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Decoherence and collective effects of quantum emitters near a medium at criticality
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We investigate the influence of phase transitions on the behavior of collective quantum emission. We discuss
two distinct physical processes, the center-of-mass decoherence of a single emitter, and the collective emission of
two emitters, addressed with an unified formalism relying on standard perturbation theory. Two specific examples
of phase transitions are considered: the percolation transition in a metal-dielectric composite, and the metal-
insulator transition in VO2. The decoherence and the collective emission rates can be decomposed as a sum of
two contributions, accounting for the spontaneous emission and for interference effects, respectively. The former
is enhanced by the Purcell effect for emitter(s) in the vicinity of the critical medium. The latter, associated with
quantum interferences, experiences a “sudden death” near the critical point of the phase transition. Our findings
unveil the interplay between the Purcell and collective effects and its dependence on metal-insulator transitions.
In the case of VO2, decoherence and collective emission rates exhibit a characteristic hysteresis that strongly
depends on the material temperature. These results, based on experimental data, suggest that VO2 could be
explored as a versatile material platform where decoherence and collective emission can be tuned by varying the
temperature.
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I. INTRODUCTION

The study of collective effects has a long history in the con-
text of spontaneous emission from an ensemble of quantum
emitters (atoms, molecules, or quantum dots) in both optical
cavities and free space. The pioneering work of Dicke [1]
has shown that the intensity radiated by N atoms placed at
subwavelength distances may scale as N2 for specific global
quantum states of the emitters. This phenomenon, known
as superradiance, arises from constructive interferences in
the collective emission process. More recently, progress in
the field of nanophotonics has motivated and enabled the
experimental investigation of superradiance in a broad range
of photonic environments. Relevant examples are the coupling
of quantum emitters (atoms, molecules, and quantum dots) to
plasmonic waveguides [2], microcavities [3,4], metallic inter-
faces [5], and epsilon-near-zero metamaterials [6]. Tailoring
and tuning collective optical effects enables one to enhance
on-demand light-matter interactions at the nanoscale. In order
to develop novel photonic applications where the collective
spontaneous emission rate of several quantum emitters can be
tuned, material platforms such as plasmonic waveguides [7],
graphene-based structures [8], and nanofibers [9] have been
considered. In this line, collective effects, combined with a
suitable photonic environment, also have interesting applica-
tions in the field of quantum control. Collective effects can
be used to put two ions in a maximally entangled state near
a cavity [10] or to obtain a tunable two-qubit entanglement
in a graphene waveguide [11]. Previous work has considered
using subradiance [12–16]—the counterpart of superradiance
associated with an inhibition of radiation through destructive
interferences—for quantum memories [17], nanolasers [18],
and quantum computers [19].

On the other hand, a key element to achieve reliable
quantum control is the design of a quantum environment
minimizing decoherence [20]. The design of such an environ-

ment is a prerequisite when considering quantum information
processing architectures at the nanoscale, where fluctuation-
induced phenomena may predominate and compete with co-
herent processes. In this line, it has been shown that Casimir-
Polder forces may be strongly affected by collective effects
[21], resulting from an interplay between the Purcell [22] and
the Dicke effects [23]. This approach suggests that collective
effects and fluctuation-induced phenomena should be appre-
hended together.

In this paper, we put forward a strategy that combines an
alternative material platform, composite media and vanadium
dioxide (VO2), and a specific physical mechanism, critical
phenomena, to achieve control of either collective effects of
several emitters or center-of-mass (c.m.) decoherence of a
single emitter. There is evidence, both theoretical [24–26]
and experimental [27], that phase transitions affect the spon-
taneous emission of a single emitter in a crucial way. This
has been recently confirmed theoretically, setting the grounds
for the determination of critical exponents via the Purcell
factor [28]. However, the effect of phase transitions in the
collective emission or in the c.m. decoherence of quantum
emitters remains to be explored. Controlling this decoherence
rate is particularly relevant in quantum architectures using the
c.m. to store and process quantum information [29].

Here, we fill this gap by investigating the collective emis-
sion of two-level quantum emitters and the c.m. decoherence
of a single emitter near a composite medium that undergoes
a percolation phase transition. We use a formalism developed
in the context of surface-induced dynamical Casimir phases
[30–32], which enables an analogy between collective effects
and the decoherence rate of a delocalized emitter [33]. We
obtain a description of the c.m. decoherence rate as a function
of the order parameter of the material phase transition. In par-
ticular, we demonstrate the strong suppression of the interfer-
ence contribution to both the decoherence and to the collective
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emission rates in the presence of a media undergoing a perco-
lation phase transition. We also investigate the specific exam-
ple of the metal-insulator transition in a VO2 material, to show
that the decoherence and collective emission rates can exhibit
a characteristic temperature-dependent hysteresis. Altogether,
our findings not only unveil the role of critical phenomena
on collective emission and c.m. decoherence, but they also
suggest that VO2 could be explored as an alternative material
platform to control these processes via thermal effects.

II. METHODOLOGY

In this section, we describe the theoretical tools that will be
used to address simultaneously two distinct physical phenom-
ena in the vicinity of a medium undergoing a phase transition:
the decoherence of a single emitter in a quantum superposition
of two wave packets, and the spontaneous emission of two
quantum emitters. In the following, we show that these two
distinct physical phenomena can be described by the same
theoretical framework, which enables us to unveil the role of
interference effects in both situations.

A. Interaction of the emitter with the light field

The interaction of the emitter with the light field is de-
scribed by a dipolar Hamiltonian H (r, t ) = −d(t ) · E(r, t ),
involving the dipole operator d(t ) and the quantized electric
field operator E(r, t ) taken at the position r of the quantum
emitter [34]. We work from now on in the interaction picture,
letting the dipole and light field operators evolve according
to the free dipolar and light field Hamiltonians. To obtain
quantitative estimates of the decoherence rates, we have taken
this emitter as a two-level atom with a transition wavelength
λ0 = 450 μm.

B. Electric field Green’s function

The Green’s dyadic in the vicinity of a bulk material
contains a free part and a scattered part [35],

G(r1, r2; ω0) = G0(r1, r2; ω0) + GSca(r1, r2; ω0), (1)

where G0(r1, r2; ω0) and GSca(r1, r2; ω0) are the free and
scattering Green’s dyadic, respectively. We shall consider situ-
ations where the two wave packets (or two quantum emitters)
are located at the same height z with respect to the material
surface, and at a distance x as depicted in Fig. 1. We shall
also use the free and scattering contributions to the Green’s
function trace, denoted by G0(r1, r2; ω0) and GSca(r1, r2; ω0),
respectively,

G0(r1, r2; ω0) = i

2π

∫ ∞

0

k‖
kz

J0(k‖x)dk‖, (2)

GSca(r1, r2; ω0) = i

4π

∫ ∞

0

k‖
kz

J0(k‖x)

[
rTE,TE

+ c2

ω2
0

rTM,TM
(
k2
‖ − k2

z

)]
e2ikzzdk‖. (3)

ω0 is the transition frequency, J0 is the zero-order spherical
Bessel function, and rTE,TE (rTM,TM) is the Fresnel reflection
coefficient for transverse electric (TE) [transverse magnetic
(TM)] polarization. The integration in the region k‖ < ω0/c
corresponds to the contribution of progressive waves with

FIG. 1. Schematic view of the systems under consideration,
showing a representation of the two atoms or wave packets for a
two-level quantum emitter, separated by a distance x from each other
and at a distance z to the material. In the case of two emitters we
consider both to be with the dipoles aligned in the z direction, while
for the single emitter in a superposition of wave packets we average
over orientations.

kz =
√

k2
0 − k2

‖ . In the scattering wave function, the integra-
tion in the range k‖ > ω0/c induces a contribution of evanes-

cent waves with kz = i
√

k2
‖ − k2

0 , which play an important role
in the collective emission and c.m. decoherence.

C. Modeling the optical properties of the materials

We model the optical properties of the semi-infinite, non-
magnetic critical media via the Bruggeman effective medium
theory (BEMT) [36,37], which is one of the simplest ana-
lytical models that can predict the percolation phase transi-
tion. This model is well suited for the two phase transitions
considered below, namely, the percolation transition in a
metal-dielectric composite material and the metal-insulator
transition in VO2 [38]. The system considered for the per-
colation transition is a polystyrene host medium filled with
gold inclusions. In the VO2 material, metallic clusters are
formed as the temperature increases, so that they can also
be treated as effective metallic inclusions. VO2 is particularly
interesting for photonic and electronic applications because its
transition occurs near room temperature, allowing for novel
applications such as metamaterial reflectors and switches
[39,40]. This enables one to address both phase transitions
with the same effective model theory, where the relevant criti-
cal parameter is the filling factor f representing the fraction
of the volume occupied by these inclusions. The effective
permittivity εeff is the solution with a positive imaginary
part (as expected for a passive medium) of the following
equation [36,37],

(1 − f )

(
εhm − εeff

εeff + L(εhm − εeff )
+ 4(εhm − εeff )

2εeff + (1 − L)(εhm − εeff )

)

+ f

(
εi − εeff

εeff + L(εi − εeff )
+ 4(εi − εeff )

2εeff + (1 − L)(εi − c)

)
= 0,

(4)

where εhm and εi are the host medium and inclusion
permittivities, respectively, and L is the depolarization factor
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related to the geometry of the inclusions. In the percolation
transition, the filling factor f and the geometry of the
inclusions can be chosen independently from the temperature.
Here, we consider spherical inclusions corresponding to
a depolarization factor L = 1/3. Differently, for VO2,
the depolarization factor L, the filling fraction f , and the
insulator (metallic) permittivities εhm (εi) are determined
by the temperature T . In the latter, we have used a relation
between the filling fraction f and the depolarization factor L
based on the experimental data reported in Ref. [41]. For both
materials, the phase transition occurs at the critical value of
the filling factor f = 1/3, for which the effective permittivity
εeff becomes purely imaginary [36,37].

1. Metal-dielectric composite undergoing a percolation transition

In order to describe the material parameters, we use the
Drude model for the inclusions and the Drude-Lorentz model
for the host medium, with parameters extracted from ex-
periments. According to these models, the permittivity is
expressed as εi(ω) = 1 − ω2

p i/(ω2 + iγiω) for the gold inclu-
sions and as εhm(ω) = 1 + ∑

j ω
hm 2
p j /(ω2

R j − ω2 − i� jω) for
the host medium. We have introduced the plasma frequencies
for the inclusions ωp i and the oscillating strengths ωhm

p j for the
host medium, as well as the inverse of the relaxation times γi

and �j for the inclusions and for the host medium, respec-
tively, and the resonant frequencies ωR j . The experimental
values of these parameters were extracted from Refs. [42,43].

2. VO2 material undergoing a metal-insulator phase transition

In contrast to the metal-dielectric composite, the permittiv-
ities of the VO2 material now rely completely on real experi-
mental data taken from a thin film of 200 nm thickness and de-
posited over a 1-mm-thick sapphire (Al2O3) substrate [41]. As
a manifestation of the material hysteresis, there is a discrep-
ancy in the temperatures associated with the phase transition
in the cooling and heating cycles. Indeed, the phase transition
occurs at the temperature T ≈ 342 K for the heating cycle and
at the temperature T ≈ 336 K for the cooling cycle [41].

III. CENTER-OF-MASS DECOHERENCE OF A SINGLE
EMITTER NEAR A CRITICAL MEDIUM

In this section, we investigate the decoherence rate suffered
by a delocalized single quantum emitter near a material under-
going a phase transition. Specifically, we consider a neutral
two-level atom with no permanent dipole, but most of the
discussion could be extended to other quantum emitters. The
decoherence rate involves two contributions [33], correspond-
ing to a first term simply associated with the global photon
emission rate, and a second term involving quantum interfer-
ences and related to the quality of the which-way information.
We study the interplay between these two contributions as
the material undergoes a phase transition. As demonstrated
below, near the critical point of the transition, the contribution
associated with interference effects is drastically suppressed.

A. Problem statement and general discussion

As in Ref. [33], we assume that a single quantum emitter
is initially in an excited state, and that its c.m. wave function
involves a superposition of two well-separated wave packets
with negligible overlap. We monitor here the external degrees
of freedom (DOF) of this quantum emitter (the considered
quantum system), which may produce at most a single photon.
The DOF of the emitter, the light field, and the material DOF
play the role of an environment surrounding the quantum sys-
tem. The phase transition affects the conductivity properties of
the material and thus influences this environment. By virtue
of the Purcell effect [22], the presence of the material near
the emitter significantly increases the photonic emission. This
phenomenon has been shown to be greatly enhanced near the
critical point of the phase transition [26]. As the emitted pho-
ton may reveal the position of the emitting wave packet, the
decoherence rate suffered by the wave function of the quan-
tum emitter is also drastically increased near the critical point.

The discussion to follow focuses, however, on a more
subtle influence on decoherence. Beyond the rate of photonic
emission, the decoherence rate also depends on the quality of
the which-way information contained in the emitted photon.
The amount of which-way information depends in turn on
the intrinsic features of light propagation, as well as on the
distance between the wave packets composing the quantum
emitter wave function. For instance, the emission of a long-
wavelength (larger than the wave-packet separation) photon
would hardly affect the wave function of the emitter, as an
observer could not reliably infer from a field measurement
the emitting wave packet. In contrast, the emission of a
short-wavelength photon is expected to destroy the wave-
function coherence, as an observer could in principle identify
unambiguously the emitting wave packet. As the production
of a long-wavelength photon carries poor-quality which-way
information, it is associated with a negative interference con-
tribution to the decoherence rate (“recoherence” rate) which
almost cancels the contribution proportional to the photonic
emission [33].

More generally, the structure of the electric field Green’s
function affects the amount of which-way information per
emitted photon. In the following, we discuss the importance
of the scattering contribution to the Green’s function. Indeed,
as the material undergoes a phase transition, the scattering
contribution to the electric field Green’s function exhibits
a sharp variation, which strongly reduces proportionally the
interference contribution to the decoherence rate.

B. General expressions of the local and nonlocal
decoherence rates

For convenience, we first recall the definition of the non-
local and local decoherence rates [33]. We take the initial
quantum state of the two-level atom as a product state
|�(0)〉 = |e〉 ⊗ 1√

2
(|ψ+〉 + eiθ0 |ψ−〉), and assume the light

field to be initially in the vacuum state. |ψ±〉 denote external
wave packets of a size assumed to be much smaller than
the transition wavelength. The local and nonlocal decoher-
ence rates can be obtained by considering the corresponding
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imaginary phases in the long-time limit [33],

�Dec
L,NL = lim

�t→∞
1

�t
Im[ϕL,NL(�t )]. (5)

The complex local ϕL(�t ) and nonlocal ϕNL(�t ) phases arise
from the dipolar interaction during the duration �t , and are
given by standard time-dependent perturbation theory as

ϕL(�t ) = i

2h̄2

∑
k=1,2

∫ �t

0
dτ

∫ �t

0
dτ ′〈H (rk, τ )H (rk, τ

′)〉,

ϕNL(�t ) = − i

h̄2

∫ �t

0
dτ

∫ �t

0
dτ ′〈H (r1, τ )H (r2, τ

′)〉. (6)

The local phase contains a sum of two contributions involving
a single wave packet, while the nonlocal phase cannot be split
in such separate single-wave-packet terms. The local decoher-
ence rate is always positive, while the nonlocal decoherence
can be of either sign, and is always negative when the wave
packets become sufficiently close.

The total decoherence rate is given by the sum of these
two contributions �Dec = �Dec

L + �Dec
NL . To make the formal

analogy with the superradiant emission more transparent, we
shall consider the ratio of the total decoherence rate to the
local decoherence rate �Dec/�Dec

L = 1 + �Dec
NL /�Dec

L . Indeed,
when the wave-packet distance is larger than several transition
wavelengths, the quantum interference contribution to the
decoherence rate becomes negligible (�Dec

NL � �Dec
L ) and thus

the decoherence rate coincides with the spontaneous emission
rate. This situation is in formal analogy to the incoherent
spontaneous emission of sufficiently distant atoms. In the op-
posite limit, when the two wave packets are close enough, the
interference contribution may reduce and eventually cancel
the total decoherence rate, which is analogous to the Dicke
superradiance of two emitters at subwavelength distance. The
main difference is the presence of a minus sign in the nonlocal
decoherence rate. A diminution of the c.m. decoherence of a
single emitter is thus formally equivalent to an enhancement
of the collective photonic emission.

The local and nonlocal phases (6) involve second-order
correlation functions between the dipole and the electric
field operators at different times and positions. The dipole
correlations are expressed as 〈e|di(0)d j (τ )|e〉 = 1

3δi j |d|2eiω0τ ,
with ω0 the transition frequency. The local and nonlocal
decoherence rates can then be recast in terms of the trace of
the Green’s dyadic G(r, r′; ω0) = Tr G(r, r′; ω0) [35],

�Dec
L = πc

ω0
�0 ImG(r1, r1; ω0) + G(r2, r2; ω0), (7)

�Dec
NL = −2πc

ω0
�0 ImG(r1, r2; ω0), (8)

where �0 = ω3
0|d|2/(3π h̄ε0c3) is the spontaneous emission

rate. As a consistency check, in the absence of a scatter-
ing contribution to the Green’s function [i.e., G(r, r′; ω0) =
G0(r, r′; ω0)], by using Eqs. (2), (7), and (8), one retrieves the
free-space decoherence rate [33].

FIG. 2. Normalized decoherence rates �Dec/�Dec
L for a superpo-

sition of two wave packets separated by a distance (a) x = 0.7λ0

and (b) x = 0.1λ0 as a function of the filling factor f and for
different distances z to the composite metal-dielectric material. Here,
we consider z = 10−2λ0 (red dotted line), z = 10−3λ0 (blue dashed-
dotted line), and z = 10−4λ0 (green dashed line). The values of the
decoherence rates with no material are also plotted (solid purple
lines). Decoherence rates have been obtained from Eqs. (7) and (8)
by considering λ0 = 450 μm and the material properties described
in Sec. II C.

C. Decoherence near a material undergoing
a percolation transition

We have studied the ratio of the decoherence rates
�Dec/�Dec

L for two specific configurations corresponding to
different distances between the wave packets. The results are
shown in Fig. 2. In the first configuration, the separation be-
tween the two wave packets corresponds to x = 0.7λ0. For this
separation, the decoherence rate in the vacuum is increased by
interference effects, and is roughly 20% larger than the spon-
taneous emission rate. In this case, each emitted photon carries
which-way information enhanced by interference effects (i.e.,
greater than that at infinite wave-packet separation). In the
second configuration, we consider a wave-packet separation
of x = 0.1λ0 yielding a free-space decoherence rate reduced
to only 7% of the spontaneous emission rate, and thus asso-
ciated with which-way information per photon of low quality.
For each wave-packet separation, we have considered various
distances from the material and the filling factor f across the
critical region. The results, presented in Fig. 2, show that
for distances extremely close to the plate z � 10−4λ0, the
nonlocal decoherence rate is suppressed for any value of the
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filling factor f . For values of the distances z to the mate-
rial such that 10−2λ0 � z � 10−3λ0, one observes a striking
change in the competition between the local and nonlocal
decoherence contributions to the decoherence rate. When
the filling factor f parameter is far from the critical region
f � 1/3, the total decoherence rate is close to its free-space
value, resulting from the interplay between the nonlocal and
the local decoherence rates. Close to the critical value f0 =
1/3, however, the total decoherence rate tends towards the
local decoherence rate. This shows that interference effects
are strongly suppressed in the vicinity of the region f � f0

corresponding to the phase transition. In both configurations
[Figs. 2(a) and 2(b)], the total decoherence rate tends towards
the spontaneous emission rate, regardless of the quality of
information contained in each photon. The decoherence rate,
considered as a function of the filling factor f , presents a
slope discontinuity as the filling factor f reaches the critical
value f0 = 1/3, suggesting that the percolation transition
leads to a “sudden death” of the interference contribution to
the decoherence rate. Indeed, the phase transition induces an
abrupt change in the interplay between the decay channels
contributing to the decoherence rate. Finally, one sees that the
material exerts a significant influence on the total decoherence
rate over a larger range of distances as the filling factor
approaches its critical value.

One notes, in Fig. 2(a), an asymmetric profile of the
decoherence rate as a function of the filling factor f at the
wave-packet separation x = 0.7λ0. For f � 0.4, the compos-
ite material is in the metallic phase and the c.m. decoherence
rate remains close to the free-space value independently of the
exact value of f . Differently, in the insulator phase ( f < 0.3),
the c.m. decoherence rate falls below its free-space value. This
may be due to the fact that, in the metallic phase, the scattering
c.m. decoherence contribution exhibits similar interferences
as the free-space contribution [44].

Our findings show that the material exerts an influence
on the c.m. decoherence on a range of distances z such that
z < z0 � 10−2λ0. The discussion done in Ref. [26] suggests
an interpretation in terms of evanescent waves. Due to their
exponential attenuation by a factor exp(−4πz/λ0), evanescent
waves contribute only for emitters in the vicinity of the
material. In Ref. [26], it was shown that the Purcell effect
becomes material dependent for distances z<10−2λ where the
nonradiative decay is significant, which coincides with our
observation on the c.m. decoherence rate.

D. Decoherence near a VO2 material undergoing
a metal-insulator transition

We investigate here the decoherence rate near VO2.
Figure 3(a) reveals that the phase transition suppresses the
coherent contribution so that �Dec/�Dec

L → 1. Figure 3(b)
sketches the normalized decoherence rate in the phase transi-
tion during the heating cycle. This figure suggests that, when
the material undergoes a phase transition, it may suppress the
interference contribution to decoherence over a larger range
of distances z between the material and the two wave packets.
Further away from the material, the hysteresis is strongly
reduced and the decoherence rate becomes almost insensitive
to the material properties. On the other hand, for small dis-

FIG. 3. Normalized decoherence rates �Dec/�Dec
L in the vicinity

of VO2 undergoing a phase transition. (a) Decoherence rate as a
function of temperature T for different distances z to the material
with a fixed separation x = 0.7λ0 between the wave packets. At
the distance z = 10−2λ0, one notes a hysteresis leading to different
values for the cooling cycle (solid purple line) and the heating
cycle (blue dashed-dotted line). At the distance z = 10−3λ0 (green
dashed line) (red dotted line), the cooling and heating curves be-
come indistinguishable with the chosen scale. At the larger distance
z = 10−1λ0, the hysteresis is very small (we have presented the
cooling curve). (b) Decoherence rate as a function of the distance
z to the material for different wave-packet separations at a fixed
temperature T = 342 K. We have used x = 0.05λ0 and x = 0.3λ0

for both the heating cycle (red dotted and blue dashed-dotted lines,
respectively) and the cooling cycle (green dashed and purple solid
lines, respectively). We have taken λ0 = 450 μm.

tances z to the material, the lines for the heating and cooling
cycles merge, and the normalized decoherence rate become
independent of the wave-packet separation [Fig. 3(b)]. This
suggests that in the immediate vicinity of the material the
decoherence rate is mostly determined by the contribution
associated with the Purcell-enhanced spontaneous emission.

IV. COLLECTIVE DECAY NEAR CRITICAL MEDIA

A. Collective decay with prescribed dipoles

We first recall the collective decay rate � for a pair of
quantum emitters, with prescribed dipole moments dk = dkuk

oscillating in phase along fixed directions uk in the vicinity of
a semi-infinite material. This semiclassical approach is well
suited to describe superradiance from a collective symmetric
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quantum state of the two emitters. The global emission rate
can be expressed in terms of the electric field Green’s dyadic
(1) G(r, r; ω0) evaluated at the emitter positions rm,n [8],

� =
∑

m=1,2

∑
n=1,2

�mn,

�mn = 2ω2
0

h̄ε0c2
Im[dnG(rn, rm, ω0)dm]. (9)

This decay rate can be written as the sum of an incoherent
contribution �I = �11 + �22 associated with the decay of
two independent emitters near the surface and a coherent
contribution �C = �12 + �21 encoding interference effects in
the emission process [8]. Note that the coherent term �C

corresponds to the additional collective emission due to the
simultaneous presence of several emitters. One may identify
two distinct regimes, namely, the regime of superradiance for
which �C > 0 with an enhanced collective emission, and the
regime of subradiance for which �C < 0 with an inhibited
collective emission. The incoherent contribution describes the
usual Purcell effect experienced by a single emitter [26], and
can be derived from the Fresnel coefficients of the material as

�I

�0
= 3c3

2ω3
0

Re

[∫ ∞

0
dk‖

k3
‖

kz

(
1 + rTM,TMe2ikzz

)]
. (10)

On the other hand, the coherent contribution �C captures the
interplay between the collective effects and the Purcell effect,
which may drastically change as the material undergoes a
phase transition. The coherent contribution reads

�C

�0
= 3c3

2ω3
0

Re

[∫ ∞

0
dk‖

k3
‖

kz
J0(k‖x)

(
1 + rTM,TMe2ikzz

)]
. (11)

We focus on this last term in order to unveil the influence of
phase transitions on collective quantum emission. We investi-
gate two different physical situations, namely, the percolation
metal-insulator transition in inhomogeneous media and the
specific case of VO2, where the phase transition is driven by
the temperature.

B. Collective decay at the percolation transition

We now discuss the role of the percolation phase transition
in the collective decay of two quantum emitters. We consider
a specific geometry where both emitters are equidistant from
the material and with parallel dipole orientations—orthogonal
to the medium interface taken as a plane.

Figure 4 presents the normalized global decay rate �/�I

as a function of the filling fraction f of gold inclusions
in a polystyrene host for different values of the emitter-
material distance z between the emitters and the semi-infinite
inhomogeneous medium. It reveals that at distances much
smaller than the transition wavelength, typically of the order
z/λ0 � 10−4, crosstalks between the two quantum emitters
are totally suppressed so that the incoherent contribution �I

predominates for all f . On the other hand, for larger dis-
tances of typically z � 0.1λ0, the material properties of the
compound hardly affect the emission. For these distances, the
material-dependent nonradiative contributions to the collec-
tive emission are strongly attenuated. In this limit the emission

FIG. 4. Normalized spontaneous emission rate in the composite
material for the symmetric state as a function of the filling factor f at
a separation x = 0.1λ0 between emitters with transition wavelength
λ0 = 450 μm. The normalized emission rate was calculated by con-
sidering Eqs. (10) and (11) and the effective permittivity described
in Sec. II C. The dotted red, blue dashed-dotted, green dashed, and
purple solid lines correspond to distances z = 10−1λ0, z = 10−2λ0,
z = 10−3λ0, and z = 10−4λ0 from the material, respectively.

process is entirely governed by crosstalks between the emit-
ters. For this range of distances, one has � ≈ 2�I for all f ,
which correspond to a maximal superradiance. Remarkably,
at the critical point f = 1/3 and for an intermediate range
of emitter-material distances, there is a strong reduction of
the coherent contribution to the total emission rate. In other
words, collective effects are strongly suppressed at the critical
point. As the collective contribution disappears with a slope
discontinuity at the percolation threshold, one may speak of
a “sudden death” of collective effects at the critical point—as
shown previously for the interference contribution to the total
decoherence rate.

C. Collective emission in the vicinity of a metal-insulator
VO2 transition

We now investigate the collective emission effects in the
vicinity of a VO2 material undergoing a metal-insulator phase
transition. We consider again the previous geometry, with
two quantum emitters at a fixed subwavelength separation
x = 0.1λ0 and at the same distance z from the interface.
Figure 5 shows the collective emission for different values of
this distance z. Figure 5, where the normalized global decay
rate �/�I is calculated as a function of the temperature T ,
demonstrates that the characteristic hysteresis of VO2 also
shows up on collective quantum emission. Interestingly, this
implies that the total decay rate of the system will not only
strongly depend on the temperature but also on whether one is
cooling or heating the system. In the limit of small distances
z � 10−3λ0, the interaction of each emitter with the medium
dominates regardless of the temperature and the two emitters
behave independently. On the other hand, for larger dis-
tances z � 10−1λ0, one has a maximal superradiance indepen-
dently of the temperature. In these situations, the emitters are
hardly influenced by the material. In contrast, the tuning of
the collective effects by the temperature is most effective in
the intermediate range z � 5×10−2λ0. At these distances, the
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FIG. 5. Spontaneous emission rate in VO2 normalized by the
incoherent contribution for the symmetric state as a function of
the temperature T at a separation x = 0.1λ0 between emitters with
transition wavelength λ0 = 450 μm. The figure shows the emission
rate for the cooling cycle at z = 10−2λ0 (solid purple line) and for the
heating cycle at z = 10−3λ0 (green dashed line), z = 10−2λ0 (blue
dashed-dotted line), and z = 10−1λ0 (red dotted line).

phase transition enhances quantum interferences between the
emitters and the hysteresis is more pronounced, and thus more
sensitive to the temperature.

V. CONCLUSION

In conclusion, we have shown that the presence of a critical
medium significantly alters the decoherence experienced by
a single emitter, as well as the collective quantum emission.
These distinct physical phenomena, namely, the decoherence
suffered by a single emitter in a coherent superposition of two
wave packets and the collective decay process of two quantum
emitters, have been addressed within a unified framework.
Indeed, the decoherence rate and the collective emission rate
are given in terms of the sum of an incoherent and a nonlocal
contribution. The former is directly related to spontaneous
emission process, whereas the latter encodes interference
effects in the decoherence rate, or in the collective decay rate
of two emitters.

We have found that the percolation phase transition in
inhomogeneous media drastically suppresses the nonlocal
contributions to the c.m. decoherence and to the collective
emission by two emitters. One observes a slope discontinuity
reminiscent of a “sudden death” of collective effects and
nonlocal decoherence at the critical point. In the specific
case of VO2 undergoing a metal-insulator transition driven
by temperature, the decoherence rate and collective emission
exhibit a characteristic hysteresis leading to different behav-
iors in the cooling and heating cycles. This result suggests
VO2 as an alternative material platform to tune collective
effects by means of a phase transition. Altogether, our re-
sults indicate that critical phenomena appear as a promising
mechanism to control and tune light-matter interactions at the
nanoscale.
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APPENDIX: INFLUENCE OF THERMAL EFFECTS
ON THE DECOHERENCE AND COLLECTIVE

EMISSION RATES

In this Appendix, we extend the results discussed in the
main text to account for a possible finite temperature of the
electromagnetic (EM) field. Indeed, the assumption of an EM
field in the vacuum state can appear as too restrictive, or
even unrealistic, for emitters in the vicinity of a heated VO2

material. In this Appendix, we thus consider instead the EM
field at a finite temperature T , described through the following
thermal density matrix [45],

ρEM =
∏

k

[
1 − exp

(
h̄ωk

kBT

)]
exp

(
h̄ωka†

kak

kBT

)
, (A1)

where kB is the Boltzmann constant. When evaluating the
electric field Green’s function (7) and (8) with this thermal
density matrix, the finite temperature merely introduces an
additional factor [nω0 (T ) + 1], where nω0 (T ) is the average
Bose-Einstein distributed photon number at the transition
frequency ω0 and for the temperature T . Thus, the thermal
field raises a simple enhancement factor for the global deco-
herence rate �Dec(T ) = [nω0 (T ) + 1]�Dec(0), corresponding
to the stimulated emission with thermal photons. Most im-
portantly, the thermal field does not affect the decoherence
profile as a function of the phase transition, nor the balance
between the interference and the incoherent contributions to
the total decoherence rate. The conclusions obtained for the
decoherence rates with an EM field in the vacuum state thus
still prevail at finite temperature.

We now investigate the influence of a finite EM field
temperature on the collective emission. For this purpose, we
use the field thermal density matrix (A1), assuming an EM
field and the emitter DOF initially uncorrelated, and take the
trace over the EM field DOF in the Born-Markov master
equation [46],

∂ρS

∂t
(t ) =

∑
(m,n)∈{1,2}2

[nω0 (T ) + 1]
�mn

2
(2σmρSσ

†
n

− σ †
mσnρS − ρSσ

†
mσn)

+ nω0 (T )
�mn

2
(2σ †

mρSσn − σmσ †
n ρS − ρSσmσ †

n ),

(A2)

with ρS the reduced density matrix corresponding to the
emitters’ DOF, with the quantum operators σm acting upon
the two-level emitter m as σm|em〉 = |gm〉 and σm|gm〉 = 0,
and with the previously introduced dipole couplings �mn (9).
The population ρs,s(t ) = 〈s|ρS (t )|s〉 in the symmetric state
|s〉 = 1√

2
(|eg〉 + |ge〉) follows the rate equation

∂ρs,s

∂t
= (�I + �C)[nω0 (T )ρgg,gg + [nω0 (T ) + 1]ρee,ee

− [2nω0 (T ) + 1]ρs,s]. (A3)
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ρgg,gg and ρee,ee denote the density matrix population for
two emitters simultaneously in the ground state and in the
excited state, respectively. From the equation above, we in-
fer that the decay of the symmetric state is given by the
rate [2nω0 (T ) + 1](�I + �C). The enhancement by a finite
temperature factor [2nω0 (T ) + 1] with respect to the vacuum
EM field state corresponds to stimulated emission and is on
the order of 20 for the temperatures and frequencies con-

sidered in the main text. Nevertheless, the ratio between the
coherent contribution to the collective emission rate and the
total emission rate remains unchanged by the finite field tem-
perature. We conclude that taking into account thermal effects
in the field itself on the collective emission does not qualita-
tively affect the suppression of the coherent contribution at the
phase transition as well as the other findings presented in this
paper.
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