48], quantum walks [49,50], and cav-
ity systems [51]. Non-Hermitian generalizations of the Su-
Schrieffer-Heeger (SSH) model have been most studied
[33,35–37,44,46,47,52,53]. Non-Hermitian systems have new
aspects. First, we must differentiate between the right and
left eigenenergies and eigenstates, which are defined by
H |ψR〉 = εR|ψR〉 and H†|ψL〉 = εL|ψL〉. The right and left
eigenenergies are complex in general. A prominent property
of some non-Hermitian systems is the non-Hermitian skin
effect, where all right eigenstates are localized in one end of
a finite chain with the bulk spectrum being totally modified
[37,38,53–56]. An interesting feature is that the topological
phase transition point for a finite system is different from
the bulk gap closing point. The topological and trivial phases
are distinguished by the presence of a zero-energy edge mode
within the skin states. The topological number is given by the
so-called non-Bloch topological invariant [37,57,58], which
well describes the phase transition point for a finite system.

In this Rapid Communication, first we clarify the condition
for skin states to develop in a non-Hermitian SSH model. The
condition is found to be the nonreciprocity of the hopping
between the lattice sites. We then generalize the analysis
to higher dimensions. The Hermitian SSH model has been
generalized to higher dimensions such anisotropic honeycomb
and diamond lattice models, where they are shown to be
higher-order topological insulators [2,4–6,9,59]. We investi-
gate nonreciprocal versions of these models, and demonstrate
the emergence of topological corner modes within the skin
states: See Fig. 1.

Electric circuits realize various topological phases [23–28].
We show that LCR circuits with (without) diodes present
a concrete playground to investigate nonreciprocal (recipro-
cal) non-Hermitian topological physics (see Fig. 2), where
resistors naturally lead to non-Hermitian terms and diodes
to nonreciprocal terms. We focus on chiral symmetric topo-
logical electric circuits. When we analyze the SSH model,
the anisotropic honeycomb and diamond lattice models in
LC circuits, there are many impedance resonances both in
the topological and trivial phases. All of them are drastically
suppressed except for the topological zero-admittance modes
due to the effect of resistors in LCR circuits. We then inves-
tigate their nonreciprocal versions by introducing diodes, and
conclude that the emergence of topological corner modes in
skin states is clearly detectable by impedance peaks.

Non-Hermitian minimal two-band models. The minimal
model to describe insulators is the two-band model. Indeed, a
one-band model cannot have a line gap to generate insulators,
although it is possible to have a point gap [60]. The unit cell
contains two sites A and B, and it is called a bipartite system.
We investigate the chiral symmetric model since it is known
to have nontrivial topology protected by the symmetry. The
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FIG. 1. (a)–(e) Development of skin states (in gold) and topological corner modes (in red) in rhombus geometry of a nonreciprocal
honeycomb system as nonreciprocity γ increases. The size of a ball represents the magnitude of LDOS. We have set tA = 0.4 and tB = 1.
(f)–(h) The corresponding ones in rhombohedron geometry of a diamond lattice system. We have set tA = 0.5 and tB = 1.

model is described by the 2 × 2 Hamiltonian H , which is
expanded in terms of the Pauli matrices,

H (k) =
(

0 h1(k)
h2(k) 0

)
. (1)

It has a chiral symmetry σz satisfying {H (k), σz} = 0, which
assures the symmetric spectrum E ↔ −E . The diagonal
terms are prohibited by the chiral symmetry. Typical examples
are the SSH model in one dimension, the anisotropic honey-
comb lattice in two dimensions, and the anisotropic diamond
lattice in three dimensions. See Figs. 1 and 2 for illustrations
of these lattices and also the corresponding electric circuits. It
is non-Hermitian when h2(k) �= h∗

1(k).

FIG. 2. (a) Illustration of the SSH model. One unit cell contains
two sites A and B. Nonreciprocal links are shown by the symbol �.
(b) Illustration of the SSH circuit. The reciprocal link is represented
by a condenser and a resistance connected in series. The nonrecip-
rocal link is obtained by replacing this resistance with a set of a
diode and a resistance connected in parallel. (c) Illustration of the
anisotropic honeycomb model. (d) Illustration of the electric-circuit
realization. Each node is connected to the ground via inductance L
as in (b).

The quantum mechanical Hamiltonian describes hopping
between two adjacent sites. When the absolute value of the
hopping toward one direction is equal to the one toward
the opposite direction, the system is said to be reciprocal
and otherwise nonreciprocal. It is intriguing that the hop-
ping amplitude may be complex. Indeed, complex hopping
parameters appear naturally in an electric-circuit realization
of non-Hermitian systems: See Eq. (6). We have reciprocal
and nonreciprocal non-Hermitian systems.

Non-Hermitian SSH models. We start with the non-
Hermitian SSH model [36,37,53], where h1(k) = tL

A + tBe−ik

and h2(k) = tR
A + tBeik . We illustrate the hopping parameters

in Fig. 2(a) and they are complex in general. The system
is reciprocal for |tL

A | = |tR
A |, and nonreciprocal otherwise.

Let us set tL
A = tA + γ /2, tR

A = tA − γ /2, and call γ the
nonreciprocity.

The topological and trivial phases are distinguished by the
emergence of zero-energy edge modes for a finite chain. We
define the local density of states (LDOS) for the nth right
eigenstate |ψR

n (x)〉 by ||ψR
n (x)〉|2. We show the LDOS for

all n with a choice of typical values of hopping parameters
for a finite chain in Fig. 3. (i) The Hermitian SSH model
is described by taking a real parameter, tA ≡ tL

A = tR
A . There

are zero-energy modes at both edges in the topological phase
with |tA| < |tB| but none in the trivial phase with |tA| > |tB|:
See Figs. 3(a1) and 3(a2). (ii) We consider the reciprocal non-
Hermitian system by taking a complex value for tA = tL

A = tR
A .

As in Fig. 3(b1), the LDOS is quite similar to the Hermitian
SSH model, although the bulk energy becomes complex. The
phase transition point is the same, i.e., at |tA| = |tB|. (iii) In
Figs. 3(c1) and 3(d1), we show the LDOS for a nonreciprocal
non-Hermitian system [37] with |tL

A | �= |tR
A |, which demon-

strates the formation of the skin states. By examining the
zero-energy edge mode, the system is topological for |tL

A tR
A | <

|tB|2 and trivial for |tL
A tR

A | > |tB|2. Skin states are induced by
the nonreciprocity both in the topological and trivial phases.
The zero-energy mode emerges only at one edge in the topo-
logical phase. This is called the biorthogonal bulk-boundary
correspondence [37,53]. We present some analytic formulas
to understand the LDOS elsewhere [61].

Non-Bloch winding numbers. The non-Bloch topological
number [37,57,58] describes the nonreciprocal non-Hermitian
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FIG. 3. LDOS in the topological and trivial phases of the SSH
model for (a1)–(d1) and (a2)–(d2), respectively. The horizontal axis
denotes the lattice site number. Red curves represent the topological
edge modes in (a1)–(d1). (a1) LDOS of the Hermitian system, where
the topological edge modes are prominent at both edges. (b1) LDOS
of the reciprocal non-Hermitian system, which is quite similar to
that of the Hermitian system. (c1)–(d1) LDOS of the nonrecipro-
cal non-Hermitian system, where skin states are formed. (a3)–(d3)
Impedance (in units of �) in the corresponding SSH circuits. We
have taken tA = 0.25, tB = 1, and γ = 0 for (a), tA = 0.25 + 0.5i,
tB = 1 + 0.5i, and γ = 0 for (b), while tA = 0.25 + 0.5i, tB = 1 +
0.5i, and γ = 0.1 for (c), and tA = 0.25 + 0.5i, tB = 1 + 0.5i, and
γ = 0.4 for (d).

SSH model. Here, we use the chiral index � as the non-Bloch
topological number. It is defined by [61]

� = 1

2i

∫ π

−π

dk

2π
Tr[σzH (k + iκ )−1∂kH (k + iκ )] (2)

in the two-band model (1), where κ = − log
√

|tR
A /tL

A |. It is
zero, κ = 0, for the reciprocal system, where this formula is
reduced to the usual chiral index. It is quantized as long as the
chiral symmetry is preserved. In addition, it cannot change its
value as long as the Hamiltonian is not singular. To see this,
by substituting (1) into (2), we obtain

� = 1

2

∫ π

−π

dk

2π i
∂k log[h2(k + iκ )/h1(k + iκ )]. (3)

Hence, the chiral index counts how many times the Hamilto-
nian winds the origin. By evaluating it, we find that the system
is topological (� = 1 ) for |tL

A tR
A | < |tB|2 and trivial (� = 0) for

|tL
A tR

A | > |tB|2, as agrees with the condition for the zero-energy
edge modes to emerge in the skin states.

A comment is in order. Although the chiral index (2) has a
different expression from the non-Bloch topological number
defined in Ref. [37], it is shown [61] that they are equivalent.

Non-Hermitian honeycomb lattices. We proceed to inves-
tigate non-Hermitian systems in two dimensions. A typical
example is the anisotropic honeycomb lattice model illus-
trated in Fig. 2(c). The nonreciprocal hopping is introduced
as explained in Fig. 2(d). The Hamiltonian is given by the
2 × 2 matrix (1) with h1 = 2tL

A cos(ky/2) + tB exp(−ikx ) and
h2 = 2tR

A cos(ky/2) + tB exp(ikx ). The chiral index (2) is gen-
eralized to D dimensions as

� = 1

2i

∫
dDk

(2π )D
Tr[σzH (k + iκ)−1∂kx H (k + iκ)], (4)

where the integration is performed over the Brillouin zone
with κ = (κ, 0). It is quantized when the system is an

FIG. 4. Energy spectra and topological numbers of the rhombus
made of the anisotropic honeycomb lattice. The horizontal axis is tA,
while the vertical axis is the real part of the energy for (a1)–(d1),
the imaginary part for (a2)–(d2), the absolute value for (a3)–(d3),
and the topological number W for (a4)–(d4). The horizontal red
lines represent the topological corner modes, where the system is
a second-order topological insulator. (a1)–(a4) for the Hermitian
model, (b1)–(b4) for the reciprocal non-Hermitian model, and (c1)–
(c4) and (d1)–(d4) for the nonreciprocal non-Hermitian model with
increasing γ . The vertical lines represent the phase transition points
at the value t+

A (magenta), t−
A (violet), and γ /2 (green). We have taken

tB = 1 for (a), tB = 1 + i for (b), tB = 1 for (c), and tB = 1 for (d).

insulator, while it changes its value continuously when the
system is metal. The system is topological for |tL

A tR
A /t2

B| < 1.
The topological phase transition occurs from a topological
insulator to a metal at t+

A = ± 1
2

√
|tB|2 + γ 2 for |tB| > |γ |.

On the other hand, there are additional topological phase
transitions at t−

A = ± 1
2

√
−|tB|2 + γ 2 for |tB| < |γ |: See Fig. 4.

We give the derivation of t±
A elsewhere [61].

We show the energy spectra and the topological numbers
for various values of hopping parameters for a rhombus made
of the anisotropic honeycomb lattice in Fig. 4. (i) The Her-
mitian model is described by a real value for tA = tL

A = tR
A .

The Hermitian model produces a second-order topological
insulator in the parameter region |tA/tB| < 1/2. Namely, when
we consider a nanoribbon, there are no topological edge
modes. On the other hand, topological corner modes emerge
at two corners in a rhombus as in Fig. 1(a). These corner
modes are observed as zero-energy modes (depicted in red
lines) in Fig. 4(a). (ii) The reciprocal non-Hermitian system
is constructed by taking a complex value for tA = tL

A = tR
A .

The structure of the real part of the energy spectrum and the
topological charge are quite similar to those of the Hermitian
model, although the energy becomes complex as in Fig. 4(b2).
(iii) We consider the nonreciprocal non-Hermitian systems in
Figs. 4(c) and 4(d). The zero-energy corner mode emerges at
one of two corners in a rhombus, as is found by calculating
the LDOS: See Fig. 1. These corner modes are observed
as zero-energy modes (depicted in red lines) in Figs. 4(c)
and 4(d).

In the similar way, we may analyze the skin states and the
topological corner mode in rhombohedron geometry of the
diamond lattice. The Hamiltonian is given by the 2 × 2 ma-
trix (1) with h1 = tL

A [2 cos(ky/2) + exp(−ikz )] + tB exp(−ikx )
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and h2 = tR
A [2 cos(ky/2) + exp (ikz )] + tB exp(ikx ). The lattice

structure is illustrated in Fig. 1, where the nonreciprocity is
introduced just as in Fig. 2(d). The LDOS is also shown
in Fig. 1, which demonstrates the formation of skin states
and the topological corner mode. It is a typical example of
the nonreciprocal third-order topological insulators in three
dimensions [61].

Electric-circuit realization of non-Hermitian systems. We
consider a class of electric circuits, where each node a is con-
nected to the ground via inductance L: See Fig. 2(b). Let Ia be
the current between node a and the ground via the inductance,
Va be the voltage at node a, and Cab and Rab be the capacitance
and the resistance connected in series between nodes a and b,
respectively. We use diodes to implement nonreciprocity in
the circuit. We approximate a diode by a linear resistance rab

for a < b and perfect nonreciprocity rab = ∞ for b < a. We
set CAB = CA, CBA = CB, RR

AB = rARA/(rA + RA), RL
AB = RA,

and RR
BA = RL

BA = RB in a bipartite system.
The Kirchhoff’s current law leads to the circuit Laplacian

[23,24] Jab(ω) with ω the frequency,

Jab(ω) = iωδab

[
− 1

ω2L
+

∑
c �=a

Hac(ω)

]
− iωHab(ω), (5)

where Hab(ω) = Cab/(1 + iωCabR̄ab). Here, R̄ab = Rab for
a > b, R̄ab = rabRab/(rab + Rab) for a < b, and Caa = 0 and
R̄aa = 0. An important observation is that Hab(ω) is identified
as the tight-binding Hamiltonian in condensed matter physics,
where the hopping parameters between adjacent sites a and b
are given by

tL
A = CA/(1 + iωCARA), tB = CB/(1 + iωCBRB),

tR
A = CA/[1 + iωCA/(1/RA + 1/rA)]. (6)

The hopping parameters become complex.
Admittance spectrum and impedance peaks. The admit-

tance spectrum consists of the eigenvalues of the circuit Lapla-
cian [23–28]. It is identical to the band structure in condensed
matter physics. Thus, the topological edge or corner modes
correspond to the zero-admittance modes.

A measurable quantity of electric circuits is the impedance,
which is given by [26] Gab = Va/Ib, where G is the Green
function’s defined by the inverse of the Laplacian J , G ≡ J−1.
It diverges at the frequency satisfying J = 0. Therefore, it is
possible to detect the topological zero-admittance modes by
the divergence of the impedance.

Let us first search for zero-admittance modes in the LC
circuit. After the diagonalization, the circuit Laplacian reads

Jn(ω) = iω

[
−(ω2L)−1 +

∑
α=A,B

nαCα

]
− iωεn(ω), (7)

where nα is the number of nodes adjacent to node α, and
εn is the eigenvalue of the circuit Laplacian. The impedance
diverges at the resonance frequencies

ωR(εn) =
√√√√(

−εn +
∑

α

nαCα

)/
L, (8)

which is the solution of Jn(ω) = 0. Hence there are many
impedance peaks indexed by n both in the topological and

FIG. 5. Impedance peaks are shown in the (CA/CB)-ω plane. The
phase transition occurs at CA = CB. (a) Many impedance peaks are
generated as implied by Eq. (8) both in the topological and trivial
phases of the Hermitian SSH model (RA = RB = 0). White curves
represent the analytical result (8). (b) All these peaks are suppressed
drastically, except for the topological peak in the topological phase
of the reciprocal non-Hermitian SSH model (RA �= 0, RB �= 0).

trivial phases as in Figs. 5(a1) and 5(a2) for the instance
of the SSH model, among which the topological impedance
peak is given by the zero-admittance mode (ε0 = 0) in the
topological phase. However, when we introduce resistors,
since εn becomes complex except for the zero-admittance
mode (ε0 = 0), all resonance peaks are drastically suppressed
except for the topological peak as in Figs. 5(b1) and 5(b2) for
the instance of the SSH model. This phenomenon occurs in
any dimension, since the resonance frequency (8) is valid in
any dimensions.

We first calculate the impedance at each node in the SSH
model. We show a space distribution of the point impedance
in the topological phase in Figs. 3(a3)–3(d3). We see how the
topological impedance peak develops in the skin states as the
nonreciprocity γ increases.

We next calculate the impedance at each node in rhombus
(rhombohedron) geometry of the anisotropic honeycomb
(diamond) lattice, where a second-order (third-order)
topological phase is realized and a topological corner
mode emerges. We show a space distribution of the point
impedance in the topological phase in Figs. 6(a)–6(c) for
the Hermitian, reciprocal non-Hermitian, and nonreciprocal
non-Hermitian honeycomb systems, respectively. In the
reciprocal system, impedance peaks emerge at corners A
and B. On the other hand, in the nonreciprocal system, an
impedance peak emerges only at corner B corresponding to
the topological corner modes in Fig. 1.

FIG. 6. Spatial distribution of impedance in the topological
phase of the anisotropic honeycomb circuit. (a) In the Hermitian
system, enhanced topological peaks emerge at both corners. (b) In
the reciprocal non-Hermitian system topological peaks emerge at
both corners, but they are not so prominent. (c) In the nonreciprocal
system, an enhanced topological peak emerges only at corner B
corresponding to the topological skin corner states around corner B
as in Fig. 2.
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Discussion. We have studied a non-Hermitian extension of
the higher-order topological phases and proposed to realize
them by electric circuits. Our results show that various non-
Hermitian systems will be implemented in electric circuits.

Note added. Recently, we became aware of closely related
works [62–64] on the non-Hermitian extensions of the higher-
order topological phases.
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