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in interacting quantum-dot spin valves
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We report on the importance of resonant-tunneling processes on quantum transport through interacting
quantum-dot spin valves. To include Coulomb interaction in the calculation of the tunneling magnetoresistance
(TMR), we reformulate and generalize the recently developed, numerically exact method of iterative summation
of path integrals (ISPI) to account for spin-dependent tunneling. The ISPI scheme allows us to investigate weak
to intermediate Coulomb interaction in a wide range of gate and bias voltage and down to temperatures at which
a perturbative treatment of tunneling severely fails.
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I. INTRODUCTION

Spintronic devices such as spin valves rely on magne-
toresistive effects, in which the charge current depends on
the magnetic configuration of the involved magnetic com-
ponents. Examples are the giant (GMR) and tunnel (TMR)
magnetoresistance effect. The TMR effect, first observed by
Julliere [1] as a spin-dependent resistance (or conductance)
in magnetic tunnel structures, is directly related to the de-
gree of spin polarization of the tunneling electrons [2]. It is
determined by the spin dependence of the density of states
near the Fermi energy of the ferromagnetic electrodes and
the tunneling matrix elements for these electrons. Large TMR
values at room temperature of up to several hundred percent
[3–5] in magnetic-layer structured spin valves, also involving
superconductors [6], have been achieved. For low tempera-
tures (T < 5 K), TMR values of about 1.9 × 104% have been
observed in few-layer graphene heterostructures [7,8]. The
TMR effect has already been utilized in magnetic random
access memory (mRAM) devices which provide fast writing
and reading as well as long lasting performance [9].

Quantum dots placed between ferromagnetic leads allow
us to realize highly tunable spin-valve devices. Control
over single spins is possible by tuning gate voltages [10].
The Kondo effect and interaction-induced exchange fields
have been measured [11,12], and the compensation of the
exchange field by external fields has been demonstrated [13].
Controlling the magnetoresistance through carbon-nanotube
quantum dots by external gates experimentally has been
reported [14,15]. Furthermore, spin precession in noncollinear
quantum dot spin valves has been tuned by electric gates [10].

The theoretical description of the interplay between
Coulomb interaction and spin-dependent tunneling in
nonequilibrium situations imposed by a bias voltage is chal-
lenging. An analytical diagonalization of the underlying
many-body Hamiltonian is impossible and controlled physical
approximations are needed to investigate the emerging physi-
cal phenomena appropriately. Several theoretical approaches
have been presented in recent years in order to describe
quantum transport out of equilibrium in nanostructures. For

weak tunnel couplings between quantum dot and leads, a
perturbation expansion in the tunnel coupling is possible for
various regimes of transport and gate voltages. A calculation
to first order in the tunnel-coupling strength is sufficient to
reveal the existence of an exchange field induced by finite
Coulomb interaction on the quantum dot [16,17] or to show
that the ferromagnetic Anderson-Holstein model acquires an
effective attractive Coulomb interaction [18]. It has been
shown that the TMR through a quantum-dot spin valve to first
plus second order in tunneling features a zero-bias anomaly
[19] that could be explained by the influence of sequential and
cotunneling processes on accumulation and relaxation of the
quantum spin. A systematic scan of the TMR values (and their
deviation from Julliere’s value) as a function of gate and bias
voltage has been performed within the same approximation
scheme [20].

With increasing tunnel-coupling strengths, however,
higher-order tunneling processes become more and more rele-
vant and perturbation theory fails. Several numerical methods
have been developed to include all orders in tunneling for
the Anderson model. For instance, numerical renormalization-
group approaches have been used to address the Kondo
problem in the absence of a bias voltage [21]. Picking up
the idea of renormalization, functional (fRG) [22] as well
as time-dependent numerical renormalization-group theories
(TD-NRG) [23] have been applied to the Anderson-Holstein
model at finite bias voltages. For the interacting resonant-
level model, a density-matrix renormalization group (DMRG)
study has elaborated the low-energy physics and noise proper-
ties [24]. The time-dependent current through a dot featuring
ringing effects have been studied within quantum Monte Carlo
schemes (QMC) [25,26]. Furthermore, the Kondo regime
of the Anderson model has been approached by multilayer
multiconfiguration time-dependent Hartree theory [27].

Some of these methods have already been used to inves-
tigate spin-dependent transport through a quantum-dot spin
valve. It has been shown that within the linear-response
regime NRG approaches work well [28–30]. Using a DMRG
approach, the local density of states as well as the TMR has
been calculated [31]. The Kondo problem for a quantum-dot
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spin valve in the nonlinear response regime has been ad-
dressed by an equations-of-motion method [32]. In addition,
the influence of the interaction-induced exchange field on
dipolar and quadrupolar spin moments has been investigated
[33,34].

In this paper we study the TMR of a quantum-dot spin
valve in the resonant-tunneling regime and in the presence
of both Coulomb interaction and a finite transport voltage.
For this, we adopt the numerically exact method of iterative
summation of path integrals (ISPI) [35–38] and generalize
it to include spin-dependent tunneling. The ISPI scheme is
formulated on the Keldysh contour and builds upon a sys-
tematic truncation of real-time correlations induced by the
leads. In this paper we concentrate on the tunneling current in
the stationary limit, although time-dependent observables and
higher-order correlation functions are easily accessible within
the presented approach. The TMR depends quite sensitively
on the relative importance of the various tunneling processes.
In the high-temperature regime, our results coincide with a
perturbative first or first plus second order calculation. With
decreasing temperature, resonant tunneling becomes more
and more important. For weak to intermediate Coulomb inter-
action, we reach numerical convergence of our ISPI data down
to low temperatures at which perturbation theory severely
fails. Our method, thus, provides a suitable tool to study
spin-dependent, nonequilibrium quantum transport in an in-
teracting nanostructure, covering regimes that are inaccessible
by other methods.

The structure of the article is as follows. In Sec. II we
introduce the Hamiltonian of the quantum-dot spin valve and
express the Keldysh partition function within a path-integral
formulation. The Coulomb term is treated with the help of a
Hubbard-Stratonovich (HS) transformation that introduces an
auxiliary, Ising-like spin field. The ISPI scheme to integrate
out the HS spins is described in detail in Sec. III, which
also contains checks of convergence and limiting cases. In
Sec. IV we present our results and discuss the dependence
of the TMR on temperature (Sec. IV A) as well as on bias
and gate voltage (Sec. IV B). Finally, we conclude and give an
outlook in Sec. V.

II. MODEL AND METHOD

A. Hamiltonian

The Hamiltonian of a quantum dot coupled to two ferro-
magnetic leads (see Fig. 1) consists of three parts (we set
h̄ = 1 throughout the paper),

H = Hdot + Hleads + HT. (1)

The first term

Hdot =
∑

σ

E0d†
σ dσ + Ud†

↑d†
↓d↓d↑ (2)

describes a single, spin-degenerate orbital of energy E0, sub-
ject to Coulomb interaction U when the orbital is doubly
occupied. Operators d†

σ /dσ create/annihilate an electron with
spin σ on the quantum dot, where σ = ↑/↓ denotes the
projection of the spin of the quantum-dot electron onto the
quantization axis, which we choose along the magnetization
direction of the source lead. The energy E0 is tunable via

tL tR

0 + U/2

0 − U/2

eV

E

µL

µR

0

pL pR

or

}
⇑ ⇑ ⇑

FIG. 1. A single level quantum dot coupled to ferromagnetic
leads α = L/R with magnetization axes n̂L ‖ n̂R. The polarization
strength p = pα induces spin-dependent hybridizations �ατ . The
Coulomb interaction is denoted U and the single particle energy is
ε0. A bias voltage eV = μL − μR drops across the quantum dot. See
the text for details.

a gate voltage. To achieve a more compact notation, we
combine the two annihilation operators dσ to D = (d↑, d↓)T

and similarly for the creation operators. After rewriting the
interaction term by using the operator identity 2d†

↑d†
↓d↓d↑ =

d†
↑d↑ + d†

↓d↓ − (d†
↑d↑ − d†

↓d↓)2, absorbing the quadratic part
of the interaction into the single-particle energy, and defining
ε0 = E0 + U/2, we arrive at

Hdot = D†ε0σ0D − U

2
(D†σzD)2. (3)

Here σ0 is the 2 × 2 identity and σz the z-Pauli matrix in spin
space.

The electrons in the ferromagnetic leads α = L, R are
described by the noninteracting Hamiltonian

Hleads =
∑
αk

C†
αkEαkCαk, (4)

with Eαk = (εk+ − μα 0
0 εk− − μα

), where εkτ is the single-
particle energy for spin projection τ = ± along the
majority/minority spin direction, and μα denotes the
chemical potential. Again, we introduced spinors Cαk =
(cαk+, cαk−)T and similarly for C†

αk. We assume the density
of states ρατ = ∑

k δ(ω − εαkτ ) to be constant in energy but
spin dependent. The degree of spin polarization is then char-
acterized by pα = (ρα+ − ρα−)/(ρα+ + ρα−), where pα = 0
corresponds to a nonmagnetic lead and pα = 1 represents a
half-metallic electrode with majority spins only.

Tunneling between quantum dot and leads is described by
the Hamiltonian

HT =
∑
αk

C†
αkYαD + H.c., (5)

where tα is the tunnel matrix element, YL = tLσ0 as well as
YR = tRσ0 for the parallel and YR = tRσx for the antiparallel
magnetization configuration, respectively.

In this work we consider a symmetric setup, μL = −μR =
eV/2, pL = pR = p, tL = tR = t , and a collinear magnetic
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configuration of the two leads. Asymmetric choices for μα ,
pα , tα , or noncollinear magnetic configurations could straight-
forwardly be included in our framework.

B. Keldysh functional integral

In the following we formulate the nonequilibrium theory
for the quantum-dot spin valve in terms of coherent-state
functional integrals on the Keldysh contour. The Keldysh
partition functional reads

Z[η] = Tr[ei(Sdot+Sleads+ST[η])]. (6)

For each part of the Hamiltonian the respective action is given
by

Sdot =
∫
C

dtψ̄0(t )(i∂t − ε0)σ0ψ0(t ) + U

2
[ψ̄0(t )σzψ0(t )]2,

Sleads =
∫
C

dt
∑
αk

ψ̄αk(t )(i∂tσ0 − Eαk )ψαk(t ), (7)

ST[η] =
∫
C

dt
∑
αk

[ψ̄αk(t )Yα (t )eiηα (t )ψ0(t ) + H.c.].

The path integral is calculated in the basis of fermionic coher-
ent states, with ψ (t ), ψ̄ (t ) denoting the corresponding Grass-
mann eigenvalue when acting with the annihilation/creation
operator (spinors), as used, e.g., in Hamiltonians Eqs. (3) and
(4), onto a coherent state for lead and dot at time t along
the Keldysh contour C, respectively [39,40]. We remark that
the trace includes the Grassmann fields for both the quantum
dot and the leads. Since we have introduced a source term
(counting field) ηα (t ) to the tunneling action, we can obtain
the current at time tm via the functional derivative

Iα (tm) = −ie
δ

δηα (tm)
ln Z[η]

∣∣∣∣
η≡0

. (8)

Note that Eq. (8) coincides with the expression for the current
expectation value at measurement time tm calculated from
Iα (tm) = e〈 d

dt

∑
k C

†
αkCαk〉(tm).

The central quantity of interest for this paper is the tunnel-
ing magnetoresistance (TMR) defined by

TMR ≡ Iα
p − Iα

ap

Iα
p

. (9)

It measures the difference of the currents Iα
(p/ap) for a parallel

(p), n̂L = n̂R, and an antiparallel (ap), n̂L = −n̂R, orientation
of the leads’ magnetization directions. To obtain a dimen-
sionless number between 0 and 1, we use as a normalization
the current Iα

p for the parallel setup. We remark that in many
studies reported in the literature, the TMR is normalized with
Iα
ap, which nominally gives a larger value of the TMR (can be

even larger than 1) for the same physical effect.
Since the action depends quadratically on the Grassmann

fields for the lead electrons, we can (without any approxi-
mation) perform the partial trace over the leads’ degrees of
freedom to obtain

Z[η] = Tr[ei(Sdot+Senv[η])]. (10)

The trace is now over the dot degrees of freedom only, and the
environmental action

Senv[η] =
∫
C

dt
∫
C

dt ′ψ̄0(t )T(t, t ′, η)ψ0(t ′) (11)

involves the tunneling self-energy in the presence of the
counting field T(t, t ′, η) = ∑

α α
T (t, t ′, η). In the absence

of interaction in the quantum dot, U = 0, also the integration
over ψ̄0(t ), ψ0(t ) fields can be performed in Eq. (10). The
resulting generating functional

Z0[η] = det[D−1(t, t ′, η)] (12)

is expressed in terms of the Green’s function of the (noninter-
acting) quantum dot

D(t, t ′, η) = [(i∂t − ε0)σ0 − T(t, t ′, η)]−1, (13)

which accounts for tunneling via the tunneling self-energy
T(t, t ′, η).

We treat the Coulomb interaction term in the quantum-
dot Hamiltonian by means of a Hubbard-Stratonovich (HS)
transformation [41,42] for each time t along the Keldysh
contour C. To enable a numerical implementation, we first
discretize the Keldysh contour into N time slices of length
δt on the upper and N time slices on the lower contour, re-
spectively. As a consequence, the Green’s function D becomes
a (4N × 4N ) matrix (the number of time slices N is to be
multiplied with 2 due to spin σ =↑,↓ and another factor of
2 to distinguish the upper from the lower Keldysh contour).
The HS transformation relies on the identity

exp

{
−ν

iδtU

2

(
ψ̄ν

0 σzψ
ν
0

)2
}

= 1

2

∑
s=±1

exp
(−sλνψ̄

ν
0 σzψ

ν
0

)

(14)

for the contribution of the Coulomb interaction term to the
action at a given time slice of length δt on the upper/lower
Keldysh contour, ν = ±. A solution for the HS parameter λν

is (for 0 < U < π/δt ) given by [35,42]

λν = cosh−1 [cos(δtU/2) − iν sin(δtU/2)]. (15)

The main idea of the HS transformation is to replace a term
that is quartic in the Grassman fields by terms that are only
quadratic in the Grassman fields but coupled to a newly
introduced, Ising-like degree of freedom, s = ±1. As a result,
the quantum-dot fields can be integrated out, and the resulting
Keldysh generating functional

Z[η] =
∑
{s}

det[�−1[η] − C (s)] (16)

becomes a multiple sum of determinants. The sum runs over
all 22N configurations of possible Ising-spin values for each
time slice on the upper and lower Keldysh contour, combined
in a multispin vector s = (s+

1 , s−
1 , s+

2 , s−
2 , . . . , s+

N , s−
N ) of the

HS parameters.
The matrix �[η] for the discretized Green’s function of

the noninteracting spin valve depends on the counting field
η but not on the HS parameters s, while the matrix C (s)
for the discretized self-energy due to Coulomb interaction
is independent of the counting field but contains the HS
parameters. Both are 4N × 4N matrices. To specify their
matrix elements, we make use of multi-indices a = (l, ν, σ ),
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where the Trotter index l = 1, . . . , N labels the time slice,
the Keldysh index ν = ± distinguishes the upper from the
lower Keldysh contour, and σ = ± labels the spin. While
the charging self-energy is a diagonal matrix with matrix
elements

(C (s))aa′ = δll ′δνν ′δσσ ′σλνsν
l , (17)

the discretized Green’s function �[η] is diagonal in spin but
nondiagonal in the Trotter and the Keldysh indices. In the
absence of the counting field, we can make use of the time
translational invariance and express the matrix elements of
the Green’s function [making use of the multi-indices a =
(l, ν, σ ) and a′ = (l ′, ν ′, σ ′)] via its frequency representation,

(�−1[0])aa′ = δσσ ′

∫
dω

2π
e−iω(l−l ′ )δt

×
[

(ω − ε0)νδνν ′ − i

2

∑
α

�ασ [Fα (ω)]νν ′

]
.

(18)

Here �ασ = 2π |tα|2ρ(εFασ ) characterizes the hybridization of
the dot with lead α, and [Fα (ω)]νν ′ are the matrix elements of
the 2 × 2 Keldysh matrix

Fα (ω) =
(

2 fα (ω) − 1 −2 fα (ω)
−2 fα (ω) + 2 2 fα (ω) − 1

)
. (19)

The Fermi function fα (ω) = {exp[β(ω − μα )] + 1}−1 de-
scribes the equilibrium occupation distribution of lead α.
For later convenience, we define �α = (�α+ + �α−)/2 as the
average tunnel coupling for up- and down-spin electrons.
Furthermore, we assume a symmetric coupling to the left and
right lead and define � = �L = �R.

In the presence of the counting field, time translation
invariance is broken and there is no simple frequency rep-
resentation of �−1[η] similar to Eq. (18). However, since
we are only interested in calculating the current (and not
higher-order correlation functions), we can expand �−1[η] to
linear order in ηα at a single Trotter index m (that corresponds

−5 0 5
(t − t′)Γ

−0.1

0.0

0.1

0.2

0.3

Δ
[0

]

Re
Im

−10 0 10

(t − t′)Γ

10−4

10−2

100

|Δ
[0

]|

FIG. 2. Real and imaginary part of the matrix element of �[0]
for ν = +, ν ′ = −, σ = σ ′ =↑ as a function of t − t ′ = (l − l ′)δt

in the continuum limit δt → 0. Chosen system parameters are eV =
ε0 = �, kBT = 0.2�, and p = 0.5 for the antiparallel setup. Inset:
The semilogarithmic plot of the corresponding absolute value shows
an exponential decay with increasing time arguments (t − t ′).

to the time tm at which the current is measured) and drop
the counting field anywhere else. The resulting expression
for �−1[η] is given by Eq. (18) with �ασ being replaced by
�ασ [1 − iδt

2 ηα (νδml − ν ′δml ′ )].
Furthermore, we observe that multiplying �−1[η] − C (s)

in Eq. (16) with any matrix of equal dimension that depends
neither on the counting field η nor on the HS parameters s
will only result in multiplying Z[η] with an overall factor that
drops out upon calculating the current Eq. (8). We make use
of this freedom to increase numerical stability by multiplying
�[0]. So, in practice, we replace the Keldysh generating
functional as defined in Eq. (16) by

Z[η] =
∑
{s}

det G, (20)

with

G = [�−1[η] − C (s)] · �[0], (21)

where �−1[η] has been expanded up to linear order in ηα (tm)
as explained above.

III. ITERATIVE SUMMATION OF PATH INTEGRALS

A brute-force summation over the 22N terms in Eq. (20) is
a hopeless task for realistic values of N . A more sophisticated
and efficient way to perform the sum is needed. Such a method
is provided by the recently established scheme of iterative
summation of path integrals (ISPI) [35,36]. It is a completely
deterministic approach, based on the iterative evaluation of
traces over determinants as they appear in Eq. (20). The
scheme relies on the fact that lead-induced correlations de-
crease with increasing time. This allows us to reduce the
number of summations from 22N to (N/K )22K , where K is the
number of Trotter slices (of size δt ) over which correlations
are taken into account. This is a huge reduction for typical
scenarios in which N is of the order of a few hundreds while
K can be chosen to be 6 or 7. We remark that a similar
formulation in terms of the reduced density matrix of the
system has been presented in Ref. [43].

In Fig. 2 we demonstrate how the dot’s Green’s function
decays with time by showing the real and the imaginary part
of one exemplary matrix element of �[0] as a function of
t − t ′ = (l − l ′)δt in the continuum limit δt → 0. Increasing
the gate and/or bias voltage ε0 and eV , respectively, may
lead to faster oscillations but does not alter the exponential
decrease [36]. This motivates us to neglect all contributions
from time differences t − t ′ larger than a chosen time scale
tK . In the discretized version this amounts to setting all matrix
elements of �[0] with |l − l ′|δt > tK to 0. Therefore, lead-
induced correlations are only included over a span of K Trotter
slices, where K = tK/δt .

The truncation after K Trotter slices makes the matrix G
block tridiagonal. It can then be written in the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

G11 G12 0 0 · · · 0
G21 G22 G23 0 · · · 0
0 G32 G33 G34 · · · 0
0 0 G43 G44 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · GNK NK

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)
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The total 4N × 4N matrix is decomposed into blocks Gnn′
of

size 4K × 4K . The index n runs from 1 to NK = N/K , and
only blocks Gnn′

with |n − n′| � 1 have finite entries. Since
C (s) is a diagonal matrix, the definition of G in Eq. (21)
yields that the blocks Gnn′

in the nth row depend only on the
2K HS spins sn = (s+

(n−1)K+1, s−
(n−1)K+1, . . . , s+

nK , s−
nK ) from

the Trotter slices (n − 1)K + 1 to nK but not from the ones
outside this range.

To evaluate det G for a given set of HS spins, we iteratively
make use of Schur’s formula

det

(
A B
C D

)
= det A · det(D − CA−1B). (23)

In the first step, we set A = G11. To calculate the determinant
of 4(N − K ) × 4(N − K ) matrix D − CA−1B, we again use
Schur’s formula with the new A taken as the upper left 4K ×
4K block. This procedure is repeated until we arrive at the
lower right corner. The result is

Z[η] =
∑
{s}

det G11 · det Ǧ22 · · · det ǦNK NK , (24)

where Ǧ is iteratively defined by

Ǧnn = Gnn − Gn,n−1[Ǧn−1,n−1]−1Gn−1,n, (25)

together with Ǧ11 = G11.
Due to this iterative definition, Ǧnn depends on all the

blocks Gmm′
of Eq. (22) that are placed above and/or to the

left of Gnn, i.e., m, m′ � n. This is, however, inconsistent
with our decision to neglect all correlations beyond tK . Since
G was approximated as being block tridiagonal, we should
consistently eliminate the influence of Gmm′

on Ǧnn when
m, m′ deviates from n by more than 1. To accomplish this,
we approximate Ǧnn by

G̃nn = Gnn − Gn,n−1[Gn−1,n−1]−1Gn−1,n, (26)

with G̃11 = G11, i.e., in comparison to Eq. (25) we have
replaced [Ǧn−1,n−1]

−1
by [Gn−1,n−1]−1 on the right-hand side.

Due to this approximation, G̃nn and, therefore, also its deter-
minant det G̃nn depends only on the 4K HS spins sn and sn−1

from the Trotter slices (n − 2)K + 1, . . . , nK but not from
earlier or later ones. We can arrange the 24K different values of
det G̃nn for each HS spin configuration in a 22K × 22K matrix,
the transfer matrix

�n,n−1 = (det G̃nn[sn, sn−1]), (27)

where each row corresponds to one of the 22K configurations
for sn and each column to one of the 22K configurations for
sn−1. The Keldysh generating functional can then be written
as a product

Z[η] = eT · �NK ,NK −1 · · ·�3,2 · �2,1 · �1,0 (28)

of these transfer matrices, where �n,n−1 is a 22K × 22K matrix
for n � 2, �1,0 is a 22K dimensional column vector, and
eT = (1, . . . , 1) is a 22K dimensional row vector. Each of
the NK matrix multiplications requires a summation over 22K

HS spin configurations. In total, there are NK 22K summations
instead of 22N without the truncation scheme. [A more precise
estimate of the scaling behavior of the numerical effort should
take into account the effort for building G̃nn from Eq. (26).]
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FIG. 3. (a) Current as a function of time step δt for different
values of the correlation time tK and fixed interaction strength U =
�. (b) Dependence of the current on the correlation time tK in
the limit δt → 0 for various Coulomb interactions strengths. Other
parameters in both panels are n̂L = n̂R, p = 0.5, eV = ε0 = �, and
kBT = 0.2�.

To illustrate the numerical effort, we mention that our code
runs for given parameters and K = 6 typically 1 h on a linux
cluster with 16 nodes when the current is measured at �tm =
10. For finer discretizations we use a CrayXT6m machine
where data points including, e.g., K = 7, are calculated within
2.5 h on 240 nodes.

A. Convergence

The discrete HS transformation Eq. (14) needs finite dis-
cretization time steps δt . This introduces a finite Trotter error
for the calculation of the path integral along the Keldysh
contour [42,44], which scales with δ2

t for δt → 0. A second
source of systematic error comes from truncating correlations
beyond tK . To reduce both errors and estimate the remaining
error bars, we perform the following three-step procedure.

(i) First, we choose a finite correlation time tK . For this tK ,
the time step is varied and we perform the well-established
extrapolation [44] to the continuum limit, δt → 0. A typical
outcome of this procedure is shown in Fig. 3(a). We show the
current for n̂L = n̂R for different correlation times �tK = 0.8,
1.0, 1.2, 1.5 and fixed Coulomb interaction U = � as a func-
tion of the Trotter step size. In this example we have chosen
the other parameters as eV = ε0 = �, p = 0.5, kBT = 0.2�.
ISPI data are given as symbols, and the solid lines display the
linear regression, which is used for the extrapolation towards
δt → 0. This step eliminates the Trotter error.

(ii) We repeat the extrapolation δt → 0 for different finite
values of the correlation time tK . To eliminate the respectively
associated truncation error, we extrapolate to infinite correla-
tion time with the help of a linear regression for 1/(�tK ) → 0.
This is illustrated in Fig. 3(b) for different values of the
Coulomb interaction U .

(iii) Finally, the error bars of the ISPI data are estimated
from the standard deviations of both subsequent linear regres-
sions.

Since we are interested in the stationary values of the
current (and the TMR), we need to set the measurement time
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tm large enough to overcome transient behavior. We find that
�tm � 10 is sufficient.

For the noninteracting case U = 0, the errors are elimi-
nated very efficiently with the described extrapolations, such
that error bars are smaller than the symbol size in all curves
presented for this case. With increasing U , the error bars
become larger. We are able to obtain reliable results within
reasonable computation time for intermediate values of the
interaction up to U = 2�. Whenever the orbital of the dot
is tuned far outside the transport window opened by the bias
voltage (large |ε0| or small eV ), the ISPI data for the current
and the TMR become noisy.

B. Benchmark 1: Noninteracting case

To convince ourselves of the reliability of our ISPI code,
we perform two benchmark tests. First, we consider a nonin-
teracting spin valve U = 0. In this case, the current and thus
the TMR can be calculated analytically. The formulas for the
current in the parallel and antiparallel configuration are given
in the Appendix.

In Fig. 4(a) we show the current through a noninteracting
(U = 0) quantum-dot spin valve for the parallel (blue) and the
antiparallel (orange) configuration as a function of the bias
voltage. ISPI data are represented by the symbols, with error
bars of the order of the symbol size and solid lines display
the analytical results. The parameters are chosen as ε0 = 0,
p = 0.8, kBT = 0.2�. We find excellent agreement for the full
I (V ) characteristics. For other parameters we have checked
that the analytical curves are reproduced by the ISPI data with
high precision as well.

The inset of Fig. 4(a) shows the TMR. There is a well-
pronounced zero-bias peak, which is well resolved by the ISPI
data.

In Fig. 4(b) we depict the TMR as a function of the level
position ε0 for different lead polarizations p. Again, the ISPI
data (symbols) are in perfect agreement with the analytical
solution (solid lines). There is a pronounced peak at ε0 = 0,
again well resolved by the ISPI data. For increasing p, the
current for the antiparallel lead configuration decreases, which
results in a larger TMR, see Eq. (9).

C. Benchmark 2: Perturbation theory

In the presence of interaction, a full analytical solution
is not available anymore. In the limit of high temperature,
however, the tunnel coupling can be treated in perturbation
theory. To lowest order, only sequential-tunneling processes
contribute. The first order theory for a quantum-dot spin valve
formulated within a diagrammatic real-time technique [17]
has been extended to a full first plus second order (referred
to as sequential plus cotunneling) calculation [19].

This enables us to perform a second benchmark test. We
compare the ISPI data with those obtained from first or
first plus second order perturbation theory as a function of
temperature and check whether the ISPI data converge to the
perturbative results at high temperatures. The result is shown
in Fig. 5, where we plot the relative deviation

�I =
∣∣∣∣ Iseq/cot − I ISPI

I ISPI

∣∣∣∣ (29)
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eV / Γ

−2

0
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I
/

(e
Γ
/h

)

(a) U = 0

n̂L = ˆ nR

n̂L = −ˆ nR

−2 0 2
ε0/Γ

0.0

0.2

0.4

0.6

T
M

R

(b)

U = 0

p=0.2
p=0.5
p=0.8

−2 0 2

eV / Γ

0.53

0.54

0.55

T
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R

FIG. 4. (a) I (V ) characteristics for the noninteracting system for
ε0 = 0, p = 0.8, kBT = 0.2� in the parallel and antiparallel config-
uration, respectively. The inset shows the resulting TMR. (b) The
dependence of the TMR on gate voltage ε0 for different values of p
at kBT = 0.2� and eV = 0.1�. All error bars are of the order of the
symbol size.

of the first order (seq) or first plus second order (cot) current
from the ISPI results as a function of temperature. For the
perturbative results, we use the scheme developed in Ref. [19].
We cover both the parallel and the antiparallel configuration.
Other parameters are set to eV = 3�, ε0 = U = �, p = 0.5
and lines are guides to the eye only.

We find the ISPI data in accordance with the perturbative
calculation for kBT 
 �. While a first order description is
only sufficient for temperatures much larger than �, the first
plus second order calculation remains reliable for temper-
atures that are somewhat larger than �. But for kBT � �,
perturbation theory clearly fails and cannot compete with
ISPI.

IV. RESULTS

We now turn to the discussion of the TMR through a
quantum-dot spin valve for the experimentally relevant regime
in which the energy scales for Coulomb interaction, tunnel
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FIG. 5. Relative deviation of the current obtained by perturbation
theory to first order (seq) or first plus second order (cot) from ISPI
as a function of temperature. Other parameters are eV = 3�, ε0 = 0,
U = �, p = 0.5, lines are guides to the eye.

coupling, and temperature are all of the same order of mag-
nitude. Neither the fully analytical U = 0 formulas, nor a
perturbative treatment of tunneling, nor any zero-temperature
calculation done with other methods such as NRG is applica-
ble.

The TMR through a quantum-dot spin valve depends quite
sensitively on the relative importance of different tunnel pro-
cesses that contribute directly and indirectly to the current. A
reference is set by Julliere’s value

TMRJull = 2p2

1 + p2
(30)

describing a direct tunnel junction between two ferromagnets
without a quantum dot placed in between. [We remind that, in
our definition (9) of the TMR, we normalize with the current
for the parallel configuration. The more often used normaliza-
tion with the current for the antiparallel configuration would
give TMRJull = 2p2/(1 − p2).] This value is easily derived
from the fact that the transmission through the junction for
a given spin is proportional to the corresponding density of
states in the source and the drain, respectively, and the latter
are proportional to 1 + p for the majority and 1 − p for the
minority spins. For the quantum-dot spin valve, the TMR is
strongly influenced by the possibility to accumulate a finite
spin polarization on the quantum dot. The spin accumulation
has the tendency to weaken the spin-valve effect, i.e., to
reduce the TMR. The value of the dot’s spin polarization, on
the other hand, results from an interplay of various processes
that either lead to a spin accumulation or that provide a
relaxation channel for the accumulated spin. This makes the
TMR a highly nontrivial function of temperature, gate and
bias voltage, and Coulomb interaction. Since tunnel processes
of different orders in the tunnel coupling contribute very dif-
ferently to spin accumulation and spin relaxation, we are not
surprised that a perturbative calculation of the TMR breaks
down already at relatively high temperatures.

The fact that the TMR depends rather sensitively on the na-
ture of the dominating transport channel has been extensively
discussed in the literature. Measurements of the TMR for
weak tunnel coupling outside the Coulomb-blockade regime
[10] could be explained within a sequential-tunneling picture.
In the Coulomb-blockade regime, however, cotunneling dom-
inates, leading to an enhancement of the TMR as compared to
the sequential-tunneling result [19,20,31,45,46]. For a quali-
tative explanation of the TMR measured through a quantum-
dot spin valve with strong tunnel coupling, a Breit-Wigner
form of the transmission has been assumed [15,47]. While
the Breit-Wigner form takes resonant-tunneling processes into
account, it fails to describe correlations that, at very low
temperature, give rise to the Kondo effect. The formation of
Kondo correlations is accompanied with an enhancement of
the transmission through the dot, which gives rise to a large,
bias-voltage-dependent TMR as observed in Refs. [11–13].
Finally, we mention that also for quantum-dot spin valves in
which not only the leads but also the island is ferromagnetic,
an enhancement of the TMR due to cotunneling has been
experimentally [48–50] and theoretically [51] found.

A. Temperature dependence of TMR

The relative importance of resonant tunneling, i.e., higher-
order tunneling contributions, as compared to sequential and
cotunneling, is nicely demonstrated by the temperature de-
pendence of the TMR. In Fig. 6 we show the results for a
noninteracting quantum-dot spin valve U = 0, both (a) for
the linear-response eV = 0.1�, and (b) the nonlinear response
regime eV = 3�. The ISPI data (symbols) perfectly agree
with the analytical results (ANA) available for the noninter-
acting case. To distinguish the contributions from different
orders in tunneling, we expand the analytical result up to order
�, �2, �3, and �4, respectively.

To lowest order, corresponding to the sequential-tunneling
approximation, the TMR is temperature independent [19].
Including the second (cotunneling), third, or fourth order
contribution makes the TMR a nonmonotonic function of the
temperature. Unphysical oscillations arise which, for small
bias voltage, even extend to TMR values outside the interval
[0; 1]. The cotunneling approximation seems to give reliable
results for temperatures somewhat smaller than kBT ≈ 10�.
Strikingly, even a fourth order expansion of the full analytical
result is severely failing to describe the correct temperature
dependence of the TMR down to kBT � �. This demonstrates
the overwhelming importance of resonant tunneling when
temperature and � are of the same order of magnitude. Only
for kBT 
 10� (not shown in the figure), the ISPI data
converge to the sequential-tunneling result.

We proceed with presenting the temperature dependence
of the TMR for an interacting quantum-dot spin valve in
Fig. 7. A full analytical solution to compare with is not
available anymore. We also refrain from showing results from
a first plus second order calculation since the resulting TMR
values are far off for the considered temperature regime.
Instead, we compare the TMR for different values of U . We
use the same parameters as for the noninteracting case and,
again, show both the linear- and nonlinear-response regime.
The TMR increases with increasing Coulomb interaction U .
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FIG. 6. Temperature dependence of the TMR for the noninter-
acting system U = 0. (a) Low-bias voltage regime eV = 0.1�, and
(b) large-bias voltage regime eV = 3�. Other parameters are ε0 = 0,
p = 0.5. ISPI data error bars are smaller than the symbol size.

In the linear-response regime, Fig. 7(a), we find a non-
monotonic dependence of the TMR on temperature. For
T → ∞, the TMR approaches the sequential-tunneling value
TMR = p2 = 0.25, as required. Interestingly, for ε0 = 0 and
small bias voltage, also the low-temperature limit, T → 0,
yields TMR = p2. In between, around kBT ≈ 0.5�, the TMR
displays a local minimum with TMR ≈ 0.195.

In Fig 7(b) we present the temperature-dependent TMR for
the nonlinear bias regime eV = 3�. In this case, the TMR
increases monotonically with temperature and approaches the
expected sequential-tunneling value p2.

B. Gate- and bias-voltage dependence of TMR

We proceed with analyzing the gate- and bias-voltage
dependence of the TMR since both gate and bias voltages are
usually tunable in experiment with high precision. First, we
consider the noninteracting case U = 0. At low temperature
kBT = 0.1�, the TMR shows a rather rich structure as a
function of both voltages, see Fig. 8. In particular, there is
a peak at ε0 = 0, V = 0. The full width at half maximum of
the peak as a function of ε0 and V , respectively, depends on
the degree of spin polarization p, see inset of Fig. 8. With
increasing bias voltage, the local maximum of the TMR as
a function of ε0 first stays at ε0 = 0 but then splits into two
local maxima. In Fig. 8 the position of the local maximum as
a function of ε0 is highlighted by a dashed line. Once the level
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(b) eV = 3Γ

FIG. 7. Temperature dependence of the TMR for U/� = 0, 0.5,
and 1.5. (a) Low-bias voltage regime eV = 0.1�, and (b) large-bias
voltage regime eV = 3�. Other parameters are ε0 = 0, p = 0.5.
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FIG. 8. TMR for the noninteracting system as a function of
gate and bias voltage. The temperature is kBT = 0.1� and leads’
polarization is given by p = 0.5. The dashed line highlights the
position of the local maximum of the TMR as a function of ε0.
We find a bifurcation at finite bias voltage. (Inset) Full width half
maximum of the local maximum in the center along ε0 and eV axis
as a function of the polarization p.
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FIG. 9. Gate-voltage dependence of the TMR for the noninter-
acting case U = 0 at low temperature, kBT = 0.2�, in the linear-
response regime eV = 0.1�. The leads’ polarization was set to p =
0.5. The ISPI data (blue dots) perfectly agree with the full analytical
result (ANA). A perturbation expansion of the latter up to fourth
order in � severely fails.

position ε0 is tuned far away from resonance, |ε0| 
 �, the
TMR approaches Julliere’s value 2p2/(1 + p2) = 0.4. This is
expected since in this regime, accumulation and relaxation of
the quantum-dot spin can be neglected.

To demonstrate once more the failure of perturbation the-
ory, we show in Fig. 9 the gate-voltage dependence of the
TMR for U = 0 in the linear-response regime eV = 0.1�, and
compare with the full analytical result (ANA) as well as a
perturbative expansion of the latter up to fourth order in �.
The ISPI data (symbols) perfectly match with the full analytic
result, with error bars smaller than symbol size, while finite-
order perturbation theory is not only quantitatively but even
qualitatively wrong. This emphasizes again the importance of
resonant-tunneling effects for the TMR.

We now include finite Coulomb interaction U = 0. In
Fig. 10(a) we show the gate-voltage dependence of the TMR
for U/� = 0, 1, and 2 in the linear-response regime eV =
0.1�. The local maximum at resonance ε0 = 0 remains clearly
visible for all chosen values of U . The error bars of the
ISPI data are quite moderate even for U = 2�. Since for
large |ε0| the TMR goes up to Julliere’s value, there are two
minima symmetrically placed around the central maximum.
With increasing U , the depth of the minima seems to shrink a
bit.

In Fig. 10(b) we switch to the nonlinear-response regime
eV = 1.5�. This bias voltage is chosen close to the bifurca-
tion point indicated in Fig. 8. The central maximum has just
split into two local maxima, a finite Coulomb interaction U
seems to wash out the fine structure visible for U = 0. Note
that the limiting value of the TMR for |ε0| 
 � is again set
by Julliere’s value.

We complete the discussion of the gate-voltage dependence
of the TMR with the remark that also for the case of finite U ,
a first plus second order calculation completely fails at low
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FIG. 10. Gate-voltage dependence of the TMR for U/� = 0, 1,
and 2 and kBT = 0.1�. The polarization is p = 0.5. The voltage
is chosen to be (a) in the linear-response regime eV = 0.1� and
(b) slightly beyond the bifurcation point eV = 1.5�. In (c) we depict
the results of a first plus second order calculation for the same
parameters as in (a).

temperatures. This is shown in Fig. 10(c), in which the same
parameters as in Fig. 10(a) are used.

Finally, we study the bias-voltage dependence of the TMR
at ε0 = 0 and kBT = 0.2� for different values of the Coulomb
interaction strength, see Fig. 11. Since the current is an anti-
symmetric function of V , the TMR is symmetric with respect
to V = 0. For large bias voltage, the TMR approaches the
value obtained for sequential tunneling TMR = p2 = 0.25.

At U = 0 there is a well-pronounced local maximum in
the center. Two local minima placed symmetrically around the
central peak. As U increases, the form of the TMR becomes
modified. At the center (linear-response regime), the TMR
first grows until U ≈ � and, then, drops again. In the non-
linear regime |eV | > �, the interaction always increases the
TMR. As a consequence, the minima are getting washed out
for U > �. The error bars indicate the increasing numerical
challenge for increasing U , especially in the linear-response
regime.

V. CONCLUSION AND OUTLOOK

The tunnel magnetoresistance through a quantum-dot spin
valve is a highly nontrivial function of temperature as well
as gate and bias voltage. For negligible Coulomb interaction,
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FIG. 11. Bias-voltage dependence of TMR for U/� = 0, 0.5, 1,
and 2. The other parameters are ε0 = 0, kBT = 0.2�, and p = 0.5.

the TMR can be calculated analytically. In the limit of weak
tunnel coupling, a perturbative treatment of tunneling includ-
ing sequential or sequential plus cotunneling is possible. In a
realistic experimental scenario, however, the energy scales for
charging energy, tunnel strength, and temperature are all of
the the same order of magnitude, and neither neglecting inter-
actions nor a perturbative treatment of tunneling is justified.
In contrast, resonant-tunneling effects in the presence of finite
Coulomb interaction are important.

To tackle the task of calculating the TMR for experimen-
tally relevant transport regimes, we make use of an iterative

summation of path-integral (ISPI) scheme, which is based
on the evaluation of nonequilibrium path integrals on the
Keldysh contour in an iterative and deterministic manner. We
have generalized this scheme to include spin-dependent tun-
neling. ISPI naturally includes tunneling contributions from
all orders in the tunnel-coupling strength, which seems to be
extremely important for a proper determination of the TMR.
For intermediate values of the charging energy, up to the same
order of magnitude as the tunnel-coupling strength, numerical
convergence is achieved.

After benchmarking against known results for limiting
cases, we have analyzed the temperature as well as the gate-
and bias-voltage dependence of the TMR. We find that for
kBT � �, perturbation theory severely fails since resonant
tunneling becomes important. The TMR displays a well-
pronounced peak at ε0 = 0 and V = 0. We are able to clearly
resolve this peak within our ISPI scheme and to study the
influence of a finite Coulomb interaction.

In conclusion, the ISPI treatment of the TMR through a
quantum-dot spin valve offers a theoretical tool that covers a
transport regime in which other methods fail. This includes
the regime in which all the system parameters are of the same
order and an expansion in a small parameter is impossible,
which is particularly relevant in realistic experimental setups.
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APPENDIX: CURRENT FORMULAS FOR THE NONINTERACTING SPIN VALVE

In the absence of interaction U = 0, the current through a single-level quantum dot can be calculated analytically for all
temperatures and bias voltages [52]. Including a finite spin polarization of the leads is straightforward. The current formulas for
a parallel (p) and antiparallel (ap) magnetization configuration of the leads are

Ip =
∫ ∞

−∞
dω

2�2
↓�2

↑ + (�2
↓ + �2

↑)(ε0 − ω)2

[�2
↓ + (ε0 − ω)2][�2
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, (A1)

Iap =
∫ ∞
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[
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− f
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ω + eV

2
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. (A2)

These integrals are evaluated with the help of Cauchy’s residual theorem. Collecting the residues at the poles of the Fermi
functions (given by the Matsubara frequencies) and of the expression in front of the Fermi functions, we get

Ip =
∑
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, (A3)

Iap =
∑

γ=±1

∑
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γ�(1 − p2)

{
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, (A4)

where �(· · · ) denotes the digamma function.
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Tunnel magnetoresistance of quantum dots coupled to ferro-
magnetic leads in the sequential and cotunneling regimes, Phys.
Rev. B 72, 115334 (2005).
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effect in quantum dots coupled to ferromagnetic leads
with noncollinear magnetizations: Effects due to electron-
phonon coupling, J. Phys.: Condens. Matter 20, 255219
(2008).

[33] M. Hell, B. Sothmann, M. Leijnse, M. R. Wegewijs, and J.
König, Spin resonance without spin splitting, Phys. Rev. B 91,
195404 (2015).

[34] M. Misiorny, M. Hell, and M. R. Wegewijs, Spintronic mag-
netic anisotropy, Nat. Phys. 9, 801 (2013).

[35] S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Iterative real-
time path integral approach to nonequilibrium quantum trans-
port, Phys. Rev. B 77, 195316 (2008); 79, 249901(E) (2009).

195457-11

https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1038/nmat1256
https://doi.org/10.1038/nmat1256
https://doi.org/10.1038/nmat1256
https://doi.org/10.1038/nmat1256
https://doi.org/10.1063/1.2742576
https://doi.org/10.1063/1.2742576
https://doi.org/10.1063/1.2742576
https://doi.org/10.1063/1.2742576
https://doi.org/10.1063/1.2976435
https://doi.org/10.1063/1.2976435
https://doi.org/10.1063/1.2976435
https://doi.org/10.1063/1.2976435
https://doi.org/10.1063/1.4976822
https://doi.org/10.1063/1.4976822
https://doi.org/10.1063/1.4976822
https://doi.org/10.1063/1.4976822
https://doi.org/10.1038/s41467-018-04953-8
https://doi.org/10.1038/s41467-018-04953-8
https://doi.org/10.1038/s41467-018-04953-8
https://doi.org/10.1038/s41467-018-04953-8
https://doi.org/10.1126/science.aar4851
https://doi.org/10.1126/science.aar4851
https://doi.org/10.1126/science.aar4851
https://doi.org/10.1126/science.aar4851
https://doi.org/10.1109/JPROC.2010.2064150
https://doi.org/10.1109/JPROC.2010.2064150
https://doi.org/10.1109/JPROC.2010.2064150
https://doi.org/10.1109/JPROC.2010.2064150
https://doi.org/10.1038/ncomms10451
https://doi.org/10.1038/ncomms10451
https://doi.org/10.1038/ncomms10451
https://doi.org/10.1038/ncomms10451
https://doi.org/10.1038/nphys931
https://doi.org/10.1038/nphys931
https://doi.org/10.1038/nphys931
https://doi.org/10.1038/nphys931
https://doi.org/10.1126/science.1102068
https://doi.org/10.1126/science.1102068
https://doi.org/10.1126/science.1102068
https://doi.org/10.1126/science.1102068
https://doi.org/10.1063/1.2820445
https://doi.org/10.1063/1.2820445
https://doi.org/10.1063/1.2820445
https://doi.org/10.1063/1.2820445
https://doi.org/10.1088/0268-1242/21/11/S11
https://doi.org/10.1088/0268-1242/21/11/S11
https://doi.org/10.1088/0268-1242/21/11/S11
https://doi.org/10.1088/0268-1242/21/11/S11
https://doi.org/10.1038/nphys149
https://doi.org/10.1038/nphys149
https://doi.org/10.1038/nphys149
https://doi.org/10.1038/nphys149
https://doi.org/10.1103/PhysRevLett.90.166602
https://doi.org/10.1103/PhysRevLett.90.166602
https://doi.org/10.1103/PhysRevLett.90.166602
https://doi.org/10.1103/PhysRevLett.90.166602
https://doi.org/10.1103/PhysRevB.70.195345
https://doi.org/10.1103/PhysRevB.70.195345
https://doi.org/10.1103/PhysRevB.70.195345
https://doi.org/10.1103/PhysRevB.70.195345
https://doi.org/10.1103/PhysRevB.92.045431
https://doi.org/10.1103/PhysRevB.92.045431
https://doi.org/10.1103/PhysRevB.92.045431
https://doi.org/10.1103/PhysRevB.92.045431
https://doi.org/10.1103/PhysRevB.72.115334
https://doi.org/10.1103/PhysRevB.72.115334
https://doi.org/10.1103/PhysRevB.72.115334
https://doi.org/10.1103/PhysRevB.72.115334
https://doi.org/10.1103/PhysRevB.72.113301
https://doi.org/10.1103/PhysRevB.72.113301
https://doi.org/10.1103/PhysRevB.72.113301
https://doi.org/10.1103/PhysRevB.72.113301
https://doi.org/10.1088/0953-8984/6/13/013
https://doi.org/10.1088/0953-8984/6/13/013
https://doi.org/10.1088/0953-8984/6/13/013
https://doi.org/10.1088/0953-8984/6/13/013
https://doi.org/10.1103/PhysRevB.98.195138
https://doi.org/10.1103/PhysRevB.98.195138
https://doi.org/10.1103/PhysRevB.98.195138
https://doi.org/10.1103/PhysRevB.98.195138
https://doi.org/10.1088/0031-8949/2015/T165/014007
https://doi.org/10.1088/0031-8949/2015/T165/014007
https://doi.org/10.1088/0031-8949/2015/T165/014007
https://doi.org/10.1088/0031-8949/2015/T165/014007
https://doi.org/10.1103/PhysRevLett.101.140601
https://doi.org/10.1103/PhysRevLett.101.140601
https://doi.org/10.1103/PhysRevLett.101.140601
https://doi.org/10.1103/PhysRevLett.101.140601
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevB.78.235110
https://doi.org/10.1103/PhysRevB.78.235110
https://doi.org/10.1103/PhysRevB.78.235110
https://doi.org/10.1103/PhysRevB.78.235110
https://doi.org/10.1016/j.chemphys.2018.03.021
https://doi.org/10.1016/j.chemphys.2018.03.021
https://doi.org/10.1016/j.chemphys.2018.03.021
https://doi.org/10.1016/j.chemphys.2018.03.021
https://doi.org/10.1103/PhysRevB.83.113306
https://doi.org/10.1103/PhysRevB.83.113306
https://doi.org/10.1103/PhysRevB.83.113306
https://doi.org/10.1103/PhysRevB.83.113306
https://doi.org/10.1103/PhysRevB.75.045310
https://doi.org/10.1103/PhysRevB.75.045310
https://doi.org/10.1103/PhysRevB.75.045310
https://doi.org/10.1103/PhysRevB.75.045310
https://doi.org/10.1103/PhysRevB.76.045321
https://doi.org/10.1103/PhysRevB.76.045321
https://doi.org/10.1103/PhysRevB.76.045321
https://doi.org/10.1103/PhysRevB.76.045321
https://doi.org/10.1103/PhysRevB.73.193108
https://doi.org/10.1103/PhysRevB.73.193108
https://doi.org/10.1103/PhysRevB.73.193108
https://doi.org/10.1103/PhysRevB.73.193108
https://doi.org/10.1088/0953-8984/20/25/255219
https://doi.org/10.1088/0953-8984/20/25/255219
https://doi.org/10.1088/0953-8984/20/25/255219
https://doi.org/10.1088/0953-8984/20/25/255219
https://doi.org/10.1103/PhysRevB.91.195404
https://doi.org/10.1103/PhysRevB.91.195404
https://doi.org/10.1103/PhysRevB.91.195404
https://doi.org/10.1103/PhysRevB.91.195404
https://doi.org/10.1038/nphys2766
https://doi.org/10.1038/nphys2766
https://doi.org/10.1038/nphys2766
https://doi.org/10.1038/nphys2766
https://doi.org/10.1103/PhysRevB.77.195316
https://doi.org/10.1103/PhysRevB.77.195316
https://doi.org/10.1103/PhysRevB.77.195316
https://doi.org/10.1103/PhysRevB.77.195316
https://doi.org/10.1103/PhysRevB.79.249901
https://doi.org/10.1103/PhysRevB.79.249901
https://doi.org/10.1103/PhysRevB.79.249901


MUNDINAR, STEGMANN, KÖNIG, AND WEISS PHYSICAL REVIEW B 99, 195457 (2019)

[36] S. Weiss, R. Hützen, D. Becker, J. Eckel, R. Egger, and
M. Thorwart, Iterative path integral summation for nonequi-
librium quantum transport, Phys. Status Solidi B 250, 2298
(2013).

[37] D. Becker, S. Weiss, M. Thorwart, and D. Pfannkuche, Non-
equilibrium quantum dynamics of the magnetic Anderson
model, New J. Phys. 14, 073049 (2012).

[38] R. Hützen, S. Weiss, M. Thorwart, and R. Egger, Iterative sum-
mation of path integrals for nonequilibrium molecular quantum
transport, Phys. Rev. B 85, 121408(R) (2012).

[39] A. Kamenev, Many-body theory of non-equilibrium systems, in
Nanophysics: Coherence and Transport, edited by H. Bouchiat,
Y. Gefen, S. Gueron, G. Montambaux, and J. Dalibard, Les
Houches Session LXXXI (Elsevier, New York, 2005)

[40] J. W. Negele and H. Orland, Quantum Many-Particle Systems,
(Addison-Wesley, Redwood City, CA, 1988).

[41] J. Hubbard, Calculation of Partition Functions, Phys. Rev. Lett.
3, 77 (1959).

[42] J. E. Hirsch, Discrete Hubbard-Stratonovich transformation for
fermion lattice models, Phys. Rev. B 28, 4059 (1983).

[43] D. Segal, A. J. Millis, and D. R. Reichman, Numeri-
cally exact path-integral simulation of nonequilibrium quan-
tum transport and dissipation, Phys. Rev. B 82, 205323
(2010).

[44] S. Weiss and R. Egger, Path-integral Monte Carlo simula-
tions for few electron quantum dots with spin orbit coupling,
Phys. Rev. B 72, 245301 (2005).
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