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Correlated insulators and superconductivity have been observed in “magic-angle” twisted bilayer graphene,
when the nearly flat bands close to neutrality are partially filled. While a momentum-space continuum model
accurately describes these flat bands, interaction effects are more conveniently incorporated in tight-binding
models. We have previously shown that no fully symmetric tight-binding model can be minimal, in the sense of
capturing just the flat bands, so extended models are unavoidable. Here, we introduce a family of tight-binding
models that capture the flat bands while simultaneously retaining all symmetries. In particular, we construct three
concrete models with five, six, or ten bands per valley and per spin. These models are also faithful, in that the
additional degrees of freedom represent energy bands further away from neutrality, and they serve as optimal
starting points for a controlled study of interaction effects. Furthermore, our construction demonstrates the
“fragile topology” of the nearly flat bands; i.e., the obstruction to constructing exponentially localized Wannier
functions can be resolved when a particular set of trivial bands is added to the model.
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I. INTRODUCTION

In strongly correlated materials such as transition-metal
oxides, which include the high-Tc cuprate materials [1], the
competition between kinetic energy and electron-electron in-
teractions stabilizes remarkable phases such as Mott insula-
tors and high-temperature superconductors. Their theoretical
description traditionally begins with a tight-binding model
which provides a real-space representation of the relevant
electronic bands. Interactions are then incorporated by means
of a local U term, leading to the Hubbard model.

Recently, another example of a correlated insulator in
proximity to a superconductor has appeared—two adjacent
graphene sheets that are twisted by a specific small angle
relative to each other [2,3]. Here, we will address the ques-
tion of constructing a minimal model for twisted bilayer
graphene, analogous to the square-lattice tight-binding model
for cuprates. We will see that traditional approaches to this
problem fail due to a form of band topology inherited from the
underlying Dirac nature of the problem. Instead, a different
approach is called for, which is developed in this paper.

Twisted bilayer graphene (TBG) structures have been stud-
ied intensely in the last decade [4–27]. To begin with, the
two valleys of graphene are decoupled from one another,
particularly in the limit of small twist angles, yielding a valley
quantum number in addition to spin. The electronic states
near each valley of each graphene monolayer hybridize with
the corresponding states from the other monolayer. When the
twist angle is close to certain discrete values known as the
magic angles, e.g., at ∼1.05◦, theoretical calculations show
that there are two nearly flat bands (per valley and per spin)
that form in the middle of the spectrum [12] and are separated
from other bands [24]. The band gaps are also observed in
experiments [2,3]. These nearly flat bands contain Dirac nodes
that intersect the chemical potential at neutrality.

Counting electron filling from neutrality, at fillings νT =
±4 a band insulator is obtained. However, in experiments,
correlated insulators are observed at partial band fillings
of νT = ±2 on cooling below a few degrees Kelvin. Fur-
ther doping this insulator at νT = −2 with either electrons
or holes reveals superconductivity at Tc ≈ 1 K [3]. Two
natural questions that arise are the following: how simi-
lar is this phenomenon to that in the cuprates, and, relat-
edly, what is the minimal model that we should consider
here, analogous to the square-lattice Hubbard model for the
cuprates?

Ideally, a minimal tight-binding model for TBG would
describe only the two nearly flat bands (per valley and
per spin) and respect all symmetries. However, there is an
interesting topological aspect to the nearly flat bands that
obstructs finding such a model [28,29]. This is intuitively
seen by recognizing that the two Dirac points in the nearly
flat bands originate from the unperturbed Dirac cones which,
while living in different layers, belong to the same valley.
This suggests that they carry the same chirality [2,13,15,30],
i.e., the same Berry phase of ±π of the two Dirac cones,
the relative sign of which is well defined. In contrast, any
two-band tight-binding model would give Dirac cones with
vanishing net chirality. This obstruction is also reflected in the
symmetry eigenvalues of the bands, which cannot be captured
in a minimal two-band tight-binding model [28,29]. Given
that a minimal tight-binding model is forbidden, one must
then proceed with one of the following options: (i) extend
the model to include additional bands, (ii) give up on some
symmetries, or (iii) construct effective orbitals which are not
exponentially localized in all spatial directions [31–33].

In this paper we will pursue the first option, namely,
forgoing the minimality requirement and constructing models
with more than two bands. Specifically, we will introduce
a ten-band model in which the connected bands follow a
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4-2-4 sequence, with the middle two bands representing the
nearly flat bands of a single valley of TBG. Our model
has the following advantages. First, all symmetries are re-
spected and represented appropriately, and the two isolated
bands incorporate the previously mentioned band topology
of TBG. Second, the additional, complementary bands have
a natural correspondence with the higher-energy bands in
TBG. Finally, we can incorporate an approximate particle-
hole symmetry in this description, which is known to be a
good symmetry for the higher-energy states (although gen-
erally broken for the nearly flat bands). We also discuss
the construction of more minimal models with six or five
bands which retain a set excited bands only on one side of
the nearly flat bands. Our models therefore pave the way
to the derivation of a symmetric, interacting real-space de-
scription of TBG. Our solutions are reminiscent of “p-d”
models of the copper oxides, where correlated “d” copper
orbitals are augmented by oxygen “p” orbitals [34]. An im-
portant difference here is that the topological obstruction pre-
vents further downfolding that would eliminate the additional
bands.

Furthermore, the complementary bands in our model are
manifestly trivial, in that they can be smoothly deformed into
an explicit atomic insulator. This is conceptually interesting,
as it is in stark contrast with the familiar forms of band topol-
ogy, say those exemplified by the Haldane [35] or Kane-Mele
[36,37] models, which are described by stable (K-theoretic)
topological invariants [38–40]. There, the nontrivial topolog-
ical indices must cancel when all sets of bands are accounted
for, so a band with stable topology cannot be neutralized by
additional trivial bands. Rather, our model proves that the
identified band topology in TBG falls into the class of “fragile
topology” recently introduced in Ref. [41]. We stress that
this identification of the fragile nature of the band topology
in TBG has important implications in the construction of
realistic tight-binding models. Suppose, in contrast, that the
band topology was conventional. Then, to construct faithful
tight-binding models for TBG, one must first identity the topo-
logical counterpart of the active bands among the high-energy
bands, similar to how the conduction bands in both the Hal-
dane and Kane-Mele models are also topological. In contrast,
our result on the fragile nature of the band topology in TBG
implies one can construct effective tight-binding models sim-
ply by disentangling (in the sense of Ref. [42]) a suitable set
of atomic states out of the high-energy degrees of freedom in
TBG.

Let us also mention that, in Ref. [29], we provided a
different recipe to extend the model. There, we constructed a
four-band model where all the symmetries are implemented
naturally, and the four bands split into 2-2 sets of isolated
bands, each of which individually showcases the identified
band topology of TBG. While the smaller number of bands
is an advantage, the additional bands are disconnected from
the physical degrees of freedom in TBG, and interactions
can be reliably treated only when they are weak enough
that interband mixing can be safely neglected. In contrast,
we believe our present solution is superior in that the ad-
ditional degrees of freedom correspond to physical excited
states, and that it clarifies the fragile nature of the band
topology.

The second option for constructing effective tight-binding
models, which we recall by way of review, is to circumvent
the Wannier obstructions by implementing some of the sym-
metries in a nontrivial manner [28]. This was done for valley
symmetry in Ref. [28], which, however, entails a nonstandard
procedure to eventually recover the symmetry, unlike the op-
tion discussed here. Alternately, one can simply ignore some
symmetries in the problem [43–45], or adopt some different
implementations of the symmetries [46–50]. An unintended
consequence is a need for fine tuning. Hence, the theoretical
predictions of these models are not automatically justified.
For instance, in the symmetry setting of Refs. [43–45] a
vertical electric field would lead to a band gap at charge
neutrality, which is inconsistent with that dictated by the
actual symmetries of the system [4].

We begin by briefly reviewing the symmetries and band
topology relevant for small-angle TBG, before defining tight-
binding models and providing a physical picture for their
construction. Finally we discuss the fragile topology of
the TBG flat bands and close with a discussion. Hence-
forth, we will focus on the single-valley problem with spin
ignored.

II. SYMMETRY AND TOPOLOGY OF TBG

In the following, we focus on the symmetries of the contin-
uum description [4,12], which are also exact for the highest-
symmetry commensurate lattice realizations [7,8,14,29]. A
more thorough review of these topics can be found in
Ref. [29].

The spatial symmetry group of TBG is generated by lattice
translations, C6 rotation, and a two-dimensional (2D) mirror
My which flips the y coordinate (more accurately, a layer-
exchanging twofold rotation in three dimensions) [51]. It is
also symmetric under time reversal T . In addition, at small
twist angle the two valleys are effectively decoupled, leading
to an additional Uv (1) valley charge conservation. This allows
one to consider the electronic degrees of freedom residing
in a single valley. Among the listed symmetries, only C6

and T exchange the two valleys; all the others, as well as
the combinations like C6T , leave the valley charge invariant.
Consequentially, the (magnetic) point group of the single-
valley problem is generated by C6T and My, and the problem
is described by the magnetic space group 183.188 (in the BNS
notation) [28].

One can readily compute the symmetry representations
furnished by the two nearly flat bands at different high-
symmetry momenta, which we list in Table I. Importantly,
one can check that no atomic insulator with the same

TABLE I. Symmetry representations furnished by the nearly flat
bands of twisted bilayer graphene [28,29], indicated by the eigen-
values of the generating symmetries of the point group. Eigenvalues
from degenerate bands are grouped by parenthesis.

Eigenvalue � K

C3 1, 1 (ω,ω∗)
My 1, −1 Not a symmetry

195455-2



FAITHFUL TIGHT-BINDING MODELS AND FRAGILE … PHYSICAL REVIEW B 99, 195455 (2019)

TABLE II. Summary of fully symmetric tight-binding models which capture the key features of the two active bands in twisted bilayer
graphene.

Number of bands Captures representations Possesses approximate
(per valley and per spin) Complementary bands are atomic of the higher-energy bands particle-hole symmetry Reference

4 × × × Ref. [29]
5 � × × Appendix B 3
6 � � × Appendix B 1
10 � � � Appendix B 2

symmetries will have the same set of symmetry representa-
tions (Appendix A), and therefore there is an obstruction for
constructing symmetric Wannier functions for the two nearly
flat bands. This alone implies the two relevant bands are
topologically obstructed from any tight-binding description
that respects all symmetries [28]. In addition, unlike the
familiar case of monolayer graphene [30], the two Dirac
points in the TBG band structures have the same chiral-
ity [2,13,15,30]. This is impossible in any two-band tight-
binding model and constitutes another Wannier obstruction
[28]. Curiously, the two mentioned obstructions, derived,
respectively, from the representations of My and the net chi-
rality of the Dirac points, are intertwined: it was shown in
Ref. [29] that when the only Dirac points are pinned to the
two (moiré) K points the mirror and chirality obstructions are
equivalent.

III. TIGHT-BINDING MODELS

In this section, we introduce three tight-binding models
involving different numbers of bands, namely, ten, six, or five,
which are summarized in Table II. Note that, throughout the
paper, the band counting assumes one focuses on a single
valley of TBG with spin ignored. As will be evident later,
all the models we present are constructed in the same spirit:
in each of the models, there will be two groups of bands.
The first group comprises two bands around zero energy,
which faithfully captures all the symmetry, topology, and
energetic features of the active bands in TBG; the second
group, which we will call “complementary bands,” corre-
sponds to the higher-energy bands in TBG. We will later show
in Sec. IV that the complementary bands in the models we
construct are all topologically trivial, in the sense that the full
filling of these complementary bands gives rise to an atomic
insulator. Despite their trivial nature, these complementary
bands cannot be discarded from the model, as their presence
is essential for resolving the topological obstruction in any
symmetric, real-space description involving only the active
bands [28,29].

A. A ten-band model

Let us now describe the mentioned ten-band model. In
our present symmetry setting, one can label the orbitals as
being either s, pz, or p±. Both s and pz orbitals transform
trivially under a C3 rotation, but pz flips sign under My while
s does not [52]. In contrast, the orbitals p± ≡ px ± ipy are
exchanged under My and form a doublet. A more systematic
tabulation of the symmetry properties of the orbitals can be

found in Appendix A. Our ten-band model comprises a pz

orbital and a pair of p± orbitals localized to sites forming
a triangular lattice (τ ), a s orbital on the kagome lattice (κ),
and a pair of p± orbitals forming a honeycomb lattice (η). For
brevity, we will describe the orbital content using the notation
(lattice, orbital), e.g., (τ, pz ) denotes the pz orbitals localized
to the triangular site. Similarly, we denote the associated
fermion operator by τ̂pz . The described degrees of freedom
are tersely summarized in Table III in this notation.

A prerequisite for any tight-binding modeling of TBG
is the capability of producing two isolated bands with
the targeted momentum-space symmetry representations
(Table I). This is guaranteed in our model by the following
representation-matching equation:

(τ, pz ) ⊕ (τ, p±) ⊕ (κ, s)
rep.= (η, p±) ⊕ (target), (1)

which one can verify using the comprehensive tabulation of
the symmetry data in Appendix A. The physical meaning of
Eq. (1) is that, representationwise, it is possible to construct
an atomic insulator, with the same symmetry properties as
(η, p±), within the six-band sub-Hilbert space defined by the
content on the left-hand side. In our ten-band model, we
add another, explicit set of (η, p±) orbitals to both sides of
the above equation, so that the full representation-matching
equation reads

(τ, pz ) ⊕ (τ, p±) ⊕ (κ, s) ⊕ (η, p±)0
rep.=

(η, p±)1 ⊕ (target) ⊕ (η, p±)2. (2)

Note that we have added subscripts 0 to 2 to clarify that they
represent different sets of physical degrees of freedom despite
sharing identical symmetry properties.

Guided by this observation, one can construct a model
with the targeted representations simply through the con-
struction of the mentioned atomic insulator. Let ĉ†

r be the

TABLE III. Orbital content of the ten-band model. τ , κ , and η,
respectively, denote the triangular, kagome, and honeycomb sites. s,
pz, and p± denote different orbital characters. One can also construct
a more minimal six-band model using only the orbitals listed in the
first three rows of the table.

Orbitals No. of bands

(τ, pz ) 1
(τ, p±) 2
(κ, s) 3
(η, p±) 4
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FIG. 1. Real-space orbitals. (a) Lattices and conventions. The
shaded region indicates the relative positions of the sites assigned
to the same unit cell. (b) The constructed quasiorbital h(B)

p+ in the real
space. ζ = ei2π/6 and ω = ζ 2. Going from top to bottom, the entries
in the three-component vectors attached to the triangular sites denote
the amplitude for the pz, p+, and p− orbitals; those attached to the
kagome sites denote the amplitude of their associated s orbital.

six-component fermion creation operators for the orbitals
assigned to the unit cell at r [Fig. 1(a)]. We want to construct
a localized “quasiorbital” wave function h(l )

p+;r(x) such that

ĥ(l )†
p+;r ≡ ∑

x ĉ†
xh(l )

p+;r(x) has the same symmetry properties as a
p+ orbital centered at a honeycomb site, labeled by l = A, B
in the unit cell r. This can be achieved by using a trial wave
function which vanishes everywhere except on the three near-
est kagome and triangular sites surrounding the honeycomb
site. Site symmetries reduce the freedom in the wave function
to four real parameters [53], which we denote by a through
d [Fig. 1(b)]. Once ĥ(l )†

p+;r is specified, using symmetries one

can generate ĥ(l )†
p−;r centered at the same site, as well as those

centered on the other sites. Note that we have not imposed
orthogonality between the h(l )

p±;r(x) wave functions, and so
their associated fermion operators do not obey the canonical
anticommutation relations.

We are now ready to define the ten-band model. Recall,
in the above, we have not utilized the (η, p±)0 orbitals in the
system. Since they have identical symmetry properties as the
ĥ(l )†

p+;r quasiorbitals we constructed, we can couple the two sets
in a minimal manner:

Ĥ (t, δ) = t
∑

r,l=A,B,ρ=p±

(
η̂(l )†

ρ;r ĥ(l )
ρ;r + H.c.

) + δ V̂ , (3)

where t is a real parameter, V̂ is a symmetry-allowed local
perturbation which we detail in Appendix B, and the di-
mensionless parameter δ ∈ [0, 1] controls the overall strength
of the perturbation. Note that the finite range of the wave
functions h(l )†

p+;r implies Ĥ is local [54].
Although the perturbation δV̂ in Eq. (3) is needed for

reproducing the detailed energetics features of the TBG band
structures, we remark that the essential physics of the model
can be understood by first setting δ = 0, as is shown in
Fig. 2(a). By construction, the band structure of Ĥ (t, 0) in-
cludes two exactly flat bands pinned at zero energy [Fig. 2(d);
see also Appendix B], the symmetry representations of which
must match those of the nearly flat bands in TBG. Very briefly,
these flat bands exist here for the same geometric reason as
that of the Lieb lattice [55]. To see why, consider any tight-
binding model defined on a lattice with two sets of orbitals,
which we label simply as α and β, and suppose that all the
bonds connect an α orbital to a β one. Due to this sublat-
tice symmetry, the Bloch Hamiltonian automatically takes an

FIG. 2. Band structures. (a, b) Bands from the ten-band Hamiltonian Ĥ (t0, δ). For both panels, we choose t0 ≡ 130 meV, and the wave-
function parameters (a, b, c, d ) = (0.110, 0.033, 0.033, 0.573). We set δ = 0 in (a) and 1 in (b). (c) Bands obtained from the continuum theory
[4,12] for twisted bilayer graphene with a twist angle of θ = 1.05◦, using the parameters described in Ref. [45]. The ten bands around charge
neutrality are highlighted. (d–f) A zoom-in of the two bands at charge neutrality for the corresponding panels in (a)–(c). The three-dimensional
plots in (e) and (f) are plotted over the first Brillouin zone centered at �, showing the presence of exactly two Dirac points pinned to K and
K′ = −K. Note that (e) is generated from our tight-binding model, whereas (f) is generated from the continuum model.
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off-diagonal form:

HLieb−like(k) =
(

0 hαβ (k)
h†

αβ (k) 0

)
. (4)

Generally, the energy bands of such a Lieb-like Hamiltonian
can be organized into bonding and antibonding pairs, which
have energies ±Ek due to the sublattice symmetry. However, if
there are, say, more α orbitals than β ones, then the mentioned
bonding/antibonding picture cannot gap out all the α degrees
of freedom from charge neutrality, which results in exactly
flat bands pinned to E = 0. More concretely, suppose there
are Nα and Nβ orbitals in the two respective sets; then there
will be at least |Nα − Nβ | exactly flat bands in the spectrum of
HLieb−like(k) [56].

Now recall that, in Eq. (3), the four quasiorbitals ĥ(l )
ρ;r are

defined only using the degrees of freedom in the six bands on
the left-hand side of Eq. (1), whereas the additional orbitals
η̂(l )

ρ;r are defined on an independent set of degrees of freedom,
namely, (η, p±)0 on the left-hand side of Eq. (2). As such
Ĥ (t0, δ = 0) is Lieb-like. The mismatch between the number
of degrees of freedom (six vs four) leads to two exactly
flat bands pinned to charge neutrality. In addition, we have
chosen the wave-function parameters a–d , listed in the caption
of Fig. 2, to reproduce the broad energetic features of the
higher-energy bands of TBG. Note that our model reproduces
the approximate Ek = −E−k particle-hole symmetry of the
higher-energy states in TBG, although this is not a good
symmetry of the nearly flat bands.

With all the key properties built in already, we simply
choose V̂ such that Ĥ (t0, 1) faithfully captures the energetics
of the ten bands near charge neutrality in TBG. This leads to
the band structure shown in Fig. 2(b), which closely resembles
that computed using the continuum theory of TBG [Fig. 2(c)].
In particular, the two bands near charge neutrality in Fig. 2(e)
touch only at the Dirac points pinned at K and K’, just like
those from the continuum theory [Fig. 2(f)]. As they furnish
the targeted symmetry representations in Table I, from the
results in Ref. [29] they must display both the mirror and
chirality Wannier obstructions; i.e., this ten-band model serves
as an explicit resolution of all the known Wannier obstructions
of the nearly flat bands of TBG.

B. A six-band model

As the dominant term in the ten-band model in Eq. (3)
can be viewed as a minimal coupling between the η and h
degrees of freedom, one could imagine the consequences of
“integrating out” the η fermions, which results in a low-energy
theory described in terms of the h degrees of freedom. In our
band-theory context, such a procedure can be done simply
by adding an arbitrarily large chemical potential to η, which
amounts to removing the four η bands from the Hilbert space.
The leads to a six-band low-energy Hilbert space with the
orbital content on the left-hand side of Eq. (1), but with the
dominant kinetic term involving only the four bands arising
from the h quasiorbitals; i.e., there will again be two nearly
flat bands near zero energy.

While the preceding picture explains the existence of a
six-band model, it is also desirable to construct such a model
in a more conventional manner in terms of mostly nearest-

FIG. 3. Band structures from a six-band model. (a) Color code
for the orbital characters. (b) The broad energetic features can be set
up using only the intraorbital dispersion. (c) Band structure from the
full model, with parameters detailed in Appendix B 1.

neighbor bonds. We will undertake this task below. Recall
that the electron density of the nearly flat bands in TBG
is localized to the “AA” regions, which form a triangular
lattice at the moiré scale [5,6,11,16,20–22]. This suggests a
tight-binding model with two orbitals placed on the triangular
site. To capture the existence of Dirac points at K and K’,
these orbitals should be p±, and naturally we anticipate the
nearly flat bands to overlap strongly with the (τ, p±) orbitals
in most of the Brillouin zone. However, the (τ, p±) bands
feature an additional quadratic touching [57] at the Gamma
point, which cancels the Dirac-point chirality. In contrast, in
TBG the two nearly flat bands are nondegenerate at �, and so
the (τ, p±) bands alone are incapable of capturing the �-point
behavior [28,43]. Therefore, we expect strong hybridization
between the other orbitals in the vicinity of �, such that the
wave functions of the two nearly flat bands correspond to the
singlet representations in (τ, pz ) and (κ, s).

Based on the above picture, we construct a six-band model
which captures all the salient features of TBG, as we show in
Fig. 3 and elaborate on in Appendix B 1.

C. A five-band model

In the above, we have introduced two (closely related)
tight-binding models, with ten or six bands, which captures
the key properties of both the two nearly flat bands as well as
the set(s) of four bands further away from charge neutrality.
Yet, since our ultimate goal is to provide a real-space descrip-
tion of the two nearly flat bands, it might be beneficial to
consider models with a smaller number of bands at the cost
of a less accurate description of the high-energy states. In this
subsection, we provide a five-band model constructed in this
spirit.

We remark that we have already introduced a four-band
model in Ref. [29], which also captures the symmetry and
band topology of the two active bands in TBG. However,
in the four-band model the complementary bands have the
same band topology as the active bands, and do not have
the appropriate symmetry representations to reproduce the
physical higher-energy bands in TBG. In contrast, our model
here faithfully reproduces the features of the TBG bands in the
energy window from roughly −100 meV to the top of the two
nearly flat bands. As is evident below, this five-band model
will still belong to the same class as those already constructed,
and it will capture all the energetic, symmetry, and topology
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FIG. 4. Real-space orbitals for the five-band model. (a) On each
of the triangular sites (filled yellow circles), we consider the three p
orbitals pz and p± ≡ px ± ipy; on each of the honeycomb sites (open
circles), we consider an s orbital. The centers of the nearest-neighbor
bonds between the honeycomb sites form a kagome lattice. (b) The
constructed quasiorbital ρ (1)

s centered at a kagome site, indicated by
a cross. Going from top to bottom, the entries in the three-component
vectors attached to the triangular sites denote the amplitude for the
pz, p+, and p− orbitals; those attached to the honeycomb sites denote
the amplitude of their associated s orbital. The other two quasior-
bitals labeled by l = 2, 3 can be obtained through symmetries.

features of the two nearly flat bands in TBG. In addition, the
three complementary bands in the model will again be atomic
in nature.

In parallel with the preceding discussions, our starting
point will be a representation-matching equation which is
analogous to Eq. (1), but involves only five bands:

(τ, pz ) ⊕ (τ, p±) ⊕ (η, s)
rep.= (κ, s) ⊕ (target). (5)

We will again construct a set of pseudo-orbitals which have
identical symmetry properties as (κ, s) but residing in the
Hilbert space defined by the five bands on the left. Due to
a shortage of alphabets we will denote the quasiorbital wave
functions by ρ (l )

s;r , where l = 1, 2, 3 labels the three kagome
sites in each unit cell. The site convention and a real-space
description of ρ (1)

s;r are provided in Fig. 4. The other two wave
functions can then be generated using the C3 symmetry, and
we have provided the explicit form of the Fourier transform of
the wave functions in Appendix B 3.

Next, we construct our Hamiltonian using the quasior-
bitals. By design, when the three quasiorbitals ρ (l )

s;r are pro-
jected away from zero energy, the remaining two bands will
capture the essential properties of the active bands in TBG.
Such projection can be effectively performed by simply giving
these quasiorbitals a negative “on-site” chemical potential
−t ′

0. Note that, given the nontrivial shape of these quasior-
bitals, such terms are not really on site in the original degrees
of freedom in the lattice, which are given by the left-hand side
of Eq. (5); rather they should be viewed as specific hopping
terms across the different orbitals. We further introduce ac-
tual on-site potentials μ′

j as perturbation, which leads to the
Hamiltonian

Ĥ (5) = −t ′
0

∑
r

3∑
l=1

ρ̂ (l )†
s;r ρ̂ (l )

s;r +
∑

r

∑
j

μ′
j ĉ

†
j;rĉ j;r, (6)

where j runs over the five sites (per unit cell) in (η, s) ⊕
(τ, pz ) ⊕ (τ, p±). The discussion on the corresponding Bloch

FIG. 5. Band structure from the five-band model. The fol-
lowing parameters are used: (ã, b̃, c̃, d̃ ) = (0.25, 0.2, 0.1, 0.67),
(μ′

pz
, μ′

p± , μ′
η ) = (−0.043, 0, 0.05)t ′

0, and t ′
0 = 80 meV. (a) The full

spectrum. (b) A zoom-in for the two nearly flat bands.

Hamiltonian can be found in Appendix B 3. We note that,
similar to Eq. (3), the main term in Eq. (6) serves to project
the quasiorbital degrees of freedom away from zero energy,
which, by construction, leaves behind states that faithfully
capture the nearly flat bands in TBG.

The band structure of Ĥ (5) is shown in Fig. 5 (the pa-
rameters used are provided in the figure caption). One sees
that this five-band model faithfully captures the energetics
from the top of the nearly flat bands down to ∼ − 100 meV.
In addition, we again find exactly two Dirac points in the
nearly flat bands, pinned, respectively, to K and K’. By
design, all the symmetry representations of the nearly flat
bands here are identical to those in TBG, and, therefore,
based on the results in Ref. [29] we again conclude these
two nearly flat bands showcase the known band topology of
TBG.

IV. FRAGILE TOPOLOGY

We have presented three tight-binding models, each con-
taining two isolated bands with all the known band topology
in TBG. At a glimpse, this might appear to follow the general
phenomenology of topological bands, which can only arise
in a tight-binding model when the topological invariants are
neutralized by complementary bands possessing the “opposite
topology.” Paradoxically, the complementary bands in our
model are constructed using quasiorbitals h which correspond
to an atomic insulator. This indicates that the complementary
bands in the ten-band model Ĥ (t0, 1) are all trivial, in that
they can be smoothly deformed into explicit atomic insula-
tors. More precisely, we will demonstrate this following a
trick described in Ref. [41], which relies on a deformation
Hamiltonian:

Ĥ ′
μ = Ĥ

(
fμ t0, f 2

μ

)

+ μ
∑

r,l=A,B,α=±

(
1

10
η̂(l )†

pα ;rη̂
(l )
pα ;r − ĥ(l )†

pα ;rĥ
(l )
pα ;r

)
, (7)

where we choose the dimensionless function fμ =
cos(πμ/2μ0) such that f0 = 1 and f−μ0 = fμ0 = 0, implying
Ĥ ′

μ=0 = Ĥ (t0, 1). Note that the numerical factor of 1/10 is
ad hoc and is included simply to match the energy scales
of the band gaps. Similarly, the precise form of fμ, as well
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FIG. 6. Deformation to atomic limits. (a) The band gaps � below
and above the two nearly flat bands stay open for all values of μ ∈
[−μ0, μ0] in Eq. (7). More than 4 × 104 momenta are sampled in
the Brillouin zone in determining �. We choose μ0 = t0 = 130 meV.
(b–d) Schematic band diagrams at various limits of the deformation.
(b) When μ = −μ0, the lowest four bands arise solely from the
(η, p±) orbitals and are therefore strictly atomic. Correspondingly,
the upper six bands, altogether, are also in a strict atomic limit.
(Dashed boxes indicate strictly atomic bands.) The same is true for
the case of μ = μ0 in (d), but with the role of the lowest and highest
bands exchanged. Since the band gaps are maintained throughout the
entire deformation, we can infer that all the (light and dark) purple
blocks correspond to trivial, atomic bands. The nontrivial nearly flat
bands at charge neutrality, therefore, must feature fragile topology.

as the appearance of f 2
μ, have little physical meaning; these

are just convenient choices that suffice for our purpose. For
μ = μ0 > 0, the four highest bands coincide exactly with
the atomic insulator arising from the full filling of the ηp±
orbitals, and the same is true for the four lowest bands when
μ = −μ0. As shown in Fig. 6(a), the two band gaps in the
spectrum never collapse for all μ ∈ [−μ0, μ0]. This provides
the needed adiabatic deformation to the explicit atomic limits
[Fig. 6(b)].

Curiously, as both the full tight-binding model as well as
the complementary bands correspond to atomic insulators, the
band topology of the two nearly flat bands conforms to the
following equation:

(trivial) = (trivial′) ⊕ (nontrivial), (8)

where we say a set of bands is trivial if and only if they admit a
full set of symmetric, localized Wannier functions, i.e., the full
filling of which leads to an insulator which can be smoothly
deformed into a strict atomic limit [31,58–60]. Equation (8)
is the defining property of fragile topology [41,61,62]. More
concretely, we say the band topology of a set of gapped
nontrivial bands is fragile if and only if one can append to
the set another trivial set of bands such that, altogether, the
augmented set is trivial; otherwise, we say the band topology
is stable. As defined, stable and fragile topology are mutually
exclusive concepts [41].

Since the band topology of our ten-band model conforms
to Eq. (8), our model also serves to prove that the identified
form of band topology is fragile in nature. For completeness,
in Appendix C we establish that the band topologies in our six-
band and five-band models are also manifestly fragile. This
suggests that the interesting correlated behavior observed in

TBG [2,3] could be related to interacting electrons occupying
bands with an unconventional form of band topology.

Let us make two conceptual remarks before we close. First,
we note that the fragile phenomenology of our models will
persist as long as we retain C2T and lattice translations—the
symmetries protecting the Dirac points. Therefore, upon the
breaking of My and C3, our models provide an example of
fragile topology not diagnosable using methods reliant on
symmetry representations [59,60]. C2T -protected band topol-
ogy has been studied in earlier works [62–65]. In particular, as
a corollary from the fragile nature of our models, we remark
that the 2D “Stiefel-Whitney insulators” proposed in Ref. [65]
can be atomic.

Second, in this paper, we have provided three tight-binding
models the properties of which are summarized in Table II.
In particular, all three models have the property that the
complementary bands are atomic in nature, as we demonstrate
explicitly in Appendix C. Such models should be contrasted
with the four-band model we introduced in Ref. [29], as
the complementary bands there have the same topological
properties of the active bands in TBG. An interesting open
question is whether or not the unconventional fragile nature
of the band topology in TBG intertwines with the corre-
lated physics. To answer this question, it is desirable to
study models like those introduced in the present paper, for
which the fragile nature of the bands is manifest. This then
raises a conceptual question: what is the minimum number
of bands required in constructing such models? This ques-
tion can be answered by combining analyses on symmetries
(Appendix A) and band topology (Appendix D). The detailed
argument on how to determine the minimum number of
bands required can be found in Appendix D; here, we merely
quote the result: at least five bands are required, and, there-
fore, the five-band model we introduced is minimal in this
regard.

V. DISCUSSION

In this paper, we have critically examined the origin of
the Wannier obstruction of the nearly flat bands in TBG,
and identify it as fragile in nature [41]. The understanding
of this Wannier obstruction is key to constructing tight-
binding models which are important for future theoretical
works on TBG. In contrast to a Wannier obstruction arising
from stable topology, which necessarily requires bands with
the opposite topological invariant to be supplied to resolve
the obstruction, here we have shown that the inclusion of
trivial atomic bands is sufficient to resolve the fragile ob-
struction in TBG. This is achieved by constructing tight-
binding models that are both faithful and realistic, in that
the additional bands not only resolve the Wannier obstruc-
tion but also capture the energetics of nearby electronic
bands.

Our constructions are based on the observation encapsu-
lated in Eq. (1) and its similarity with Eq. (8), where the latter
is the defining phenomenology of fragile topology. However,
we caution that such representation-matching equations are
not unique (see Appendix A for more details). For instance,
one can interchange s ↔ pz in Eq. (1) and it still holds.
Alternatively, one might also swap some of the orbitals used
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through the equality (τ, pz ) ⊕ (τ, p±)
rep.= (κ, s) (and similarly

with s ↔ pz), despite the fact that the two sides of this equa-
tion are not adiabatically deformable into one another [60,66].
As a concrete example, we utilize a different representation-
matching equation to construct a five-band model in
Appendix B 3. The smaller number of bands, however, comes
at the cost of not faithfully capturing the representations of
the higher-energy states, as we showed in the comparison in
Table II.

The natural next step is to derive the dominant interac-
tion terms in the problem by connecting our model to the
microscopic degrees of freedom in TBG. Ideally, we would
like to isolate the relevant bands in the continuum model
and construct Wannier states which correspond to our tight-
binding orbitals. We caution, however, that band crossings
may occur at higher energies, so that isolating the relevant
bands may require some judgment, although we do not expect
this to affect the low-energy physics. More concretely, even if
it is not possible to naturally identify a set of higher-energy
bands in TBG which are separated by band gaps and are
atomic in nature, one can still disentangle effective sets of
bands with the desired properties from the rest of high-energy
states [42]. Importantly, these bands can be constructed in
such a way that they differ from the actual energy eigenstates
only at high energy, and therefore do not affect the low-energy
property of the resulting model.

Another interesting future direction is to study how the
unconventional nature of fragile topology might inform
the physics of the interaction problem. Since the com-
plementary trivial bands are fully filled, they correspond
to an atomic insulator. In the limit where the band gap
is much larger than the interaction strength, the problem
should reduce to one involving certain local constraints
on the Hilbert space. We leave these questions for future
works.

Note added. In finalizing this paper, Ref. [67] appeared,
which proposes a four-band (per valley and per spin) tight-
binding model similar to that described in Ref. [29]. The
paper also suggests that the band topology in TBG is stable
rather than fragile, based on the properties of Wilson loops
[63–65]. As shown in Appendix D, the nearly flat bands in
our tight-binding models have the same nontrivial Wilson
loop invariant as identified in Ref. [67]. However, we have
explicitly demonstrated that their band topology is fragile.
As stable and fragile topologies are mutually exclusive, this
implies that the known Wannier obstructions in TBG cannot
be stable.
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TABLE IV. Action of symmetries on the real-space orbitals.
Given a symmetry g and the fermion creation operator ĉ† for an
orbital, we tabulate the outcome of ĝĉ†ĝ−1. Note that the action of
antiunitary operators is ambiguous up to an arbitrary choice on U (1)
phases. Also, the time-reversal-like symmetry T̃ is not a symmetry of
our problem, as the actual time-reversal symmetry of twisted bilayer
graphene exchanges the two valleys. We include T̃ here merely to
simplify the discussion, and it would be broken explicitly. We let
ω ≡ ei2π/3.

g ŝ† p̂†
z p̂†

+ p̂†
−

C3 ŝ† p̂†
z ω p̂†

+ ω∗ p̂†
−

My ŝ† − p̂†
z p̂†

− p̂†
+

C2T ŝ† p̂†
z p̂†

− p̂†
+

T̃ ŝ† p̂†
z − p̂†

− − p̂†
+

APPENDIX A: SYMMETRY REPRESENTATIONS

In this Appendix, we provide some details regarding the
symmetry representations in the problem. In Table IV we
provide the symmetry properties of the fermion operators.
Note that we have included a time-reversal-like operation T̃ ,
which is not a symmetry of the problem, but is considered for
simplifying our discussion.

In Table V, we provide the momentum-space representa-
tions arising from the full filling of orbitals in real space, i.e.,
atomic insulators. The real-space orbitals we will consider
include (τ , s), (τ , pz), (τ , p±), (η, s), (η, pz), (η, p±),
(κ , s), and (κ , pz). Notice that when a pair of states at �

have C3 representation of (ω, ω∗) these two states must have
My eigenvalues (+1, −1). In other words, these two states
form the two-dimensional representation of symmetry D3 �
〈C3〉 � 〈My〉, where 〈g〉 indicates the subgroup generated by
the element g.

From Table V, one can find all possible representation-
matching equations that can be used to resolve the Wan-
nier obstruction in a “fragile” manner. (Alternatively, one
could have also resolved it by appending topological bands,
as we discussed in Ref. [29].) For example, there are
two representation-matching equations involving only three
bands:

(τ, s) ⊕ (η, pz )
rep.= (τ, pz ) ⊕ (target),

(τ, pz ) ⊕ (η, s)
rep.= (τ, s) ⊕ (target). (A1)

This is the minimal number of bands that are needed to
resolve the obstruction in terms of representations. However,
as we will see in Appendix D this resolution cannot correctly
capture the band topology of the two nearly flat bands in TBG.
Building from these two representation-matching equations,
one can add trivial bands on both sides of the equation and get
a new equation. We will call the latter a derived equation from
the former.

When the number of bands involved is 4, the
representation-matching equations that can potentially lead to
a fragile resolution of the obstruction are all derived equations
of the above ones. With five bands, however, there are new
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TABLE V. The resulting symmetry representations at high-symmetry points from various real-space orbitals. Eigenvalues from degenerate
bands are grouped by parentheses. Note that My is not a symmetry at K.

(τ , s) � K (τ , pz) � K (τ , p±) � K

C3 1 1 C3 1 1 C3 (ω, ω∗) (ω, ω∗)
My 1 My −1 My (1, −1)

(η, s) � K (η, pz) � K (η, p±) � K

C3 1, 1 (ω, ω∗) C3 1, 1 (ω, ω∗) C3 (ω, ω∗), (ω, ω∗) 1, 1, (ω, ω∗)
My 1, 1 My −1, −1 My (1,−1), (1, −1)

(κ , s) � K (κ , pz) � K

C3 1, (ω, ω∗) 1, (ω, ω∗) C3 1, (ω, ω∗) 1, (ω, ω∗)
My 1, (1,−1) My −1, (1,−1)

representation-matching equations:

(η, pz ) ⊕ (κ, s)
rep.= (κ, pz ) ⊕ (target), (η, s) ⊕ (κ, pz )

rep.= (κ, s) ⊕ (target). (A2)

From these equations and using

(τ, s) ⊕ (τ, p±)
rep.= (κ, s), (τ, pz ) ⊕ (τ, p±)

rep.= (κ, pz ), (A3)

one obtains

(η, pz ) ⊕ (τ, s) ⊕ (τ, p±)
rep.= (κ, pz ) ⊕ (target)

rep.= (τ, pz ) ⊕ (τ, p±) ⊕ (target),

(η, s) ⊕ (τ, pz ) ⊕ (τ, p±)
rep.= (κ, s) ⊕ (target)

rep.= (τ, s) ⊕ (τ, p±) ⊕ (target). (A4)

When there are six bands, there are also new represen-
tation-matching equations that are not derived from the equa-
tions with fewer bands:

(τ, pz ) ⊕ (τ, p±) ⊕ (κ, s)
rep.= (η, p±) ⊕ (target),

(τ, s) ⊕ (τ, p±) ⊕ (κ, pz )
rep.= (η, p±) ⊕ (target),

(A5)

where the first one is precisely Eq. (1) used in the main text.
From these equations and using Eq. (A3), one can obtain other
equations:

(τ, s) ⊕ (τ, pz ) ⊕ (τ, p±) ⊕ (τ, p±)
rep.= (η, p±) ⊕ (target),

(κ, pz ) ⊕ (κ, s)
rep.= (η, p±) ⊕ (target).

(A6)

Up to six bands, it is straightforward to check that the above
are all the independent representation-matching equations that
can potentially lead to a fragile resolution of the Wannier
obstructions. Here, by “independent” we mean that these
equations cannot be viewed as derived from other equations.

APPENDIX B: DETAILS OF THE BLOCH HAMILTONIANS

In this Appendix, we provide further details on the Bloch
Hamiltonians constructed in this paper. In particular, we pro-
vide the explicit expressions for the Hamiltonians. Unlike the
presentation in the main text, we find it more natural to first
discuss the six-band model, and then move on to the ten-band
one. We will end with a discussion on the five-band model.

1. Six-band model

Here, we document explicitly the symmetry-allowed terms
entering into the six-band model we constructed. In the fol-
lowing, all the coupling parameters t are real numbers.

Recall our six-band Hilbert space arises from (τ, pz ),
(τ, p±), and (κ, s). Let us write the fermion operator for
orbitals in the unit cell r as

ĉ†
r ≡ (

τ̂ †
pz ;rτ̂

†
p+;rτ̂

†
p−;rκ̂

(1)†
s;r κ̂ (2)†

s;r κ̂ (3)†
s;r

)
, (B1)

which fixes our basis choice of the Bloch Hamiltonian.
As discussed in the main text, the terms in our six-band

Hamiltonian will mostly be conventional nearest-neighbor
bonds, with the sole exception of a second nearest-neighbor
bond included for (κ, s). Let us discuss these terms one
by one. First, the nearest-neighbor bond between the (τ, pz )
orbitals takes the standard form on the triangular lattice:

Hpz = tpz (φ01 + φ11 + φ10 + H.c.), (B2)

where we let φlm ≡ e−ik·(la1+ma2 ), and we denote negative
numbers by l̄ ≡ −l .

The nearest-neighbor couplings for the (τ, p±) orbitals are
slightly more complicated due to the two-orbital structure.
First, the intraorbital piece is identical to Hpz , but with tpz →
tp± and multiplied by the 2 × 2 identity matrix. Second, there
is also an interorbital coupling, which in momentum space is
given by

Cp± p± = t+
p± p± (φ01 + φ1̄1̄ω + φ10ω

∗)

+t−
p± p± (φ01̄ + φ11ω + φ1̄0ω

∗), (B3)
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FIG. 7. Coupling terms in the six-band model. The full coupling terms consist of the indicated hopping together with their Hermitian
conjugates. We always take the center site to be a triangular site in the “home” unit cell, and indicate the unit-cell coordinates la1 + ma2 of
connected sites by (lm) with l̄ ≡ −l . For the kagome sites in (e) and (f), we further specify their sublattice indices. The strength of the terms
in panels (a)–(f) are, respectively, denoted by t+

p± p± , t−
p± p± , t+

p± pz
, t−

p± pz
, t+

κ p± , and t−
κ p± .

where ω = ei2π/3. This gives the Bloch Hamiltonian

Hp± = tp± (φ01 + φ11 + φ10 + H.c.)

(
1 0
0 1

)

+
(

0 C†
p± p±

Cp± p± 0

)
. (B4)

Next, we consider the kagome lattice. Aside from the
standard nearest-neighbor bond tκ , we find it natural to also in-
corporate the second nearest-neighbor bond t ′

κ , for otherwise
there would be an artificial (almost) flat band in the spectrum.

This gives

Hκ =tκ

⎛
⎝ 0 φ1̄0 1

1 0 φ01̄
φ11 1 0

⎞
⎠ + t ′

κ

⎛
⎝ 0 φ1̄1̄ φ1̄0

φ01̄ 0 φ10

φ01 φ11 0

⎞
⎠ + H.c.

(B5)

Lastly, we consider the nearest-neighbor coupling between
the different lattices. In momentum space they are character-
ized by

Cp± pz = it+
p± pz

(
φ01 + φ1̄1̄ ω + φ10 ω∗

−(φ01̄ + φ11 ω∗ + φ1̄0 ω)

)
− it−

p± pz

(
φ01̄ + φ11 ω + φ1̄0 ω∗

−(φ01 + φ1̄1̄ ω∗ + φ10 ω)

)
,

Cκ p± = t+
κ p±

⎛
⎝ φ1̄0 φ1̄1̄

φ1̄1̄ ω∗ ω

ω φ1̄0 ω∗

⎞
⎠ − t−

κ p±

⎛
⎝ φ1̄1̄ φ1̄0

ω∗ φ1̄1̄ ω

φ1̄0 ω ω∗

⎞
⎠.

(B6)

Here, the subscript p± pz indicates coupling between the
(τ, p±) and the (τ, pz ) orbitals, and κ p± indicates that be-
tween (κ, s) and (τ, p±). The real-space form of all the
nontrivial couplings above is represented diagrammatically in
Fig. 7.

Altogether, the full Bloch Hamiltonian of the six-band
model is given by

H (6)
k =

⎛
⎝Hpz + μpz C†

p± pz
0

Cp± pz Hp± + μp± C†
κ p±

0 Cκ p± Hκ + μκ

⎞
⎠ (B7)

where we have added relative chemical potentials μi

across the different lattices. For reasons that will become
clearer later, we find it convenient to reparametrize them

as

μpz ≡ −6tpz + δpz , μp± ≡ 3tp± + δp± ,

μκ ≡ −4(tκ + t ′
κ ) + δκ . (B8)

Before we proceed, we make two remarks regarding the
model parameters. First, note that we have ignored the cou-
pling between the (τ, pz ) and (κ, s) orbitals, as we find its
inclusion to be unnecessary for reproducing the key energetic
features of the dispersion. In practice, such terms are sym-
metry allowed and would never be exactly zero, but since we
only address symmetry-robust features in the problem their
presence has little physical implications. As such, we choose
to keep it at zero to simplify the discussion.

Second, we have parametrized the coupling strengths
such that, when t+

p± p± − t−
p± p± = t+

p± pz
− t−

p± pz
= t+

κ p± − t−
κ p± =
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0, H (6) will be T̃ invariant. Since the time-reversal-like opera-
tion T̃ is not an actual symmetry of the problem, this relation
will not hold in our model parameters. This parametrization is
nonetheless adopted as it provides a simple way to control the
degree of T̃ breaking in the spectrum.

Next, we expand on the discussion in the main text con-
cerning a physical picture for our model parameters. Recall
that the electronic weights of TBG sit mostly at the AA
spots, which form a triangular lattice at the moiré scale
[5,6,11,16,20–22]. In addition, the Dirac points at K and K’
are naturally explained by the symmetry characters of the
(τ, p±) orbitals. The main nontrivial feature of the nearly
flat bands, therefore, stems from the fact that at � points the
nondegenerate bands cannot come from the (τ, p±) orbitals
due to a mismatch in the symmetry representations. Rather,
in our Hilbert space they can only arise from the (τ, pz ) and
(κ, s) orbitals. Our goal is to choose parameters such that the
orbital characters of the nearly flat bands behave as expected
across the entire Brillouin zone (BZ).

First, let us ignore all the nontrivial coupling terms by
setting t±

p± p± = t±
p± pz

= t±
κ p± = 0. As discussed, the nearly flat

bands will be formed by the (τ, pz ) and (κ, s) orbitals at �,
and the (τ, p±) Dirac points at K and K’. In our parametriza-
tion, we can arrange all these orbitals to be at zero energy
by setting δpz = δp± = δκ = 0. Furthermore, by adjusting the
values of δpz and δκ we can set the bandwidth of the nearly flat
bands.

As the wave functions of the nearly flat bands at � must
arise from the (τ, pz ) and (κ, s) orbitals, we should bring
down the energy of the (τ, p±) bands at �. This is achieved by
choosing tp± < 0. This sets up the required orbital characters
for the bands near zero energy: (τ, pz ) and (κ, s) at � but
(τ, p±) in the rest of the BZ. We are then left with the (τ, pz )
and (κ, s) bands at most of the BZ, as well as the (τ, p±)-
Dirac point at �. Observe that the bandwidth of the four
connected bands below the nearly flat bands sets the dominant
energy scale in the band manifold we intend to describe. This
bandwidth can be reconciled with the size of tκ , and therefore
we choose it to be the reference energy scale and measure all
the other terms with respect to it. We also choose the values
of tpz and t ′

κ to reproduce the broad energetic features of the
bands.

TABLE VI. Hopping parameters in the six-band model. We
abbreviate “nearest neighbor” to “nnbr.” We set the dominant energy
scale to be tκ = 27 meV, and measure all the other terms relative to
that.

Parameter Meaning Ratio to tκ

δpz ≡ μpz + 6tpz (τ, pz ) chemical potential 0
δp± ≡ μp± − 3tp± (τ, p±) chemical potential −0.23
δκ ≡ μκ + 4(tκ + t ′

κ ) (κ, s) chemical potential 0.25
tpz (τ, pz ) nnbr 0.17
tp± (τ, p±) intraorbital nnbr −0.017
t+
p± p± (τ, p±) interorbital nnbr −0.065

t−
p± p± (τ, p±) interorbital nnbr −0.055

tκ (κ, s) nnbr 1
t ′
κ (κ, s) second-nnbr 0.25

t+
p± pz

(τ, p±)-(τ, pz ) nnbr 0.095
t−
p± pz

(τ, p±)-(τ, pz ) nnbr 0.055
t+
κ p± (κ, s)-(τ, p±) nnbr 0.6

t−
κ p± (κ, s)-(τ, p±) nnbr 0.2

Figure 3(b) in the main text shows the band dispersion
we obtained following the discussion above. Observe that
the broad energetic features are already in place. It remains
to turn on the nontrivial couplings between the orbitals, and
open band gaps to isolate the two nearly flat bands at the
top. Our chosen parameters are tabulated in Table VI, and
the corresponding band structure is shown in Fig. 3(c) in the
main text. Note that some parameters are roughly an order of
magnitude smaller than the others; they are adjusted to capture
the fine energetic features in the nearly flat bands.

2. Ten-band model

Next, we discuss the terms in the ten-band model. Here,
the dominant energetic features are imprinted by the choice of
the quasiorbital fermion operator ĥ(l )†

p+;r ≡ ∑
x ĉ†

xh(l )
p+;r(x). We

have already provided the explicit form of the localized wave
functions h(l )

p+;r(x) in real space in Fig. 1(b) of the main text.
However, it will be convenient to also write down explicitly
the Fourier transform of these wave functions in momentum
space:

h(A)
p+;k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(ω + φ11ω
∗ + φ01)ζ ∗a

(ω∗ + φ11ω + φ01)ζb

(1 + φ11 + φ01)c

−iφ1̄0d

−iω d
−iφ01ω

∗d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, h(A)
p−;k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + φ11ω
∗ + φ01ω)ζ ∗a

(1 + φ11 + φ01)c

(1 + ωφ11 + ω∗φ01)ζb

−iφ1̄0d

−iω∗d

−iφ01ω d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

h(B)
p+;k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ω + φ10ω
∗ + φ11)ζa

(ω∗ + φ10ω + φ11)ζ ∗b

(1 + φ10 + φ11)c

id

iω d

iω∗d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, h(B)
p−;k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(ω + φ10 + φ11ω
∗)ζa

(1 + φ10 + φ11)c

(ω∗ + φ10 + φ11ω)ζ ∗b

id

iω∗d

iω d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B9)
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FIG. 8. The leading perturbation to the ten-band model, which
breaks the undesirable T̃ invariance. Each circle denotes a honey-
comb site, with the orbital p± indicated.

Furthermore, it is natural to group these four column vectors
into a single 6 × 4 matrix:

hk = (
h(A)

p+;k h(A)
p−;k h(B)

p+;k h(B)
p−;k

)
. (B10)

The Bloch Hamiltonian corresponding to Eq. (3) with δ = 0
can then be written as

Hk(t, 0) = t

(
06×6 hk

h†
k 04×4

)
. (B11)

Note the block structure of H (t, 0); we see immediately
that H (t, 0) anticommutes with 16×6 ⊕ (−14×4), implying
Hk(t, 0) will be particle-hole symmetric at every k. Also, as
h†

k is a 4 × 6 rectangular matrix, the equation

h†
kϕ = 0 (B12)

must have at least two nontrivial solutions at every k. In other
words, there will be (at least) two exactly flat bands at zero
energy in the spectrum of H (t, 0) [Figs. 2(a) and 2(d) in the
main text]. For generic choices of the parameters a−d , these
will be the only states at zero energy, and they serve as the
precursor for the nearly flat bands in the final model.

Our next step is to add generic perturbations to reproduce
the actual energetic features of the TBG spectrum. There
are two main features which we wish to capture: (i) the
dispersion of the nearly flat bands and (ii) the absence of T̃
in the higher-energy bands. For (i), we simply add a subset of
the terms we used in constructing the six-band model. For (ii),
we consider an additional nearest-neighbor coupling between
the (η, p±) orbitals, which are present only in the ten-band
Hilbert space. As in the previous discussion, we represent
the term diagrammatically in Fig. 8, and provide the explicit

TABLE VII. Hopping parameters in the perturbation V̂ to the
ten-band model. We abbreviate “nearest neighbor” to “nnbr.” We
measure the strengths of the various terms relative to the dominant
one, tη = 32.5 meV. All terms present in Table VI but not here are
set to zero.

Parameter Meaning Ratio to tη

δpz ≡ μpz + 6tpz (τ, pz ) chemical potential −0.100
δκ ≡ μκ + 4(tκ + t ′

κ ) (κ, s) chemical potential 0.110
tpz (τ, pz ) nnbr 0
tp± (τ, p±) intraorbital nnbr 0.003
t−
p± p± (τ, p±) interorbital nnbr 0.004

tκ (κ, s) nnbr 0
t ′
κ (κ, s) second-nnbr 0

t+
p± pz

(τ, p±)-(τ, pz ) nnbr 0.016
t+
κ p± (κ, s)-(τ, p±) nnbr 0.016

t−
κ p± (κ, s)-(τ, p±) nnbr −0.016

tη eiφη (η, p±) nnbr i

expression

Hη = tη

(
0 eiφη (1 + φ01̄ + φ10)

e−iφη (1 + φ01 + φ1̄0 ) 0

)

⊗ 12×2, (B13)

where tη, φη are real parameters. In order to break the unde-
sirable T̃ invariance, we will choose φη �= 0, π .

Altogether, the perturbation to the ten-band model is, in a
block-matrix form, given by

Vk =

⎛
⎜⎜⎝

μpz C†
p± pz

0 0
Cp± pz Hp± + μp± C†

κ p± 0
0 Cκ p± μκ 0
0 0 0 Hη

⎞
⎟⎟⎠, (B14)

where the four blocks correspond, respectively, to the (τ, pz ),
(τ, p±), (κ, s), and (η, p±) orbitals. The chosen parame-
ters for the relative strengths of the terms are provided in
Table VII. Note that, if we switch off all the perturbations
other than Hη, the two bands at charge neutrality will remain
exactly flat.

3. Five-band model

Here, we provide the Bloch Hamiltonian for the five-band
model defined in Sec. III C of the main text. Similar to our
discussion of the ten-band Hamiltonian, the model is formu-
lated in terms of the quasiorbitals ρ (l )

s;r defined in Fig. 4. Under
Fourier transform, one finds

ρ
(1)
s;k =

⎛
⎜⎜⎜⎜⎝

iã(φ11 − φ10)
b̃φ11 + c̃ φ10

c̃ φ11 + b̃φ10

d̃∗ φ10

d̃

⎞
⎟⎟⎟⎟⎠, ρ

(2)
s;k =

⎛
⎜⎜⎜⎜⎝

iã(1 − φ11)
ω(b̃ + c̃ φ11)
ω∗(c̃ + b̃φ11)

d̃∗

d̃

⎞
⎟⎟⎟⎟⎠, ρ

(3)
s;k =

⎛
⎜⎜⎜⎜⎝

iã(φ10 − 1)
ω∗(b̃φ10 + c̃)
ω(c̃ φ10 + b̃)

d̃∗ φ01̄

d̃

⎞
⎟⎟⎟⎟⎠, (B15)

where ã, b̃, c̃ are real and d̃ can be complex. Going
from top to bottom, the entries correspond to the fermion

operators τ̂pz ;k, τ̂p+;k, τ̂p−;k, η̂
(A)
s;k , and η̂

(B)
s;k . Furthermore, we

again aggregate the three column vectors into a 5 × 3
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FIG. 9. Evolution of the band gaps above and below the two
nearly flat bands in the deforming Hamiltonians for (a) the six-band
model in Eq. (C1) and (b) the five-band model in Eq. (C2). This
establishes an adiabatic deformation of the complementary bands in
these models to a strict atomic insulator. More than 4 × 104 momenta
are sampled in the BZ in determining �.

matrix ρk ≡ (ρ (1)
s;k ρ

(2)
s;k ρ

(3)
s;k ). Then we can write the Bloch

Hamiltonian as

H (5)
k = −t ′

0ρkρ
†
k + diag(μ′

pz
, μ′

p± , μ′
p± , μ′

η, μ
′
η ), (B16)

where the μ′
i are again chemical potential. Again, if we set

μ′
i = 0, there will be two exactly flat bands at zero energy,

and, conversely, one can reproduce the energetic features of
the two nearly flat bands simply by adjusting the chemical
potentials μ′

i.

APPENDIX C: DEFORMATION TO EXPLICIT ATOMIC
LIMITS FOR THE SIX- AND FIVE-BAND MODELS

For completeness, we demonstrate the triviality of the
complementary bands in the six- and five-band models in this
Appendix. Unlike the ten-band model, our six-band model
was defined using only conventional hopping terms without
resorting to the notion of quasiorbitals. Consequently, the four
complementary bands are not automatically trivial. This can
be settled by a similar deformation to an explicit atomic limit,
achieved by first augmenting the Hilbert space to include
the (η, p±) bands, and then writing down a deformation
Hamiltonian akin to that in Eq. (7) in the main text:

H
′(6)
μ = t0 cos

(
πμ

2μ0

)(
0 h̃k

h̃†
k 0

)
+ μ

( 1
μ0

H (6)
k 0

0 1
101

)
.

(C1)

Here, h̃k is identical to that defined in Appendix B 2, but
with a different set of wave-function parameters (a, b, c, d ) =
(0.48 − 0.24i, 0.13 + 0.42i, 0.04 + 0.30i, 0.24 − 0.29i). As
before, we set t0 = μ0 = 130 meV.

When μ = μ0, the lowest four bands coincide with that
of H (6); when μ = −μ0, the lowest four bands correspond to
the strict atomic insulator arising from the (η, p±) orbitals. In
Fig. 9(a), we plot the evolution of the band gaps above and
below the two nearly flat bands at charge neutrality. The gaps

never close, and hence H
′(6)
μ represents a smooth deformation

of the lowest four bands of H (6) to a strict atomic insulator.
Next, let us show that the three complementary bands

in our five-band model are atomic in nature. This is again
anticipated, as the bands are constructed through the notion of
quasiorbitals transforming in the same way as (κ, s). We will
demonstrate it explicitly in the same manner as it was done
for the six-band model: We first augment the Hilbert space to
introduce explicitly a set of (κ, s) orbitals, and then consider
the deformation Hamiltonian

H
′(5)
μ = t ′

D cos

(
πμ

2μ0

)(
0 ρk

ρ
†
k 0

)
+ μ

( 1
μ0

H (5)
k 0

0 1
41

)
,

(C2)

where all the parameters are the same as those listed in the
caption of Fig. 5, and we set μ0 = t ′

D = t ′
0 = 80 meV. The

evolutions of the band gaps above and below the two nearly
flat bands are shown in Fig. 9(b). As with the other models, the
gaps never close, which establishes an adiabatic deformation
of the three complementary bands to a strict atomic limit.

APPENDIX D: “WILSON LOOP” ANALYSIS

In Ref. [67], it was proposed that the band topology of
the two nearly flat bands of TBG could be inferred from
a certain topological property of the Wilson loop, and the
authors further suggested that this band topology is “stable,”
in that it will survive even in the presence of additional trivial
degrees of freedom.

In essence, “Wilson loops” are the multiband generaliza-
tion of the Berry phase. To be self-contained, we define it as
follows: Consider a set of n bands the eigenvectors of which
are collected into a matrix �k for every k. Let C be a closed
path in the BZ, and let {ki} be a discretization of C into N
momenta such that |ki+1 − ki| → 0 as N → ∞. We further
label the momenta such that kN = k1 + b, where b (possibly
= 0) is a reciprocal-lattice vector encoding the topological
property of C (as a loop over the BZ). Then we define the
Wilson loop to be the n × n matrix

W (C) ≡ lim
N→∞

�
†
k1

�k2�
†
k2

. . . �kN−1�
†
kN−1

�kN , (D1)

where care must be taken to relate �kN = Uk1,b�k1 for some
unitary matrix Uk1,b. W (C) is unitary when N → ∞, and in
the presence of C2T symmetry it can be further shown to be
orthogonal [62–65,67].

Following the recipe in Ref. [67], we compute W (C) for a
particular set of contours: write any k in the BZ as k = k‖

2π
b‖ +

k⊥
2π

b⊥, where b‖ and b⊥ are distinct reciprocal-lattice vectors.
Then pick C to be “straight lines” running along b‖ wrapping
around the BZ once. The different contours are then labeled by
the remaining coordinate k⊥, and one studies the properties of
the family of Wilson loops {W (k⊥) : k⊥ ∈ [0, 2π )}.

We compute this Wilson loop spectrum for our ten-band
model H (t0, 1) [Eq. (3) in the main text], choosing b‖ = b2

and b⊥ = b1. The results are shown in Fig. 10, which can be
studied using the extensive results derived earlier in Ref. [65]
concerning the C2T -protected topological properties of the
Wilson loops.
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FIG. 10. Wilson loop spectra computed following the scheme described in Ref. [67], for the following set of bands in the ten-band model:
(a) the two nearly flat bands at charge neutrality, (b) the lowest four bands, and (c) the six bands of (a) and (b) combined. Note that a nontrivial
spectral flow, which forbids any atomic description, is found only in (a). This is consistent with the fragile nature of the band topology.

The Wilson loop spectrum for the two nearly flat bands
is shown in Fig. 10(a). We find the same nontrivial spectral
flow for the nearly flat bands as in Ref. [67]. This is expected,
as it is quite likely that the Z-valued Wilson loop invariant
suggested in Ref. [67], arising from π1[O(2)] = Z as was
noted earlier in Refs. [62,65], is equivalent to the chirality
obstruction we identified in Ref. [28]. From the spectrum, one
can utilize the characterization in Ref. [65] to infer that the
set of two nearly flat bands has trivial weak invariants [which
are simply one-dimensional (1D) Berry phases quantized to
0 vs π ], but a nontrivial second Stiefel-Whitney (SW) class
[68] of w2 = 1 ∈ Z2. The meaning of having w2 = 1 ∈ Z2 is
that there is an O(n) monopole inside the BZ torus [63,65].
For two-band problems, i.e., n = 2, our results imply the total
monopole charge is half of the net chirality [2,13,15,28–30].
Also, we note that w2 is an additive invariant with respect
to band stacking, subjected to the constraint that the weak
1D invariants of the bands are trivial [65]. This constraint is
satisfied by all the sets of bands we consider here.

Figure 10(b) shows the spectrum obtained for the lowest
four bands, which, as we have shown, are adiabatically con-
nected to an explicit atomic insulator. Note the existence of
continuous spectral gaps separating each band from the rest.
Based on the characterization in Ref. [65], all topological
invariants are trivial. This is consistent with the atomic nature
of the four complementary bands.

Figure 10(c) shows the spectrum for the lowest six bands,
i.e., the composite bands formed by those in Figs. 10(a) and
10(b). Importantly, a continuous spectral gap is also found,
similar to that observed in Ref. [62], which is consistent
with the fact that these six bands together form an atomic
insulator. Despite its atomic nature, the characterization in
Ref. [65] indicates that the SW invariant is w2 = 1. In fact,
this follows simply from the additive nature of w2. In any case,
as we have demonstrated in the main text, these six bands are
smoothly deformable into a strict atomic limit. This implies
the proposed SW insulator in Ref. [65] is actually atomic in
nature.

More generally, we remark that our results provide a
concrete physical interpretation of the 2D C2T -protected SW
invariant [65]. Recall the lowest six bands in our ten-band

model corresponds to the atomic insulator (τ, pz ) ⊕ (τ, p±) ⊕
(κ, s). We have shown that

w2[(τ, pz ) ⊕ (τ, p±) ⊕ (κ, s)] = 1. (D2)

Since the Wilson loop of the atomic insulator (τ, pz ) ⊕
(τ, p±) is the identity in the strict atomic limit, we may
conclude w2[(τ, pz ) ⊕ (τ, p±)] = 0. More carefully, this can
be argued as follows: First, notice that w2 is well defined so
long as C2T and lattice translation symmetries are retained.
Imagine breaking C3 and My, such that there is no symmetry
distinction between the orbitals which we originally labeled
as s, pz, p+, and p−. This implies w2[(τ, pz ) ⊕ (τ, p±)] =
3w2[(τ, s)] = w2[(τ, s)]. Then our claim follows as the single
band problem (τ, s) is in the trivial SW class w2 = 0 [65].

Using the additive nature of w2 with respect to band
stacking [63,65], we can conclude

1 = w2[(τ, pz ) ⊕ (τ, p±) ⊕ (κ, s)]

= w2[(τ, pz ) ⊕ (τ, p±)] + w2[(κ, s)] = w2[(κ, s)]. (D3)

By definition, (κ, s) is manifestly atomic, and hence these
bands are regarded as trivial in our context. Therefore, w2

only indicates (stable) mutual distinction between atomic
insulators, but does not imply nontrivial band topology which
forbids any atomic (i.e., product-state) description. Lastly, we
note that w2[(η, �)] = 0 for � = s, pz, p±. This is because the
two honeycomb sites in each unit cell are related by C2T
and, upon the breaking of C3 and My, one can smoothly
collapse the two honeycomb sites at the point-group origin
while respecting the protecting symmetries for w2.

With these observations in mind, one may inspect the
representation-matching equations in Appendix A again and
demand the equality of w2 on the two sides. This narrows
down the minimal “fragile resolution” of the band topology to
involve five bands (if the complementary bands are allowed to
be topological, four-band models are possible, as we showed
in Ref. [29]). We have already constructed a five-band frag-
ile resolution in Appendix B 3. For completeness, we also
compute the Wilson loop for that model. As the Wilson loop
spectrum will be completely flat in a strict atomic limit, in-
stead of studying H (5) directly we consider H (5)

μ=0 in Eq. (C2),
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FIG. 11. Wilson loop spectra computed following the scheme described in Ref. [67], for the following set of bands in H (5)
μ=0: (a) the two

nearly flat bands at charge neutrality, (b) the lowest three bands, and (c) the five bands of (a) and (b) combined.

the lowest five bands of which have the same band topology
as H (5) due to the persistence of band gaps as μ is varied.
The results are shown in Fig. 11, which verify our earlier
discussions on the relation between the w2 invariant [65]

and atomic insulators. In particular, the Wilson loop invariant
defined in Ref. [67] is trivial in Fig. 11(c), which is obtained
by simply appending a set of atomic bands, corresponding to
(κ, s), to the two nearly flat bands.
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