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Nodal arc of disordered Dirac fermions and non-Hermitian band theory
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We show that Dirac fermion systems in two dimensions generally exhibit a disorder-induced nodal arc replac-
ing the nodal point and tilted Dirac cone, provided that the two components of the Dirac fermion correspond to
two distinct orbitals unrelated by symmetry. This result is explicitly demonstrated using renormalization-group
analysis in a disordered Dirac model that we introduce, where the disorder potential acts differently on the two
orbitals. As we show by numerical simulations and self-consistent Born approximation calculation, this drives
the system into a new strongly disordered phase.
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Disordered Dirac fermions in two dimensions have been
studied for decades in a variety of contexts [1–3], includ-
ing the integer quantum Hall transition [4] and disordered
unconventional superconductivity [5–9]. The interest in this
field has been reinforced since the discovery of graphene
and topological insulators [10–21]. In general, massless Dirac
fermions in solids arise from various types of internal degrees
of freedom, such as electron spin in topological insulator
surface states, the two sublattices in graphene, or particle/hole
excitations in cuprates. In these three cases, the two compo-
nents of Dirac fermions, i.e., the two degenerate states at the
Dirac point, belong to a symmetry doublet associated with
time-reversal, spatial inversion, and particle-hole symmetry,
respectively.

A second kind of massless Dirac fermions exists in solids,
whose two components correspond to distinct degrees of free-
dom unrelated by any symmetry. For example, Dirac fermions
on the (001) surface of topological crystalline insulators SnTe
and Pb1−xSnxSe are comprised of the cation Sn/Pb orbital and
the anion Te/Se orbital [22]. In heavy fermion semimetals,
Dirac fermions can emerge from the hybridization of f and d
bands [23,24], which have very different masses.

In the presence of disorder, the two distinct orbitals, from
which the Dirac fermion is formed, are generally expected to
have different scattering rates. Then, the self-energy of the
Dirac fermion in the disorder-averaged single-particle Green’s
function acquires an orbital-dependent imaginary part. The
existence of two scattering rates—a generic property of Dirac
fermion of the second kind—unnoticed in previous studies,
has an important consequence that is only recognized very
recently. As shown by one of the authors [23], in such case
the imaginary part of self-energy not only broadens the energy
spectrum, but also alters the energy-momentum dispersion.
It transforms the original Dirac point into a “nodal arc”—a
line of band degeneracy without fine-tuning. The two ends
of this nodal arc are exceptional points, where the inverse
of the Green’s function becomes nondiagonalizable. This
bulk nodal arc connecting a pair of exceptional points is
topologically robust and unique to non-Hermitian band theory
recently developed for finite-lifetime quasiparticles [25]. It
is also shown that finite-lifetime effects lead to a flat band

or a nodal line segment in type-II Weyl semimetals in three
dimensions [26].

In this Rapid Communication, we report the finding of
a nodal arc and a new universality class in disordered two-
dimensional (2D) Dirac fermions of the second kind, com-
prised of two distinct orbitals that do not belong to any
symmetry doublet. Our model includes a random potential
that acts on the two orbitals differently. This type of ran-
dom potential, not considered in the standard treatment of
disordered Dirac fermions, appears naturally in real materials
(see below). Our renormalization-group (RG) analysis shows
the disorder is marginally relevant, driving the system into a
strongly disordered phase. The disorder reduces the quasipar-
ticle weights of the two orbitals at low energy by different
amounts. As a result, it generates a tilt of the Dirac cone, even
when it is initially absent. In the disordered phase, the two
orbitals acquire different lifetimes, which inevitably leads to
a bulk nodal arc replacing the Dirac point in the clean limit.
The nodal arcs and the tilt of Dirac cones are also observed
directly in our numerical simulations.

We consider a 2D Dirac Hamiltonian

H0(r) = ψ†(r)[−i(vxσz − wσ0)∂x − ivyσx∂y]ψ (r), (1)

and the disorder of the form

Hdis(r) = V (r)ψ†(r)ηψ (r), (2)

where ψ = (ψ1, ψ2)T is a two-component fermion field, σi

(i = x, y, z) are the Pauli matrices, η is a 2 × 2 Hermitian
matrix depending on the type of disorder to be specified
below, and V (r) is a random function. The velocity pa-
rameter w describes the tilt of the Dirac cone along the
x direction in the absence of disorder, where the velocity
of the steep and gentle sides of the cone are vx ± w(>0)
depending on the sign of w. The velocity along the y di-
rection is given by vy. We restrict the tilt to satisfy w2 <

v2
x , so that the Fermi surface remains closed. Such mass-

less and tilted Dirac fermions described by H0 appear in a
number of materials, including (001) surface states of SnTe
[27,28] and organic conductor α-(BEDT-TTF)2I3 [BEDT-
TTF=bis(ethylenedithio)tetrathiafulvalene] [29–31].
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We assume that the random function V (r) is spa-
tially uncorrelated and obeys a Gaussian distribution
P[V ] ∝ exp[− ∫

d2rV 2(r)/(2�)]. The random function is
characterized by 〈V (r)V (r′)〉 = �δ(r − r′), where � (>0)
characterizes the strength of disorder.

The 2 × 2 matrix η specifies the type of disorder potential.
Previous studies of disordered Dirac systems considered the
cases where the orbitals forming Dirac fermions are related
by a symmetry. In real materials where the two orbitals are
unrelated by a symmetry, however, disorder strengths for the
two orbitals are allowed to be different; for example, η may
have a form η = Aσ0 + Bσz with two independent constants
A and B. Such a form is excluded when the two orbitals are
related by a symmetry since the symmetry is restored after
disorder averaging.

For simplicity, we henceforth consider the limit η = η11 ≡
(σ0 + σz )/2, where only the σz = +1 orbital is disordered.
This highly asymmetric case is relevant for the surface state
of topological crystalline insulator Pb1−xSnxTe, where the two
components σz = ±1 of the surface Dirac fermion correspond
to Sn/Pb and Te orbitals respectively. Since the Pb sites are
substituted with Sn, the disorder potential on the σz = +1
orbital is naturally much stronger.

In the following, we will show that the disorder character-
ized by η11 (A/B = 1) is marginally relevant in the RG sense.
We also confirmed that the disorder is marginally relevant and
our conclusion remains valid for a wide range of the ratio A/B.
The analysis for general cases will be reported elsewhere [32].

We study disorder-averaged electron spectral function
and density of states, which can be computed from the
disorder-averaged Green’s function: Ḡ(ω) = 〈G(ω)〉 ≡ [ω −
H0 − 
(ω)]−1, where G = (ω − H0 − Hdis)−1 is the one-
particle Green’s function before disorder average, and 
 is
the self-energy—a non-Hermitian 2 × 2 matrix. Note that the
translational invariance is statistically recovered after the dis-
order average. The poles of Ḡ on the complex plane determine
the quasiparticle energy spectrum and lifetime in the presence
of disorder.

We use the replica method to evaluate disorder averages.
With the replica method, we take the disorder average and
obtain the Euclidean action

S =
∑

a

∫
dτ d2rψ†

a [∂τ − i(vxσz − wσ0)∂x − ivyσx∂y]ψa

−
∑

ab

�

2

∫
dτ dτ ′d2r(ψ†

a ηψa)(τ )(ψ†
b ηψb)(τ ′), (3)

where a, b(=1, . . . , n) are replica indices. The quartic term,
effectively working as an interaction between replicas, is
generated by the disorder average.

Now we examine whether the parameters are relevant or
irrelevant, by a perturbative RG calculation to one-loop order
(Fig. 1). The calculations give the scale dependence of param-
eters, arising from resummations of logarithmic divergences.

The two-leg diagram [Fig. 1(a)] gives the renormalization
of quasiparticle weight Z = (1 − Re ∂
/∂ω)−1. We have two
different quasiparticle weights Z11 and Z22 for the two orbitals
σz = ±1, respectively. Here, the self-energy 
(ω) depends
only on frequency ω, but not on momentum. Therefore, the
renormalization of the velocity parameters vx, vy, and w owes

(a) (b)

FIG. 1. One-loop diagrams that contribute to the RG equations.
Solid and dashed lines correspond to the fermion field and disorder,
respectively. The two-point diagram (a) contributes to the field
renormalization, and the four-point diagrams (b) give corrections to
the disorder strength.

solely to the renormalization of the quasiparticle weights.
The four-leg diagrams [Fig. 1(b)] bear disorder strength
renormalization. After evaluating the one-loop diagrams, we
obtain the following set of RG equations [33]:

dvx

dl
= −αvx,

dvy

dl
= −α

vx

vx − w
vy,

dw

dl
= αvx,

d�

dl
= 4α

w

vx − w
�,

dZ11

dl
= −2α

vx

vx − w
�,

dZ22

dl
= 0, (4)

where α = �/[4π
√

(v2
x − w2)v2

y ] is the dimensionless quan-

tity, l = ln(
/ε), 
 is the UV energy cutoff, and ε is the
energy scale of interest.

Even when there is initially no tilt of the Dirac cone, the
tilt w(>0) is generated by the disorder. This is seen from the
decreasing quasiparticle weight of the σz = +1 orbital as
the energy scale goes down. For ky = 0, this orbital corre-
sponds to the energy branch of (vx − w)kx. In low energies,
the decreasing Z11, accompanied by the change of Re 
(ω),
reduces (vx − w). In contrast, since the σz = −1 orbital is
free from disorder, Z22 remains constant and so does (vx + w).
The tilt w > 0 increases the density of states of the σz = +1
orbital, which helps the disorder strength � grow as the
energy approaches the Dirac point. Thus, � is marginally
relevant, driving the system into a disordered phase. In the
course of increasing �, the tilt keeps growing whereas the
two velocity parameters vx and vy decrease. Those flows stop
as w → vx, where the gentle slope of the Dirac cone becomes
flat and the increasing density of states further drives the flow
to the strongly disordered phase.

To study the properties of the disordered phase, the self-
energy 
 is evaluated by the self-consistent Born approxima-
tion. Within this approximation, the self-consistent equation
becomes


(ω) = �

∫ ′ d2k

(2π )2
ηḠ(k, ω)η. (5)

∫ ′ indicates an integration with the cutoff 
. In the present
model with η = η11, the self-energy 
(ω) is nonzero only for
the σz = +1 orbital; 
(ω) = 
11(ω)η11. The self-energy is
calculated for the two regions |ε| � |
| and |ε| 	 |
|, which
are separated at the energy scale

�0 = 2


√
vx − w

vx + w
exp

(
−vx − w

vx + w

1

α

)
. (6)
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�0 corresponds to the energy scale where the one-loop RG
analysis breaks down. Close to �0, the velocity (vx − w)
approaches zero, which destroys perturbative expansion with
respect to α.

The retarded self-energy 
R
11(ω) is obtained from Eq. (5)

in a series of ω for |ω| � �0, and in a series of α by iterations
for |ω| 	 �0:


R
11(ω)

=

⎧⎪⎪⎨
⎪⎪⎩

−2vx(vx − w)

(vx + w)2

ω

α
− i�0, |ω| � �0,

−α
vx

vx − w

[
ω ln

(
(v2

x − w2)
2

v2
x ω

2

)
+ iπ |ω|

]
, |ω| 	 �0.

(7)

Importantly, it shows that the Green’s function has a finite
imaginary part even at ω = 0, appearing only in the σz =
+1 orbital. The energy spectrum of the quasiparticles is
obtained as zeros of Ḡ, i.e., det[E − H0(k) − 
(E )] = 0. The
quasiparticle energy dispersion becomes now complex valued
because of the non-Hermitian component of 
. Furthermore,
the parameters of the Hamiltonian are renormalized by the
reduced quasiparticle weight Z11, giving the eigenvalues for
|E | � �0 as

E± = (ṽ2 − v1)kx − i�̃0

2
±

√[
(ṽ2 + v1)kx − i�̃0

2

]2

+ v2
y k2

y

(8)
with v1 = vx + w, ṽ2 = Z11(vx − w), and �̃0 = Z11�0.

In the clean limit, two linearly dispersing energy bands
touch at a Dirac point. With disorder, the quasiparticle energy

obtains an imaginary component, and the real parts of the
two energy branches coalesce along the line |ky| � �̃0/(2vy)
(kx = 0). Here, we can observe the formation of a nodal arc in
a disordered Dirac model, which lies along the y direction and
terminates at exceptional points (0,±�̃0/(2vy)).

A nodal arc is absent when the two orbitals are related by
a symmetry and disorder is characterized by η = σ0 or σi.
In such cases, the energy dispersion is simply smeared by
the same finite lifetime for the two orbitals because of the
symmetry. The self-consistent equation (5) also confirms that
the self-energy is proportional to σ0.

It is important to point out that the formation of the nodal
arc by disorder is observed even at zero temperature T = 0,
because plane-wave (or Bloch wave) states as quasiparticles
are not eigenstates due to the lack of translational symmetry
by disorder. Therefore, unlike the arc due to interactions, a
nodal arc formed by disorder is independent from thermal
effects, which contribute largely to thermal broadening of
energy dispersions.

Next, we perform numerical simulations on a square lattice
with the periodic boundary conditions to confirm the observa-
tions above. Because of the fermion doubling problem, the
lattice model necessarily has a pair of Dirac cones in the
Brillouin zone. The tight-binding Hamiltonian that we use is

Ĥ0 = −t
∑
〈i j〉

c†
i σzc j + ty

∑
i

(ic†
i+ŷσxci + H.c.)

+ u
∑

i

c†
i σzci,

Ĥdis =
∑

i

Vic
†
i η11ci. (9)

FIG. 2. (a)–(c) Spectral function A(k, ω) slices across the relevant fragment of the Brillouin zone for ω corresponding to the open
contour Fermi surface, calculated for t = 1, ty = 0.25, u = 3.0 and disorder strengths V0 = 0.5, 3.0, 4.5, respectively. As the disorder strength
increases, the nodal arc becomes longer. (d)–(f) Spectral function A(k, ω) slices for ky = 0 and the same parameters as respective panels above.
As the disorder increases, the Dirac cone tilts. (g), (h) Energy dependence of the spectral function for a single point in k space for a point in
the middle of the arc and a point on the faint contour away from the nodal arc, chosen as indicated by white arrows on panel (c).

201107-3



PAPAJ, ISOBE, AND FU PHYSICAL REVIEW B 99, 201107(R) (2019)

0.5
3.0
4.5

-0.4 -0.2 0. 0.2 0.4
0

10

20

30

40

Energy
D
en
si
ty
of
st
at
es

-0.4 -0.3 -0.2 -0.1 0.
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Energy

S
el
f-
en
er
gy

FIG. 3. (a) The self-energy 
(ω) calculated using self-consistent
Born approximation with parameters corresponding to Fig. 2(c).
(b) Total integrated density of states ρ(ω). The position of the
minimum, which shifts to lower energies, corresponds to the energy
of the nodal arc.

For 0 < u < 4t , Ĥ0 has two Dirac points at kxa =
± arccos[(u − 2t )/(2t )], kya = 0, where a is a lattice con-
stant. We assume that there is no tilt of the Dirac cones in the
clean limit. By a series expansion near the kxa = arccos[(u −
2t )/(2t )] > 0 point, we can establish the connection to the
Dirac model from Eq. (1) by vx = sgn(u − 2t )

√
(4t − u)u,

vy = −2ty, w = 0. For the purpose of numerical simulations,
we choose a random potential Vi obeying a uniform distribu-
tion over an interval [−V0/2,V0/2], and its spatial correlation

function is 〈V (ri )V (r j )〉 = V 2
0

12 δ(ri − r j ). In all the simulations
the lattice consists of 800 × 800 sites. We choose t = 1, ty =
0.25, u = 3, a = 1 and change the disorder strength to observe
the evolution of nodal arcs. We use MUMPS [34] and KWANT

[35] packages for the numerical calculations.
For a particular disorder distribution, we can compute

the retarded Green’s function GR(r, r′, ω) = (ω + iδ − H0 −
Hdis )−1(r, r′, ω), where δ is a small positive quantity. The
disorder average is taken by computing GR for 2000 inde-
pendent disorder realizations. (A result for a single disorder
realization is presented in the Supplemental Material (SM)
[33].) We can then reinstate translational symmetry in the av-
eraged quantity ḠR(r − r′, ω) = 〈GR(r, r′, ω)〉, which allows
the Fourier transformation ḠR(k, ω). The spectral function is
A(k, ω) = − 1

π
Im Tr ḠR(k, ω).

Figures 2(a)–2(c) show the spectral function A(k, ω) at the
energy where the two bands touch, with the disorder strength
V0 = 0.5, 3.0, 4.5, respectively. We can observe the nodal arcs
extending in the y direction, with stronger disorder yielding
longer nodal arcs. The curvature of the nodal arcs reflects
the energy dispersion of the tight-binding model Ĥ0, which
corresponds to a higher-order effect with respect to k in the
linearized model, Eq. (1).

The disorder-averaged Green’s function can be alter-
natively obtained from the self-consistent equation (5) in
successive iterations of numerical integrations. We replace
the parameter � with V 2

0 /12 and the integration is now
over the Brillouin zone. Using the self-energy obtained
by the self-consistent calculation, we compute spectral

functions, which are in excellent agreement with those in
Figs. 2(a)–2(c) (see SM [33]). This supports the conclusions
that the self-energy is largely momentum independent and the
important effects are due to its energy dependence instead.
We also obtain the slices of A(k, ω) in the ky = 0 plane
[Figs. 2(d)–2(f)], with solid lines indicating the position of
the poles of ḠR(k, ω). We confirm that the tilt of Dirac
cones is generated by the disorder, even when it is initially
absent. Since only the orbital with a gentle slope of the energy
dispersion is affected by the disorder, only its component of
the spectral function is smeared by Im 
, and its peaks are
smaller due to the decreasing quasiparticle weight Z .

Furthermore, we check that the contour we observe in
Fig. 2(c) is indeed a nodal arc by determining the spectral
function as a function of energy for particular k values on
and off the arc as indicated by the white arrows. In Figs. 2(g)
and 2(h), we observe a single peak in the spectral function for
the point on the contour and two peaks on the faint structure
outside of the arc.

The self-energy 
(ω) obtained from the self-consistent
Born approximation is shown in Fig. 3(a). Note
that Re 
11(ω) shifts the band crossing point to
ω − Re 
11(ω)/2 = 0, since 
(ω) = 
11(ω)(σ0 + σz )/2.
Crucially, close to the band touching point, Re 
11 is linearly
dependent on energy and the slope increases with disorder
strength causing the tilting of the Dirac cone, which is
consistent with the results of the RG analysis. Moreover,
at the band touching point, Im 
 has a dip, but it remains
finite, supporting the existence of the nodal arcs. This result
agrees with the solution of the self-consistent equation for
the linearized model. The shift of the band touching point is
also evident in the density of states ρ(ω) = ∫

BZ d2kA(k, ω),
which is depicted in Fig. 3(b). The minimum of ρ(ω) moves
to lower energy values with larger disorder strength. The
minima match the solutions of ω − Re 
11(ω)/2 = 0 (see
Fig. S1 in the SM [33]).

In summary, we studied a disordered 2D Dirac system
with two orbitals not belonging to a symmetry doublet, and
reported a nodal arc and a new universality class in disordered
2D Dirac fermions. By the RG analysis we have shown that
asymmetric disorder for the two orbitals is marginally rele-
vant, and in the strongly disordered phase, the inequality of the
quasiparticle weights and lifetimes of the two orbitals yields a
tilt of the Dirac cone and a bulk nodal arc, replacing the Dirac
point. The nodal arc is formed by the non-Hermitian effect
of the self-energy generated by the disorder, which is present
even at T = 0. This conclusion is supported by numerical
calculations using a tight-binding model and self-consistent
Born approximation, which show the appearance of a nodal
arc in the spectral function.
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