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Anisotropic magnetoresistance in multiband systems: Two-dimensional electron gases and polar
metals at oxide interfaces
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Low-density two-dimensional electron gases (2DEGs) with spin-orbit coupling are highly sensitive to an
in-plane magnetic field, which impacts their Fermi surfaces and transport properties. Such 2DEGs, formed
at transition metal oxide surfaces or interfaces, can also undergo surface phase transitions leading to polar
metals that exhibit electronic nematicity. Motivated by experiments on such systems, we theoretically study
magnetotransport in t2g orbital systems, using Hamiltonians that include atomic spin-orbit coupling and broken
inversion symmetry, for both square symmetry (001) and hexagonal symmetry (111) 2DEGs. Using a numerical
solution to the full multiband matrix-Boltzmann equation, together with insights gleaned from the impurity
scattering overlap matrix, we explore the anisotropic magnetoresistance (AMR) in the presence of impurities
that favor small momentum scattering. We find that transport in the (001) 2DEG is dominated by a single pair
of bands, weakly coupled by impurity scattering, one of which has a larger Fermi velocity while the other
provides an efficient current-relaxation mechanism. This leads to strong angle-dependent current damping and
a large AMR with many angular harmonics. In contrast, AMR in the (111) 2DEG typically features a single
cos(2ϑ ) harmonic, with the angle-averaged magnetoresistance being highly tunable by a symmetry-allowed
trigonal distortion. We also explore how the (111) 2DEG Fermi surfaces are impacted by electronic nematicity
via a surface phase transition into a 2D polar metal for which we discuss a Landau theory, and we show that this
leads to distinct symmetry components and higher angular harmonics in the AMR. Our results are in qualitative
agreement with experiments from various groups for 2DEGs at the SrTiO3 surface and the LaAlO3-SrTiO3

interface.
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I. INTRODUCTION

The ability to control the layer-by-layer growth of tran-
sition metal oxide heterostructures has led to the discovery
and exploration of two-dimensional electron gases (2DEGs)
formed at carefully engineered oxide surfaces and interfaces
[1]. Such 2DEGs, formed by a combination of a polarization
catastrophe [2] and oxygen vacancies, can combine the multi-
ple functionalities of the two bulk quantum materials forming
the interface or potentially host new low-dimensional phases
of matter. This has led to a significant focus on magnetism and
superconductivity at the (001) LaAlO3-SrTiO3 (LAO-STO)
interface [2–26]. Oxide surfaces and interfaces also offer a
novel setting to study the role of spin-charge coupling and
magnetoelectric effects in 2DEGs [27]. In particular, it has
been shown that an electric field can tune the strength of
Rashba spin-orbit coupling (SOC), which arises from broken
inversion symmetry, permitting control of the Fermi surface
(FS) spin-texture and spin-to-charge conversion [8,28,29].
Similarly, an in-plane magnetic field is found to have a signif-
icant impact on charge transport, leading to a large negative
magnetoresistance in (001) 2DEGs over a range of densities
[23,30,31]. More recent experiments have begun to create and
probe 2DEGs at oxide (111) surfaces and interfaces [32–41],
which have been proposed to host topological phases [42–49].
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Such (111) interfaces typically lead to more tightly confined
2DEGs [50].

Transport experiments [22,35–37,39,51] on such 2DEGs
have studied the anisotropic magnetoresistance (AMR): the
change in the diagonal resistivity when the angle between the
current direction and the in-plane magnetic field is varied.
AMR has also been studied theoretically in the context of
spin-dependent impurity scattering on 2DEG samples with fi-
nite magnetization [52,53] and in the context of ferromagnetic
semiconductors [54–56]. A useful analysis of the symmetry
constraints on the AMR is presented in Ref. [36]. These exper-
iments raise the issues of what controls magnetoresistance in
multiband systems such as oxide 2DEGs, why their resistance
drops when the magnetic field is rotated from being aligned
parallel to the current to being perpendicular to the current
direction, and to what extent higher angular harmonics in the
AMR directly reflect FS symmetries (e.g., fourfold versus
sixfold rotational symmetry of the FS).

Motivated by these questions, we present here a theoretical
study of the AMR using a full solution to the semiclassical
matrix-Boltzmann equation for the multiband 2DEG with
SOC, showing that it captures experimental observations in
both (001) and (111) oxide 2DEGs. Focusing on the momen-
tum dependence of the relevant impurity scattering overlap-
matrix in the transport equation provides useful insights that
are broadly applicable to other multiband systems. Our results
also suggest that the AMR harmonics do not directly reflect
the underlying lattice rotational symmetries of the FS.
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FIG. 1. Fermi surfaces for low-density spin-orbit coupled
2DEGs at zero magnetic field, with colors indicating orbital content
(yz-blue, zx-green, xy-red), and Rashba spin texture indicated by
black/gray arrows for opposite chiralities. (a) (001) 2DEG at a den-
sity n=0.035e/Ti showing outer “circular” bands with significant xy
orbital content (except along kx =0 and ky =0) and inner “propeller”
bands with dominant yz-zx character. (b) (111) 2DEG with n=
0.05e/Ti showing outer “flowerlike” bands and inner “hexagon”
bands. Each band has equal (momentum-dependent) admixture of
all orbitals.

For the (001) 2DEG, our work builds upon previous im-
portant numerical studies [23,57]. Here, we further suggest
simple physical mechanisms for the observations. At zero
magnetic field and low density, Fig. 1(a) shows the FSs and the
corresponding Rashba spin texture. We find that an effective
Rashba SOC enables weak scattering between a “circular”
xy-orbital dominated band and an inner (zx, yz)-orbital dom-
inated “propeller”-band. For small SOC, this interband scat-
tering gets suppressed by an in-plane magnetic field leading
to large negative magnetoresistance. Changing the angle of
the in-plane magnetic field, we find strong angle-dependent
current damping and a large AMR, with many angular har-
monics at higher fields, as observed experimentally [30] and
in previous theoretical work [23,57].

In striking contrast, transport in the (111) 2DEG is dom-
inated by the outermost pair of “flowerlike” bands, which
arise from strong hybridization of all three t2g orbitals. The
corresponding FSs are shown in Fig. 1(b) along with the
Rashba spin texture. While the overall resistivity has some
contribution from scattering to an inner small “hexagon”
band, the angle dependence of the AMR is dominated by the
two large bands. The AMR in this case typically reveals a
single cos(2ϑ ) angular harmonic; although higher harmonics
are symmetry-allowed [36], we find they have essentially
vanishing weight. Our results are in qualitative agreement
with experimental data [36].

Finally, we explore the impact of directional symmetry-
breaking on the (111) 2DEG, which leads to a 2D polar
metal phase. Such electronic nematicity has been reported in
transport experiments [37,51,58]. Polar order in the 2DEG
could arise as a result of a bulk structural transition or strong
electronic correlations. We argue, within Landau theory, that
a polar 2DEG could also arise via a surface phase transi-
tion, when the insulating bulk is a paraelectric close to a
ferroelectric quantum critical point; this may be of potential
relevance to SrTiO3 interfaces. Ferroelectricity in epitaxi-
ally strained [111]-oriented SrTiO3 has in fact recently been

studied using first-principles calculations [59]. Independent
of its microscopic origin, we show that incorporating the
nematicity associated with such a polar metal leads to the
readily visible violation of some basic symmetry constraints
obeyed by the AMR of symmetry-unbroken phases, and
also generates higher angular harmonics in the AMR signal.
Such simultaneous violations of symmetry constraints and
generation of higher harmonics may have been observed in
recent experiments at the LAO-STO (111) interface and STO
surface.

This paper is organized as follows. We begin with a
quick review of the Boltzmann equation for multiband ma-
terials, relegating technical details of the computation to
Appendix A. We then discuss AMR in the (001) 2DEG and
a simplified picture for its origin. We next turn to analogous
results for the (111) 2DEG, incorporating the effect of a
symmetry-allowed trigonal distortion. Finally, we discuss the
impact of directional symmetry breaking on the AMR in (111)
2DEGs in light of recent experimental observations.

II. BOLTZMANN EQUATION

For a weak electric field �E , the semiclassical Boltzmann
equation for a multiband system is given by

−∂ fn,k

∂εn,k
eEivi

n,k = N
∑

m

∫
d2k′

(2π )2
(gm,k′ − gn,k )

× |〈nk|Û |mk′〉|2δ(εn,k − εm,k′ ), (1)

where fn,k and gn,k correspond, respectively, to the equilib-
rium distribution function and its perturbed nonequilibrium
part, labeled by band n and momentum k. We use i to denote
component indices (i = x, y), with implied summation for
repeated indices. N is a constant (proportional to the impurity
concentration) that drops out of transport ratio coefficients.
The spin-orbit coupled band eigenfunctions, energies, and
velocities are denoted by |nk〉, εn,k, and vi

n,k, respectively;
these depend on the magnitude and direction of the applied
in-plane magnetic field �B.

The matrix elements for elastic impurity scattering
〈nk|Û |mk′〉 are obtained using a scalar scattering potential

Û =
∑

k,k′,�σ

V (k − k′)c†
�σ (k′)c�σ (k), (2)

where V (q) = V0e−	2|q|2/4. Setting 	 = 0 corresponds to
scattering off a pointlike impurity, while 	 � a (with a being
the lattice constant) corresponds to small momentum transfer
scattering as appropriate for a smooth real-space impurity
potential. For SrTiO3, the lattice constant a ≈ 3.9 Å is the
nearest-neighbor Ti-Ti distance in the bulk cubic crystal.

The conductivity tensor within the Boltzmann formalism is
then

σi j = e2
∑

n

∫
d2k

(2π )2
vi

n,k
∂gn,k

∂E j
. (3)

Here, ∂gn,k/∂E j is computed by taking a derivative of the
Boltzmann equation with respect to the electric field, and solv-
ing the resulting equations iteratively on a finely discretized
momentum mesh in a temperature-dependent window around
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the FS. The technical details of this approach, including issues
related to choice of the momentum mesh and convergence of
the solution, are discussed in Appendix A.

The angle-dependent resistivity tensor is calculated by in-
verting the conductivity tensor [ρ(ϑ )]i j = [σ (ϑ )−1]i j , where
ϑ is the angle between the in-plane magnetic field and the
current direction. The AMR and its Fourier amplitudes Cm are
defined via

AMR(ϑ ) = ρxx(ϑ ) − ρxx(| �B| = 0)

ρxx(| �B| = 0)
, (4)

Cm =
∫ 2π

0

dϑ

2π
e−imϑAMR(ϑ ). (5)

The invariance of the resistivity under ϑ → ϑ + π (which is
equivalent to flipping the direction of the current) leads to the
vanishing of all odd harmonics C2m+1, while (mirror) symme-
try under ϑ → −ϑ yields purely real Fourier coefficients Cm.
This latter symmetry is broken for the (111) surface when we
include nematic order (see Sec. V).

III. (001) 2DEG

There have been extensive density functional theory stud-
ies of the (001) 2DEG [14]. Experiments have realized
the (001) 2DEG at the LaAlO3-SrTiO3 interface, and at
SrTiO3 surfaces via photodoping [32] or Ar ion bombardment
[33,35]. In this last setting, angle-resolved photoemission
spectroscopy (ARPES) provides an experimental guide to the
FSs of the t2g-orbital derived bands. Based on these, and
previous work on magnetotransport [22,23,57], we consider
the following model.

A. Model Hamiltonian

We begin with the 2DEG square lattice Hamiltonian in the
absence of SOC and a magnetic field:

H001
0 =

∑
kσ��′

c†
�σ (k)M001

��′ (k)c�′σ (k). (6)

Working in the {yz, zx, xy} basis, and using abbreviated nota-
tion si ≡ sin(ki ), ci ≡ cos(ki ) (with i = x, y), we have

M001 =
⎛
⎝ εyz δxy iζx

δxy εzx iζy

−iζx −iζy εxy − �T

⎞
⎠, (7)

where the orbital dispersions are given by

εyz = 2t1(1 − cy) + 2t2(1 − cx ), (8)

εzx = 2t1(1 − cx ) + 2t2(1 − cy), (9)

εxy = 2t1(2 − cx − cy). (10)

Here, t1 and t2 are the strong and weak nearest-neighbor
intraorbital hoppings, respectively, and δxy ≡ 4t3sxsy is the
interorbital next-neighbor hybridization. The tetragonal split-
ting �T arises from 2D confinement, which lowers the
xy-orbital energy, while the odd-in-momentum interorbital
hopping ζi = 2ζ si represents the impact of surface inversion
breaking.
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FIG. 2. AMR (left panel) and its Fourier modes (right panel)
for the (001) surface computed from the Boltzmann equation. The
electronic density is n = 0.035e/Ti (which is 2.2 × 1013/cm2) and
the temperature is T = 10 K. We fix the magnetic field strength
| �B| = 20 T and vary its angle ϑ with respect to the current, which
is along the [100] crystal direction. The impurity scattering length
is fixed at 	 = 5a. The blue curve corresponds to the full solution
including all four partially filled bands at the Fermi level, as shown
in Fig. 1(a), while the red curve is for the “projected” Boltzmann
calculation in which we only retain bands 2 and 3.

Finally, the two important terms for the AMR are the
atomic SOC and the coupling to the in-plane magnetic field.
SOC is captured by the additional term

HSOC = i
λ

2

∑
k

ε�mnc†
�σ (k)τ n

σσ ′cmσ ′ (k) (11)

(with sums over repeated indices) where ε�mn is the Levi-
Civita symbol and τ n are Pauli matrices. Atomic SOC together
with the inversion breaking interorbital hopping ζ leads to an
effective Rashba SOC. The in-plane magnetic field �B leads to
the term

HB = (g�
�L + gs�S) · �B, (12)

with orbital and spin g-factors g�, gs. Here, the angular mo-
mentum components are Ln = i

∑
k εn�mc†

�σ (k)cmσ (k).
For a quantitative study of the 2DEG, we follow Ref. [23]

and fix (t1, t2, t3,�T , ζ , λ) ≡ (340, 13, 6, 60, 8, 5) meV. We
set the orbital g-factor to be g� = 1, and the spin g-factor to be
gs = 5, with gs > 2 chosen to mimic enhanced ferromagnetic
correlations observed in certain such 2DEGs. The transport
properties for this system are calculated as a function of the
angle ϑ between the in-plane �B field and the current (which
we assume to run along the [100] crystal axis).

B. Magnetotransport

The zero-field FS for the Hamiltonian H001
0 + HSOC is

shown in Fig. 1(a) for n = 0.035 electrons per Ti, with colors
indicating the orbital content. We also show the corresponding
spin texture on each band (with a different color arrow for
spin chirality), from which the opposite chirality on pairs of
effective Rashba bands is clearly visible. We observe four
FSs; the outer two FSs have dominant xy character, with some
zx-yz character near the kx = 0 and ky = 0 directions, while
the inner two FSs have dominant zx-yz character.

Figure 2(a) shows the calculated AMR signal (blue curve)
as a function of magnetic-field angle ϑ , with current along
the [100] direction, for �|B|=20 T, temperature T =10 K,
and impurity scattering length 	 = 5a. We highlight a few
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FIG. 3. Top panels: (001) Fermi surfaces and spin textures for fixed magnetic field strength | �B| = 20 T and various indicated field angles ϑ .
Bottom panels: Color-scale plot of impurity scattering overlap matrix, i.e., integrand in the Boltzmann equation, |〈nk|Û |mk′〉|2δ(εn,k − εm,k′ ),
with 	 = 5a for scattering from band m = 2 and fixed k′ = kF x̂ (marked by a blue cross) to band n = 3 as a function of k for field angles
corresponding to the top panels.

observations from these results: (i) The angle averaged value
of the AMR signal indicates a large negative MR as observed
in the experiments. (ii) We find that resistivity is significantly
lower for fields perpendicular to the current. (iii) From the
Fourier modes plotted in Fig. 2(b), we find several nonzero
harmonics reflecting the complexity of the AMR signal.

To obtain a simple understanding of these results, we have
carried out a detailed analysis to see which bands dominate
the AMR. Labeling the four bands as n = 1, 2, 3, 4 from the
largest to the smallest, we find that the AMR mostly arises
from a single pair of bands: the “circular” band-2 and the
“propeller” band-3. We show the AMR and its harmonic de-
composition calculated by projecting to just these two bands
in red in Figs. 2(a) and 2(b). In this simplified calculation, we
diagonalize the full Hamiltonian for the band wave functions
and energies, but retain just the two coupled bands in solving
the Boltzmann equation. We see that this two-band system
semiquantitatively captures the AMR and its harmonics. To
see why this simplified two-band scenario works well, we
observe that the outer two bands, derived largely from the xy
orbitals, are expected to dominate the diagonal conductivity of
the system since they have a larger Fermi surface and a higher
Fermi velocity compared with the quasi-1D inner bands. For
impurity scattering with small momentum transfer, we also
see that intraband scattering will not efficiently degrade the
current carried by these bands since it will mostly lead to
forward scattering. Thus, the transport lifetime of these bands
is limited by interband scattering. Indeed, scattering to the
inner “propeller bands” provides an extremely efficient way

to degrade current since these bands have a smaller Fermi
velocity and a FS shape, which results in their Fermi velocity
mostly pointing away from x̂.

We emphasize that keeping only two bands has a large
impact on the angle-averaged MR (C0) since the conductivity
involves a sum over all bands, and throwing out the largest FS
is expected to significantly alter σxx. However, this procedure
correctly captures the angular behavior of the signal. Further-
more, we observe that a more negative AMR is obtained when
we restrict the calculation to bands 2 and 3. This is because
this procedure involves explicitly switching off the scattering
channel between bands 1 and 2, which is expected to lead to
very little current decay since the group velocity is very large
for both of these bands.

Figures 3(a)–3(c) show the Fermi surface for
ϑ = 0, π/4, π/2. From the spin textures on the FSs, it is clear
that the outermost band-1 can continue to scatter strongly to
the inner “propeller” band-3 whose shape permits efficient
current decay. Thus, band-1 does not have its conduction
significantly altered by the magnetic field. However, at this
magnetic field, band-2 has its spin nearly antiparallel to the
inner band-3 at any field angle while the spins were parallel
at zero field [Fig. 1(a)], so any impurity-induced interband
scattering to the inner band is strongly suppressed by applying
a field. This leads to a magnetic field induced enhancement
of transport lifetime for band-2, and a concomitant large
negative magnetoresistance.

To further analyze the angle dependence of the AMR, we
plot in Figs. 3(a)–3(c) the impurity scattering overlap matrix

195453-4



ANISOTROPIC MAGNETORESISTANCE IN MULTIBAND … PHYSICAL REVIEW B 99, 195453 (2019)

|〈nk|Û |mk′〉|2δ(εn,k − εm,k′ ), keeping a fixed momentum k
on band-2 indicated by the blue cross (which is the current-
carrying region), and for varying momentum k′ on band
m = 3. For ϑ = 0 as in Fig. 3(a), we see that the dominant
scattering occurs to the forward elongated ellipse part of
band-3, which has its Fermi velocity typically directed away
from x̂, so the resulting transport lifetime will be short.
Carriers preferably scatter to this region of the FS because
it is closer to the initial momentum, which satisfies the small-
momentum transferring potential, and the spins are not fully
antiparallel with the spin at k (marked with the blue ×).
However, when ϑ = π/2 as in Fig. 3(c), the scattering occurs
into the vertical ellipse part of band-3, which has its Fermi
velocity along x̂, leading to less efficient current decay, re-
sulting in a longer transport lifetime. This portion of Fermi
momenta is preferred because the previously favored region
in the horizontal ellipse now has a fully antiparallel spin with
the spin at k. Since the momentum transfer between k and the
vertical ellipse is large, the scattering potential suppresses this
scattering channel, which explains the small overlap matrix
as seen from the colorbar. Thus, we expect the resistivity
to be much lower for ϑ = π/2. The reason the spins are
not fully parallel or antiparallel stems from the competition
between the Rashba energy scale, which becomes important
for large Fermi momenta and the magnetic field energy scale.
A simple model that captures this behavior is provided in
Appendix C. If the ϑ-dependence of this overlap pattern
was smooth, we would expect a single cos(2ϑ ) harmonic in
the AMR; however, the pattern at ϑ = π/4 [see Fig. 3(b)]
is nearly the same as for ϑ = 0, so the pattern changes
abruptly with angle for ϑ > π/4, resulting in many har-
monics cos(2mϑ ) in the AMR. In particular, the AMR has
cos(6ϑ ) components, which are symmetry-allowed harmonics
although the FS itself does not have sixfold symmetry. We do
not, at this point, have a simple intuitive understanding of the
abrupt change in the overlap matrix for ϑ > π/4.

IV. (111) 2DEG

The (111) 2DEG at oxide surfaces and interfaces has also
been studied using ARPES [32,34]. Based on such exper-
iments, we can write a general 6 × 6 Hamiltonian and fit
hopping parameters to qualitatively reproduce the shape of the
Fermi surfaces seen in experiments.

A. Model Hamiltonian

We begin with the zero-field Hamiltonian

H111
0 =

∑
kσ��′

c†
�σ (k)M111

��′ (k)c�′σ (k), (13)

defined on a triangular lattice, where

M111 =

⎛
⎜⎝

εyz γa+iζbc− �
3 γb−iζac− �

3

γa−iζbc− �
3 εzx γc+iζab− �

3

γb+iζac− �
3 γc−iζab− �

3 εxy

⎞
⎟⎠.

(14)

Similar to the (001) case, we use the abbreviated nota-
tion ci, si, with î = â, b̂, ĉ, where â= x̂, b̂=−x̂/2 − ŷ

√
3/2,

and ĉ=−x̂/2 + ŷ
√

3/2. With this notation, the intraorbital
dispersions are

εyz = 2t1(1 − cc) + 2t2(2 − ca − cb), (15)

εzx = 2t1(1 − cb) + 2t2(2 − cc − ca), (16)

εxy = 2t1(1 − ca) + 2t2(2 − cb − cc), (17)

while the interorbital hybridization γi ≡ −2t3ci, the odd-in-
momentum term ζi j = 2ζ (si + s j ) represents hopping permit-
ted by broken inversion symmetry at the interface, and � is
a symmetry-allowed trigonal distortion term. This Hamilto-
nian is again supplemented with HSOC + HB as for the (001)
2DEG.

The ARPES data on the STO (111) surface [32] are rea-
sonably fit by choosing (t1, t2, t3) = (320, 13,−13) meV. In
addition, for simplicity, we pick (ζ , λ) ≡ (8, 5) meV as for
the (001) 2DEG. We also use the same g-factors g� = 1 and
gs = 5 for coupling to the in-plane �B field, with the field angle
ϑ being defined with respect to the [1̄10] crystal axis.

We have explored several values of the symmetry-allowed
trigonal distortion scale � as shown in Fig. 5. We find
that the AMR is reasonably described using values of � ≈
50–80 meV, which are similar to the scale of �T = 60 meV
in the (001) 2DEG. It is important to note that this local
distortion energy scale is different from the band degeneracy
splitting at the �-point of the BZ; this is given by 6t3 + � for
the (111) 2DEG, unlike the (001) case, where it is just �T .
Furthermore, it has been recently pointed out that this scale
can be density-dependent due to renormalization by electron-
electron interactions [40,41]. Here, for simplicity, we focus
on a single density n = 0.05e/Ti, and we view � as the
renormalized distortion.

B. Magnetotransport

For n=0.05e/Ti and �=70 meV, the (111) 2DEG ex-
hibits four Fermi surfaces with Rashba-like spin textures
as shown in Fig. 1(b). The calculated AMR signal for this
case is shown as the blue curve in Fig. 4. We find that the
magnitude of the angle-averaged MR is smaller than for the
(001) case, but it is tunable by changing the trigonal distortion
� as seen from Fig. 5. In all cases, we find that the AMR
has C2 character, with no sign of higher harmonics. This is
qualitatively consistent with experimental observations. We
have found that this C2 dominant response, with almost no
sign of higher harmonics, holds true even up to much higher
densities n ∼ 0.4e/Ti.

To understand the average MR, we plot the spin texture
on the FSs in Fig. 6 at nonzero �B, which shows that there
is a significant contrast with the (001) 2DEG—namely, the
outer pair of bands features opposite spin polarizations, and
so does the inner pair of bands. As a result, each outer band
(band-1 or band-2) has a corresponding inner band (band-3 or
band-4) into which it can scatter even when B �= 0; this leads
to a reduced MR, since no scattering channel is “switched off”
by the field unlike in the (001) 2DEG. The tunability of the
MR with � arises due to changes in the FS spin textures, such
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FIG. 4. AMR (left) and its Fourier modes (right) for the (111)
surface for electronic density n = 0.05e/Ti (corresponding to 1.6 ×
1013 cm2) and at T = 5 K. The strength of the magnetic field is
kept constant at | �B| = 20 T and its angle ϑ is varied with respect to
the current, which is along the [1̄10] crystal direction. The impurity
scattering length is taken to be 	 = 5a. Similar to Fig. 2, the blue
curve is the solution obtained when keeping all Fermi surfaces shown
in Fig. 1(b), while the red curve is obtained when only keeping the
two outermost “flowerlike” bands 1 and 2.

that an inner band flips its spin polarization; the mechanism
for large negative MR then parallels that of the (001) 2DEG.

We observe that the projected two-band calculation leads to
a more positive angle-averaged AMR, unlike in the (001) case.
This is specific to the choice of � presented here, and is not
a universal feature. Indeed, since the (111) surface is mainly
governed by the outermost FSs, which have large velocities,
no efficient current-degrading scattering channel is switched-
off when the calculation is projected to these two outer bands.
For this reason, whether the projected or the full calculation
leads to the most negative C0 coefficient is more difficult to
predict and depends on the choice of parameters.

The sign of the C2 harmonic in the AMR may be under-
stood from the overlap matrix plots in Fig. 6. It is clear that
both ϑ = 0 and ϑ = π/2 have scattering from the marked
blue cross on band-1 to momenta on band-2 where the Fermi
velocity points away from x̂, leading to current dissipation.
However, for ϑ = π/2, the magnitude of this overlap is
smaller (see the color scale), and furthermore it has some
scattering into band-2 where the Fermi velocity is still along
x̂, which suppresses the resistivity for this field angle.

We attribute the absence of higher harmonics in the AMR
signal to the fact that each band in the (111) 2DEG has an
equal (momentum-dependent) mixture of all three orbitals
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FIG. 5. Effect of trigonal distortion � on the (111) MR at a fixed
density n = 0.05e/Ti and a temperature T = 5 K. The point marked
� corresponds to � = 70 meV, which is used to compute the full
AMR signal.

−0.2 0.0 0.2

−0.2

−0.1

0.0

0.1

0.2 ϑ = 0

kx [π/a]

k
y

[π
/
a
]

−0.2 0.0 0.2

−0.2

−0.1

0.0

0.1

0.2 ϑ = π
2

kx [π/a]

−0.2 0.0 0.2
−0.2

−0.1

0.0

0.1

0.2

20

25

30

35

40

45

50ϑ = 0

kx [π/a]

k
y

[π
/
a
]

−0.2 0.0 0.2
−0.2

−0.1

0.0

0.1

0.2

15

20

25

30

35

40ϑ = π
2

kx [π/a]

FIG. 6. Top panel: (111) Fermi surfaces and spin textures at
nonzero magnetic field | �B| = 20 T for ϑ = 0, π/2; black/gray
arrows indicate spin textures on bands with opposite Rashba spin
chiralities at zero field. Bottom panel: Integrand of the Boltzmann
equation |〈nk|Û |mk′〉|2δ(εn,k − εm,k′ ) with 	 = 5a for scattering
from fixed band m = 1 and k′ = kF x̂ (marked with a blue ×) to band
n = 2 as a function of final momentum k.

yz, zx, xy, which independently have strong directional char-
acter. This is different from the (001) 2DEG where the more
unidirectional yz, zx orbitals are split off from the symmetric
xy orbitals.

V. IMPACT OF SYMMETRY BREAKING IN THE (111)
2DEG: A 2D POLAR METAL

We turn next to the question of how directional symmetry
breaking at the (111) interface, which leads to a 2D polar
metal phase, might impact the AMR in the 2DEG. Our work
is partly motivated by experimental reports of nematicity in
transport measurements in such 2DEGs [35–37,41,58]. Such
symmetry breaking might have its origin in the bulk 3D
structure; e.g., bulk SrTiO3 has a structural cubic-to-tetragonal
transition upon lowering temperature [60] T � 100 K. If
the tetragonal domains are aligned, it will impose a nematic
distortion for 2DEGs at the surface or interface of such a
crystal. In high-density 2DEGs, symmetry breaking may also
be driven by electron interactions [61], which can lead to
orbital-ordering or cause a Pomeranchuk instability of the
FS. Finally, as discussed in the Introduction, the surface or
interface hosting the 2DEG might undergo a surface phase
transition, leading to a polar metal breaking discrete rotational
and mirror symmetries of the 2DEG.

A. Landau theory and coupling to electrons

Independent of its microscopic origin, the order parameter
for such a nematic in (111) 2DEGs is a complex scalar ψ , with
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FIG. 7. FSs and spin textures in the nematic 2DEG (polar metal),
with couplings v1 = v2 = −11 meV and phase χ = π in Eq. (20), at
two different densities: (a) n = 0.05e/Ti and (b) 0.2e/Ti. The impact
of ψ �= 0 is more visually pronounced at smaller densities. Panels
(c) and (d) show corresponding FSs at nonzero field | �B| = 20 T. In
panels (a) and (b), arrows of different colors (black/gray) belong
to FSs that are almost degenerate (and hence difficult to resolve
visually) but which come with opposite chiralities.

the Landau theory taking the form

F111 = r|ψ |2 + w(ψ3 + ψ∗3) + u|ψ |4 + · · · , (18)

where cubic terms lead to an effective Z3 clock model. A
similar model was studied long ago for bulk SrTiO3 in the
presence of a stress applied along the (111) direction [62]. We
present a heuristic derivation of this in Appendix B, discussing
its relation to the proximity of SrTiO3 to a paraelectric-
ferroelectric quantum phase transition.

The impact of this symmetry breaking is captured by a
local linear-in-ψ coupling to the orbitals via

Hψ = − 1
2 ṽ1

[(
L2

x +ωL2
y +ω2L2

z

)
ψ+H.c.

]
− 1

2 ṽ2[(LyLz+ωLzLx +ω2LxLy) ψ+H.c.], (19)

where ω = ei2π/3, and we have defined the symmetrized
product LiL j = LiL j + LjLi. Explicitly, this leads to an orbital
Hamiltonian

Hψ=

⎛
⎜⎝

v1cos(χ ) v2cos
(
χ+ 4π

3

)
v2cos

(
χ+ 2π

3

)
v2cos

(
χ+ 4π

3

)
v1cos

(
χ+ 2π

3

)
v2cos(χ )

v2cos
(
χ+ 2π

3

)
v2cos(χ ) v1cos

(
χ+ 4π

3

)
⎞
⎟⎠,

(20)

where we have set ψ = |ψ |eiχ , and absorbed the amplitude of
the order parameter into redefined coefficients v1,2 = |ψ |ṽ1,2,
which have dimensions of energy.

The resulting distorted FSs and their spin textures are
shown in Fig. 7 at two different densities n = 0.05e/Ti
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FIG. 8. AMR (left) and its Fourier modes (right) for the (111)
surface for electronic density n = 0.05e/Ti including the symmetry-
breaking order parameter ψ with v1 = v2 = −11 meV and χ = π .
The top panels show the AMR signal including all bands while
the bottom panels are results from the projected calculation using
band-1 and band-4. In the Fourier-mode panels, circles and dia-
monds represent the real and imaginary parts of the different Fourier
components Cm; the imaginary part is permitted in this case due to
the symmetry-breaking field ψ , which results in breaking ϑ → −ϑ

symmetry of the AMR. Note that the maxima of the AMR signal are
shifted away from ϑ = 0, π .

and n = 0.2e/Ti. For illustrative purposes, we have chosen
v1 = v2 = −11 meV and χ = π . We find that the observed
distortion of the FS is harder to resolve at higher densities
where ARPES studies [32,34] have been carried out on the
(111) surface 2DEG of SrTiO3.

B. Magnetotransport

The AMR in the presence of this symmetry breaking field,
with v1 = v2 = −11 meV and χ = π , is shown in Fig. 8. We
find that the AMR exhibits several new aspects absent in the
symmetric 2DEG: (i) The AMR is no longer symmetric under
ϑ → −ϑ , which allows for sinusoidal components in the
Fourier decomposition. (ii) We find higher angular harmonics
being generated by the symmetry breaking. These observa-
tions appear consistent with experiments [36], where the onset
of higher C6 harmonics in the AMR appears to coincide
with the breaking of the ϑ → −ϑ symmetry of the signal,
suggesting that these two phenomena go hand in hand, and
might be tied to directional symmetry breaking in the 2DEG.
As shown in Fig. 8, all of these results, including the correct
sign of the Fourier modes, can be qualitatively reproduced by
keeping just a single pair of bands in solving the Boltzmann
equation. Unlike the non-symmetry-broken phase discussed
previously, the relevant bands are now bands 1 and 4 which
have different shapes and orbital content—the outermost band
is mainly composed of xy, zx orbitals while the innermost
band has a predominant yz character. This situation is similar
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to the (001) calculation where the relevant bands 2 and 3
had different geometries/orbital contents leading us to believe
that this orbital imbalance and different geometry could be
responsible for the generation of higher harmonics.

VI. SUMMARY AND DISCUSSION

We have considered model 2D Hamiltonians for both (001)
and (111) oxide interface 2DEGs, and we showed that their
AMR is in reasonable agreement with experimental results.
Such simplified model Hamiltonians are thus useful to de-
scribe the transport properties of these 2DEGs. Our results,
obtained by solving the full matrix Boltzmann equation, may
be rationalized in terms of simplified two-band models and
from the momentum dependence of the scattering overlap
matrix. We summarize below some of the key results and
discuss some speculative ideas:

(i) We have shown that the MR and its angle dependence
in the oxide 2DEGs appear to be governed by the field-
dependent tuning of interband scattering.

(ii) Octahedral distortions, such as the trigonal distortion at
the (111) interface, can significantly affect the FSs and MR,
suggesting that engineering or tuning such distortions may
provide a viable route to controlling transport properties of
such 2DEGs.

(iii) We have argued, and provided a Landau theory rea-
soning, for why (111) oxide interfaces might stabilize polar
metal phases, particularly those involving SrTiO3, which are
proximate to a bulk ferroelectric critical point. Our work
suggests that the AMR and its symmetries may be used to
indirectly detect such symmetry breaking. Furthermore, the
nematic resistivity observed [37,51,58] in insulating ultralow
density (111) 2DEGs may be viewed as arising from an
“Anderson-localized polar metal,” which exhibits anisotropic
variable-range hopping. It would be interesting to further
explore this regime.

(iv) While the dominant AMR mode is the uniform C2

angular component, we have shown that higher harmonics
can emerge in symmetric (001) 2DEGs and in nematic/polar
(111) 2DEGs. In particular, the higher AMR harmonics ap-
pear not to be directly related to FS symmetries. However, a
common emerging picture, based on comparing the (001) and
(111) 2DEGs, is that these harmonics may arise from a shape
mismatch between the two bands that govern the AMR.

(v) Various experiments on the metallic (111) 2DEGs
report a change in the AMR when cooling below T ∗ �
20–25 K, which depends on density and is consistent with
underlying polar symmetry breaking. This may reflect the
actual symmetry-breaking temperature scale of the 2DEG, or
it might reflect a temperature at which the 2DEG effectively
“approaches” the symmetry-broken interface, with the polar
order onset already occurring at a higher transition tempera-
ture. Future studies of this issue would be valuable.

(vi) The concavity or convexity of the 2DEG FS is known
to strongly impact Hall transport in perpendicular magnetic
fields [53,56]. Here, we have focused on the diagonal resis-
tivity under an in-plane magnetic field, and it is unclear how
much the AMR is impacted under these circumstances by the
FS curvature. We find that multiband scattering plays a more
important role.

(vii) Finally, we have considered the simple case of scat-
tering off a scalar impurity (independent of orbital and spin)
in this paper. A future direction would be to study orbital-
dependent impurity scattering and the impact of spin-orbit
randomness [63,64] using the scattering overlap matrix to
provide insights.
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APPENDIX A: NUMERICAL SOLUTION OF THE
BOLTZMANN EQUATION

It is helpful to rewrite Eq. (1) with discretized momenta as

−∂ fn,k

∂εn,k
Eivi

n,k =
∑

m,l,k′,k′′
(δnlδk,k′′ − δmlδk′,k′′ )gl,k′′

× |〈nk|Û |mk′〉|2 δ(εn,k − εm,k′ ), (A1)

where we have dropped the factors of (N , e) since we will
only be interested in ratios of transport coefficients where
these will cancel. Taking a derivative with respect to Ei, and
lumping together band and momentum indices via μ ≡ (n, k),
ν ≡ (m, k′), and α ≡ (l, k′′), we get(

−∂ f

∂ε
vi

)
μ

=
∑
ν,α

(δαμ−δαν )|Uμν |2δ(εμ−εν )

(
∂g

∂Ei

)
α

≡
∑

α

(Aμα − Bμα )

(
∂g

∂Ei

)
α

, (A2)

where Uμν ≡ 〈μ|Û |ν〉, Bμα ≡ |〈μ|Û |α〉|2δ(εμ − εα ), and
Aμα ≡ ∑

ν Bμνδμα . Equation (A2) is a matrix inversion
problem for the “vector” (∂g/∂Ei); however, (A − B)−1 is
not well defined since it has a zero eigenvalue associated
with a constant (band and momentum-independent) vector
(∂g/∂Ei ) ∝ 1.

Rather than using SVD algorithms and pseudoinverse tech-
niques, we found that an efficient way to solve Eq. (A2) is to
write it as an iterative equation[

∂g

∂Ei

]
p+1

= A−1

(
B

[
∂g

∂Ei

]
p

− ∂ f

∂ε
vi

)
. (A3)

We begin at step p = 0 by guessing a random initial vector
[∂g/∂Ei]p=0, removing its projection in the constant eigenvec-
tor subspace, and evaluating the right-hand side of the above

195453-8



ANISOTROPIC MAGNETORESISTANCE IN MULTIBAND … PHYSICAL REVIEW B 99, 195453 (2019)

equation to obtain a new [∂g/∂Ei]p=1. We then repeat this
process, taking care at each step to remove the projection of
[∂g/∂Ei]p to the constant eigenvector (to avoid errors that can
creep in from numerical precision). Convergence is reached
when the L2 norm || ∂ f

∂ε
vi + (A − B) ∂g

∂Ei ||2 < tol, where tol is
typically chosen to be 10−10.

We find that for proper convergence one must choose mo-
mentum mesh sizes of the order 2500 × 2500 for temperatures
of T ∼ 5 K. Since the (A, B) matrix dimensions scale as
(6 × 25002 × 6 × 25002) for a six-band problem, the memory
requirements far exceed what can be handled by clusters. To
reduce the dimensionality of the problem, we use the fact that
g and ∂g/∂Ei must go to zero far from the Fermi momenta and
work with momenta within a certain temperature T window of
the Fermi momenta. It is found that a temperature window of
±6 × T is reasonable for low densities (n � 0.1) while one
needs up to ±12 × T at high densities n � 0.4.

APPENDIX B: LANDAU THEORY OF
NEMATIC/POLAR 2DEG

We start with the Landau theory for ferroelectric order in
a bulk 3D cubic crystal in terms of the vector order parame-
ter �ϕ = (ϕx, ϕy, ϕz ) representing the electric dipole moment
vector. In a displacive ferroelectric, this arises due to dis-
placements of the ions away from high symmetry positions;
for instance, in BaTiO3 or 18O isotope-substituted SrTiO3, it
would involve off-center displacements of the Ba2+ or Sr2+

ions from the cube center, and the Ti4+ ions within the oxygen
octahedra. The (x, y, z) components refer to the cubic axes of
crystal. The symmetry-allowed bulk terms are

Fbulk = rB�ϕ2 + uB�ϕ4 + wB
(
ϕ4

x + ϕ4
y + ϕ4

z

)
, (B1)

with subscript B on the coefficients denoting bulk. Explicit
spatiotemporal gradients of the order parameter, stemming
from thermal or quantum fluctuation effects, are ignored here;
they are only taken into account to the extent that they
renormalize the coefficients of this effective Landau theory.
Here, rB ∝ (T − Tc), where Tc is the mean-field ordering tem-
perature in the 3D ferroelectric state. Since SrTiO3 remains
a paraelectric, it has rB > 0 down to the lowest temperature,
but proximity to a quantum critical point can lead to small
rB(T = 0). Even in such cases, where the bulk remains para-
electric, a spontaneous symmetry-breaking state might still
arise at the surface.

With n̂ ‖ [111], additional terms are allowed at the surface,

�F111 = α�ϕ · n̂+g(�ϕ · n̂)2+λ1(�ϕ · n̂)3+λ2(�ϕ · n̂)�ϕ2

+ λ3ϕxϕyϕz + w1(�ϕ · n̂)4 + w2(�ϕ · n̂)2�ϕ2

+w3
(
ϕ2

x ϕ
2
y + ϕ2

y ϕ
2
z + ϕ2

z ϕ
2
x

)
. (B2)

From the bulk free energy, wB < 0 favors states in which
the dipole moment points along [100] or symmetry-related
axes for a total of six symmetry-related ground states. At a
(111) surface, the inversion-breaking term α splits this sixfold
degeneracy into two triplets (+x̂,+ŷ,+ẑ) and (−x̂,−ŷ,−ẑ).
Any symmetry-breaking surface phase transitions will involve
breaking the residual C3 and mirror symmetries of these
triplets.

ϕ⊥ �= 0, ψ = 0

ϕ⊥ = 0, ψ �= 0

ϕ⊥ �= 0, ψ �= 0

FIG. 9. Phase diagram of the Landau theory, given by Eqs. (B1)
and (B2), as a function of wB and g = λ3, keeping all other co-
efficients fixed as indicated in the text, and where ϕ⊥ and ψ are
defined in Eq. (B3). The phase with ψ = 0 is a “paraelectric” phase,
and it is associated with a moment pointing along n̂ (which is
always symmetry allowed at a surface or interface), while the phases
with ψ �= 0 are symmetry-broken phases, having purely in-plane
(ϕ⊥ = 0) or partially in-plane (ϕ⊥ �= 0) electric dipole moments.
Conduction electrons will convert these symmetry-broken phases
with ψ �= 0 into 2D polar metals.

Similarly, wB > 0 in the bulk free energy favors the eight
degenerate states where the dipole moment points along
[111] and its symmetry equivalents. At the (111) surface,
g > 0 breaks this degeneracy into a high-energy doublet (with
dipoles along ±n̂) and a low-energy sextet with dipoles along
the other directions: (111̄), (11̄1), (1̄11), (11̄1̄), (1̄11̄), and
(1̄1̄1). The term α splits this low-energy sextet into two
triplets [(111̄), (11̄1), (1̄11)] and [(11̄1̄), (1̄11̄), (1̄1̄1)]. As for
the case with wB < 0, the residual surface symmetry breaking
will involve breaking C3 and mirror symmetries.

As an illustrative example, we plot the phase diagram of
such a Landau theory in Fig. 9. Here, we choose to work in
units where the bulk Landau theory coefficient uB = 1, we set
rB = 0.01, and we vary wB. For the surface coefficients, we
set α = −0.2, λ1 = λ2 = 0, and we drop quartic invariants
w1 = w2 = w3 = 0 while varying g = λ3. Since the surface
breaks n̂ → −n̂ inversion, it is useful to parametrize

�ϕ ≡ ϕ⊥n̂ + ψ�γ + ψ∗�γ ∗, (B3)

where n̂ ≡ (1, 1, 1)/
√

3, �γ ≡ (1, ω, ω2)/
√

3, and ω = ei2π/3.
Here, ϕ⊥ is a non-symmetry-breaking polarization, while the
complex ψ �= 0 reflects spontaneous symmetry breaking of
the surface symmetries.

We can simplify the Landau theory to focus only on the
in-plane spontaneous symmetry-breaking order parameter ψ .
Substituting the above expression in the free energy F +
�F111, we arrive at the simplified free energy at the (111)
surface,

F111 = r|ψ |2 + w(ψ3 + ψ∗3) + u|ψ |4 + · · · , (B4)

used in the main text. In the absence of conduction electrons,
the state with ψ �= 0 is a nematic that breaks rotational
symmetry. Due to the symmetry-allowed cubic term w which
breaks ψ → −ψ symmetry, it is also a surface ferroelectric
with an in-plane ferroelectric moment. The conducting 2DEG
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at the surface will convert this into a “polar metal” phase,
which exhibits nematic transport.

APPENDIX C: TWO-BAND MODEL

To get some insight about the sign of the C2 Fourier
coefficient, we consider the following Hamiltonian in the
{|↑〉, |↓〉} basis, with a continuum Rashba term and a Zeeman
field:

H (k) = ε0
kσ0 + λ(�σ × k) · ẑ + g̃�B · �σ . (C1)

The eigenvalues and eigenvectors are given by

εk,± = ε0
k ±

√
λ2|k|2 + g2| �B|2 + 2λg̃(kyBx − kxBy), (C2)

|u±(k)〉 = 1√
2

(±eiφk , 1)T , (C3)

where tan(φk ) ≡ ( λkx−gBy

λky+g̃Bx
). At a given electronic density, one

can calculate the overlaps between points k and k + δk both
sitting at the Fermi level of two bands with different chirality.
For a scalar scattering potential, we can only focus on the
eigenstates overlaps:

|〈u±(k + δk)|u∓(k)〉|2 = sin2

(
φk+δk − φk

2

)
, (C4)

|〈u±(k + δk)|u±(k)〉|2 = cos2

(
φk+δk − φk

2

)
. (C5)

Parametrizing the in-plane components in polar co-
ordinates via �B = | �B|(cos ϑ, sin ϑ ), k = |k|(cos α, sin α),
δk = |δk|(cos β, sin β ), and rescaling g = g̃| �B|, we can

expand to leading order in λ/g (large magnetic field limit) and
g/λ (large Rashba limit):

|〈u±(k + δk)|u∓(k)〉|2
λ
g →0= |δk|2λ2

4g2
cos2(β − ϑ )

+ O

[(
λ

g

)3
]
, (C6)

|〈u±(k + δk)|u∓(k)〉|2
g
λ
→0= sin2

(
α − β

2

)

+ O
( g

λ

)
. (C7)

From this, it is clear that in the large field limit the
overlap is minimal for β = ϑ ± π

2 and its maximum is when
β = {ϑ, ϑ ± π}, independently of the position of k. In other
words, the spins on each band will either align or antialign
with the magnetic field. In the large Rashba limit we distin-
guish two cases: (i) for |δk| > |k| the overlap is maximized
when β = α ± π , and (ii) for |δk| < |k| it is maximized
for β = α ± cos−1(−|δk|/|k|). The details of this will be
determined by the explicit shape of the scattering potential
and the scattering length scale. For a point at ky = 0, i.e.,
α = 0 like those considered in Figs. 3 and 6, the two overlaps
(C6) and (C7) can be simultaneously maximized for a field
in the x-direction by choosing β = ±π leading to an overall
higher resistivity. On the other hand, for a field pointing in
the y direction no choice of β can maximize the two overlaps,
giving rise to a competition between the Rashba and magnetic
field energy scales and thus reducing the total overlap and
resistivity.
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