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Dirac materials respond to lattice deformations as if the electrons were coupled to gauge fields. We derive the
elastic gauge fields in the hyperhoneycomb lattice, a three-dimensional (3D) structure with trigonally connected
sites. In its semimetallic form, this lattice is a nodal-line semimetal with a closed loop of Dirac nodes. Using
strain engineering, we find a whole family of strain deformations that create uniform nearly flat Landau levels
in 3D. We propose that those Landau levels can be created and tuned in metamaterials with the application of a
simple uniaxial temperature gradient. In the 3D quantum anomalous Hall phase, which is topological, we show
that the components of the elastic Hall viscosity tensor are multiples of 7y = g2+/3/(16wa®), where 8 is an

elastic parameter and a is the lattice constant.
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I. INTRODUCTION

In honeycomb lattices such as graphene [1], strain defor-
mations couple to electronic degrees of freedom as gauge
fields and can induce Landau-level (LL) quantization with
very large effective pseudomagnetic fields [2-5]. When the
chemical potential is inside the gap of the LLs, the Hall
conductivity per valley is quantized and the system is expected
to show a zero-field quantum Hall effect (QHE). Due to the
dispersion of the LLs, Hall conductivity quantization is not
common in three dimensions (3D), and may occur only in
extremely anisotropic systems such as Bechgaard salts [6,7],
Bernal graphite [8,9], and in nodal-line semimetals [10-12].
Even in strongly anisotropic systems such as in nodal-line
semimetals, the physical implementation of the 3D QHE
is challenging due to the unusual toroidal field geometry
required [10]. With the help of strain engineering, one may
in principle design 3D LLs with well-defined gaps in between
from real-space configurations of magnetic fields that would
be otherwise impractical to realize.

In this Rapid Communication, we derive the elastic
gauge fields that follow from arbitrary lattice deformations
in the hyperhoneycomb lattice, a natural 3D generalization
of the honeycomb geometry where all sites are connected
by coplanar trigonal bonds, as shown in Fig. 1(a). In the
semimetallic form, this lattice is an example of a nodal-
line semimetal [10,13-18]. We identify a whole family of
lattice deformations that produce uniform nearly flat LLs
in 3D, a prerequisite for the 3D zero-field QHE. We show
that this family of nontrivial deformations can be physically
implemented with the application of a simple temperature
gradient along the axis perpendicular to the nodal line, lead-
ing to a tunable metal-insulator transition in the bulk. The
strain deformations can be uniquely specified by the set of
thermal expansion coefficients of the crystal. We propose that
a tunable temperature-controlled 3D zero-field QHE can be
implemented in acoustic metamaterials [19].

In the presence of topological states, the topological
invariants can manifest in the elastic response of the
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crystal through phonons. In the 3D quantum anomalous Hall
(QAH) phase [20], which is the extension of the Haldane
model [21] to the hyperhoneycomb lattice, we also calculate
the elastic Hall viscosity tensor 7,,,,. Also known as the
phonon Hall viscosity [22,23], this quantity is analogous to the
dissipationless viscous response of electrons in the quantum
Hall regime [24-26] and is topological in nature. We show that
the components of the Hall viscosity tensor are £ng or £2ny
(or zero), with ny = B2/3/(16ma’), where B is an elastic
parameter and a is the lattice constant.

II. HAMILTONIAN

The hyperhoneycomb lattice has four sites per unit cell
w=1,...,4 and is generated by the lattice vectors a; =
(v/3,0,0), a=(0,+/3,0), and a3 = (—+/3/2,/3/2,3),
in units of the lattice constant a. In the momentum
space, the reciprocal lattice is generated by the vectors

= (27 /3,0, =1 /3), by = (0, =27 /+/3, 7 /3), and b3 =
(0, 0,27 /3), shown in Fig. 1(b). The tight-binding Hamilto-
nian is a 4 x 4 matrix [10],

Ho,uw (k) =

—to ) e, (1)
3

where #p is the hopping amplitude, ?S,w are the nearest-
neighbor (NN) vectors between sites of species u and
v and k is the momentum measured from the center of
the Brillouin zone (BZ). In_total, there are six NN_ vec-
tors 81, = (£+/3a/2, 0, a/2), 834 = (0, £/3a/2, a/2), 14 =
(0,0, —a) and &3 = (0, 0, a). The low-energy bands of this
lattice have a line of Dirac nodes kKo = [k (s), k,(s), O] in the
k, = 0 plane, which can be written in terms of some parameter
s that satisfies the equation 4 cos[3k,(s)/2] cos[3k,(s)/2] = 1.
The low-energy projected Hamiltonian is described by a2 x 2
matrix expanded around the nodal line,

HO.p(q) = [UX(S)QX + vy(s)CIy]al + vz(s)CIZUZv (2)
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FIG. 1. (a) Hyperhoneycomb lattice, with four atoms per unit
cell. All sites are linked by coplanar trigonal bonds spaced by 120°.
(b) Brillouin zone (BZ) of the hyperhoneycomb lattice, with the
nodal line shown in red. The arrows show the reciprocal lattice
vectors.

where q = k — K(s) is the relative momentum, o, o, are the
two off-diagonal Pauli matrices and

3 3
vx(s) = 11—2 sin (Ik (S))to,
o2
vy(8) = 5 +\/_2 (fk (S))lo, 3
3a
v.(s) = —mto,

are the velocities of the quasiparticles, with «(s)=
2 cos[\/gkx(s)a /2] [20]. The energy spectrum of the quasipar-
ticles is Eo(q) = £,/(vxqx + vygy)* + v2¢2. The wave func-
tions have a w Berry phase for closed line trajectories that
encircle the nodal loop.

III. ELASTIC GAUGE FIELDS

The inclusion of lattice deformations can be done by lo-
cally changing the distance between lattice sites, which affect
value of the hopping constant. Expanding it to lowest order in
the displacement of the lattice,

1™ 4 1) ~ 1y + ﬁz
a

58wy + 06, @)
with n =1, ..., 6 indexing the six NN lattice vectors FON

ujj = %(8% + 0;u;) is the strain tensor defined in terms of

ot __ odlogt
the displacement field u of the lattice and § = a5 = Froer

is the Griineisen parameter of the model [27]. Includlng the
lattice distortions in Hamiltonian Eq. (5), one gets two terms,
H, = Ho,p + Hei, where

3
HEIZZ

B
- ;(Uxuxz + vy”yz)az

)
is the elastic contribution. As in the 2D case (graphene),
the deformation of the lattice couples to the Dirac fermions
as an elastic gauge field A. It is convenient to rewrite the
Hamiltonian in the more familiar form,

Hp(q@) = [vi(gy +Ax) + vy(qy +Ay)]or +v.(g; +A;)oa,

Q)

p
Evz(uxx + Uyy — ZMZZ)GI

where
vV, 38
A(s) = vzz 4a (thex + Uyy — 2uz,),
v, 38
Ay(s) yzz (ux + Uyy — 2u,;), @)
v, 4a
Az(s) = _é<&uxz + &I"yz>
a \ v, vV,

are the components of the elastic gauge field along the nodal
line, with v?(s) = vi(s) + v} (s). The definition of the A, and
A, components is to a degree arbitrary. In Egs. (7) we chose
the most symmetric combination, although this choice has no
effect in physical observables.

Those gauge fields can be associated to a pseudomagnetic
field B =V x A, which follows from lattice deformations
and hence must preserve time-reversal symmetry (TRS).
While pseudomagnetic fields couple to the Dirac fermions
similarly to conventional magnetic fields and can produce LL
quantization, they create a zero net magnetic flux at each
lattice site. Therefore, electrons sitting at opposite points in
the nodal line are related by TRS and must necessarily couple
to opposite B fields. To produce zero-field QHE, one needs to
create 3D LL quantization with well-defined gaps in between.
In 2D, the conventional Hall conductivity oy, is dimensionless
and quantized in units of €?/h. In 3D, it has an extra unit of
inverse length. According to Halperin [28], the Hall conduc-
tivity tensor is 0;; = e?/ (2 h)e; ikGx, where G is a reciprocal
lattice vector (and could be zero). In general, a finite Hall
conductivity in 2D (3D) is allowed whenever the chemical
potential is in the gap between different LLs, and implies in
the existence of chiral edge (surface) states. At zero field, the
Hall conductivity tensor due to pseudomagnetic fields does
not create chiral charge currents as in the conventional QHE,
but rather a valley current.

IV. STRAIN ENGINEERING

In all possible strain configurations, the effective Hamilto-
nian Eq. (6) has the form H,(q) = hjo1 + hy0,. Specifically,
for configuration u = (2xz, 2yz, z°):

hl = UGy + Vyqy, (8)

hy =v.q; — évx)c - évyy~ ©)]
a a

The corresponding pseudomagnetic field B =
(=vy/v;, vy /v,, 0) forms a closed loop in the BZ around the
nodal line, as shown in Fig. 2(a). To calculate the spectrum of
LLs, we generically define the canonically conjugated ladder
operators a = i(hl +ihy)anda’ = i(hl —ihy), which
satisfy [a, a'] = 2i[h,, h1]/w* = 1. The parameter

w(s) = \/§[2vf(s) + 2113(3)]% (10)

is the analog of the cyclotronic frequency Taking the square
of the Hamiltonian, Hz = o?la’a+ 1 ]12><2 a) 03, which
results in the spectrum of LLs parametnzed along the nodal
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FIG. 2. Pseudomagnetic field B along the nodal line for two dif-
ferent strain field configurations. (a) u = (2xz, 2yz, z°) and (b) u =
(2yz, 2xz,0). Both configurations lead to uniform B fields in real
space, but only the former produces nearly flat LLs.

line,

En(s) = sgn(N)w(s)/|N|, a1

with N € Z, as shown in Fig. 3(a). The energy spectrum has a
zeroth LL, as expected for Dirac fermions [1,29], and a clear
gap between the first few LLs. That permits the emergence
of a zero-field QHE due to strain whenever the chemical
potential lays in the LL gap. Even though there are many
deformation sets producing uniform pseudomagnetic fields in
real space, not all of them create 3D LL quantization with
well-defined gaps in between. For the strain configuration
shown in Fig. 2(b), u = (2yz, 2xz, 0), which corresponds to
the pseudomagnetic field B = (—v,/v., v,/v;, 0), the param-
eter w(s) = /(B/a)|v.(s)vy(s)| has zeros along the nodal line
[see Fig. 3(b)], where all LLs collapse. In that configuration,
although the LLs are well defined away from those points,
their dispersion does not lead to a well-defined gap in the
excitation spectrum, and hence the system does not have a
zero-field QHE.

In general, one can define families of strain deformations
that lead to a 3D zero-field QHE. While the energy spectrum
is generically defined by Eq. (11), in those families w(s) =
+/2|[h2, h]| can be nonzero for all points along the nodal line.
For instance, one can build a family of strain deformations,

u = (0 XZ, @Yz, azzz), (12)

where the (i=x,y,z) are such that

0(s) =\ (B/)]av2(s) + ay2(5) + 3t + aty — 4 2(s)

constants  «;
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FIG. 4. (a) Elastic deformation of a cylinder under the strain
configuration u = (2xz, 2yz, 0). The arrows indicate the strain forces
that create uniform nearly flat LLs in a 3D material [see Fig. 3(c)].
(b) Temperature gradient along the z axis that implements the strain
field u = (axz, ,yz, a.z?), with a; (i = x, y, z) proportional to the
thermal expansion coefficients. Red: Hot region. Blue: Cold.

is nonzero for all s. The anisotropic case o, = oy > a; is
shown in Fig. 3(c). The phase space of parameters with
o, = a, that leads to a zero-field QHE is shown in the light
red areas of Fig. 3(d).

The deformation pattern u = (2xz, 2yz, 0) can be created
with the strain forces indicated by the arrows in Fig. 4(a).
Interestingly, the physical implementation of the family of
deformations Eq. (12) can be achieved with the application
of a uniform temperature gradient along the z axis of the
crystal [see Fig. 4(b)]. Since u describes the displacement
of the lattice sites from their equilibrium position, the ther-
mal expansion is represented as u; = Ax; = x; 1, AT & y;x;z,
where y; = dx;/dT is the linear thermal expansion coefficient
in the i = x,y, z direction and AT (z) =T — Tp x z is the
temperature variation from equilibrium. This tunable pattern
of deformations could be created with temperature gradients
in crystals and acoustic metamaterials [19].

V. ELASTIC HALL VISCOSITY

In quantum Hall systems, the Hall viscosity follows from
the linear response of the system to gravitational fluctuations,
which manifest through local changes in the metric of space
&j = %(Biéj + 9;&;), where & has the physical meaning of
a strain field. The so-called gravitational Hall viscosity is
defined as the variation of the stress tensor 7, = dH /0§, to
time variations of the strain tensor &; ;. By analogy, the elastic

(d) 1

3D QHE

LL energy

3D QHE

FIG. 3. Energy of the Landau levels (LLs) around the nodal line vs polar angle 6, (0 < 8 < ) for three strain configurations: (a) u =
(2xz, 2yz,7%), (b) u = (2yz, 2xz,0), and (c) u = (2xz, 2yz, 0). The former and the latter configurations belong to a broader family of
deformations u = (a,xz, a,yz, ,z°) that produce nearly flat LLs in 3D. In (b), the LLs collapse at discrete points of the nodal line, preventing
the zero-field QHE. Application of a uniform temperature gradient, AT o z, creates strain fields in that family. (d) Phase space for o, = «,

and «, with a zero-field 3D QHE (light red regions).
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(phonon) Hall viscosity can be derived using linear response
as [22-25]

<a%,,

I > = MvpyUpy + Nuvpy oy » (13)
v

where (...) integrates over the fermions, A,,,, is the elas-
tic moduli, #,, the strain-rate tensor, and 7,,,, the elastic
Hall viscosity tensor. The first term is the elastic response
of a charge-neutral fluid and the second one the viscous
response [24,25]. As the stress tensor, the tensors u, i are sym-
metric, while the viscosity tensor is symmetric under p < v
or p <> y. However, with respect to the exchange uv < py,
the viscosity tensor has a symmetric part 75, =75, ,, and
an antisymmetric one 17, ,., = —1,,,,,- The symmetric part is
associated with dissipation and vanishes at zero temperature.
The antisymmetric one describes a nondissipative response
with topological nature and is nonzero only when TRS is bro-
ken. In general, one can calculate the antisymmetric viscosity
tensor from the effective action,

1
88y = §/d3x At Nyvpy Upvtpy » (14)

which resembles a Chern-Simons action for the usual
QHE [30,31].

We will consider the elastic Hall viscosity for the 3D QAH
state, which is an extension of the Haldane model for the
hyperhoneycomb lattice, described in detail in Ref. [20]. For
nodal line semimetals, loop currents on the lattice can create
a mass term around the nodal line with the general form

Hu(@) = | m(s)+ Y vj(s)qi |03, (15)

i=x,y,2

where v/(s) is gives the mass dispersion in the i =x,y,z
direction. The Haldane mass m(s) changes signs at 2(2n + 1)
points along the nodal line, with n € N, breaking inversion
and TRS symmetry [20,32]. The nodes of the mass, where
m(s) = 0, are Weyl points with a well-defined helicity [20].
Weyl points with opposite helicities are connected by surface
states in the form of topological Fermi arcs [33].

VI. EFFECTIVE ACTION

In the QAH state, the Hamiltonian away from the Weyl
points of the nodal line has the form

Haoan(q) = H,(q) + m(s)os. (16)

The effective action in terms of the strain tensor u;; can be
derived by integrating out the fermions. That results in the
effective action Ser(1) = Tr[ln (G™")], where G~!(q) = igy —
Hoau(q) = Gy (g) — X is the Green’s function and

Se(u) = v,A101 + (VA2 + v,A))on (17)

is the self-energy due to elastic terms. For convenience, we
defined the elastic gauge fields in Eq. (5) as A} = —g%(um +
Uyy — 2uz), Ay = —%uﬂ and A; = —guyz.

Expanding the action in powers of the elastic gauge fields,
namely Ser = trln G ' tr Z;io %(GOE)", the lowest order
contribution to the Hall viscosity comes from two loop,

S¢ = — 1[Gy TGy X]. More explicitly,

1 [ d% .
88t = — W[vxvzm(—k)n (kYA (k)
+ vy 0,A1 (=TT (A, (k) + (1 < 2)],  (18)
where TT*Y (k) = %tr[Go(q + k)o,Go(g)o,] is the stan-

dard polarization tensor, with antisymmetric off-diagonal
terms, I1'2(k) = —I1! (k). Integration can be done by slicing
the BZ into planes intersecting the nodal line at two points.
Integrating over a slice in the xz plane for the first term,

ko dq ko
w2 k) = — | =22 =——X,, 19
v 1T (k) 271/(271)1)@)(%) 7 (19)

where v, (ko) = %sign[vx(s)vz(s)m(s)] = :i:% is the topolog-
ical charge of 2D massive Dirac fermions confined to an
xz plane crossing the nodal line at k(. Integration along
the y axis gives the y component of the Chern vector A =
(Ax, Ay, A7), which sets the 3D quantum Hall conductivity of
the system, o;; = &2 /@2mh)€;jxri. From a similar argument,
v, [M12 (k) = —vyv, 112! (k) = koh,/27. Hence,

1 d*k ,
Set = 1622 W[—AxAl(—k)koAz(k)
+ M A1 (—=k)koAz (k) — (1 < 2)]. (20)

Performing the substitution A; = d,, A» = d, and A} = d,,
the effective action can be written in a more compact form,

8Se = T / d*xe""Pp,d,d,, (21)
where
dx = — —Uyg,
a
d, = —éuyz, (22)
° a
B3

d, = _;Z(uxx + Uy — 2u;).

In the QAH state of the hyperhoneycomb lattice, the Chern
vector is A =~ (by +b,)/2 = (7 /43, =7 /4/3,0)a”" [20].
Writing the action in a more explicit form,

1 . .
8Ser = = f d*x Na [ + ttyy — 2u)(thy; + ;)

2
- (uyz + )ty + ’/.‘yy — 2ut,;)], (23)

with ny = B2/3/(16a*). The action can be cast in the form
of Eq. (14), where the elastic Hall viscosity tensor is 1y, =
Naayz = Nyyxz = Nyyyz = NMH> A0 Moy = Ny = —21y. The
elastic Hall viscosity tensor is anisotropic, as expected in
3D [25], and reflects the topological nature of the QAH
state [34].

VII. EXPERIMENTAL OBSERVATION

Although there are no known examples of semimetallic
hyperhoneycomb crystals [35], this lattice may be artificially
created in optical lattices [36], and also in photonic [4,37]
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and acoustic metamaterials [19]. In twisted graphene bilay-
ers, elastic gauge fields can be created with electric field
effects [38]. In synthetic lattices, strain deformations can
be readily implemented with local displacements of the lat-
tice sites, without the need to apply pressure. While local
probes such as scanning tunneling spectroscopy can fully
characterize the LLs in 2D [2,3], this method can be used to
characterize the surface states of the LLs in the 3D case.

In quantum Hall systems, the measurement of the Hall
viscosity is typically challenging [39], as it involves probing
the response of the stress tensor under changes of the space
metric [25]. In Galilean invariant systems in the hydrody-
namic regime, the Hall viscosity can be determined solely
in terms of the electromagnetic response due to a nonho-
mogeneous electric field [40,41]. The elastic Hall viscosity
nevertheless can be measured in terms of the dispersion of
sound waves. When 1y = 1, i zero, the longitudinal and
transverse modes are decoupled at long wavelengths. In the
topological phase, where ny is finite, the transverse and
longitudinal modes are expected to mix, allowing one to
measure the elastic Hall viscosity through the corrections to
the dispersion of the phonons [22]. The quantum simulation of
Chern insulating phases has been done in honeycomb lattices

of cold atoms [36], in quantum circuits [42], and acoustic
metamaterials [19]. We conjecture that the QAH state in 3D
may be experimentally realized in synthetic lattices as well.

VIII. CONCLUSIONS

We have derived the elastic gauge fields that are created
due to lattice deformations in the hyperhoneycomb lattice.
We proposed a family of strain configurations that lead to
uniform nearly flat LLs in 3D. The strain fields can be created
with the application of uniform temperature gradient, driving
a controllable reconstruction of the bulk states into nearly flat
LLs. That raises the prospect of engineering tunable zero-field
3D QHE in metamaterials. In the topological phase, we have
also shown that the components of the elastic Hall viscosity
tensor in the 3D QAH state for this lattice are &1y or £2ny
(or zero), with ny = B2v/3/(16ma?).
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