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Edge modes of chiral Berry plasmons in graphene nanoribbons
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This study examines the edge modes of chiral Berry plasmons propagating along zigzag or armchair edges of
a graphene nanoribbon under a finite Berry flux and Fermi pressure. A two-dimensional quantum hydrodynamic
model is used to derive analytical expressions of the dispersion relation and transverse confinement length.
Direction-dependent edge modes exist in armchair nanoribbons under antisymmetric or symmetric boundary
conditions. A confined mode appears in the zigzag nanoribbon under hard-wall boundary conditions. The
transverse confinement length of edge plasmons in the nanoribbon can be an order of magnitude shorter than
that in the semi-infinite structure.
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I. INTRODUCTION

An edge plasmon was first reported on a liquid-helium sur-
face with external magnetic fields based on a linearized fluid
model [1,2]. Subsequently, edge magnetoplasmons were stud-
ied numerically in the same electron system where the nearby
grounded metal plate was considered [3]. Recently, edge plas-
mons have attracted increasing interest in graphene. Kumada
et al. [4] investigated edge magnetoplasmons in graphene
using high-frequency electronic measurements, which pro-
motes the use of graphene for future edge plasmonic devices.
Principi et al. [5] have reported two oppositely directed
acoustic edge plasmon modes occurring at the boundary of a
graphene film modulated by strain-induced pseudomagnetic
fields. This type of confinement may be further improved
by applying nanostructures [6]. Silvestrov et al. [7] analyti-
cally calculated charge accumulation at the boundaries of a
graphene strip induced by a gate voltage, and they predicted
that electron-electron interaction yielded charge confinement
on the graphene edges. Several experimental works have ob-
served edge plasmons in graphene nanoribbon (GNR) struc-
tures. Poumirol et al. [8] investigated edge magnetoplasmons
in quasineutral epitaxial GNRs subject to a perpendicular
magnetic field. They found that plasmonic losses were sup-
pressed under an external magnetic field. This phenomenon
contrasts that in a conventional two-dimensional electron gas
(2DEG). In fact, edge-plasmon excitation has been shown to
have a longer lifetime under high magnetic fields in GNRs
[9]. By using nano-infrared imaging techniques, Fei et al.
[10] investigated plasmon confinement in GNRs on Al2O3

substrates, where the plasmon modes under zero magnetic
field depend on the ribbon width and infrared frequency.
Nikitin et al. [6] investigated the near-field structure of surface
and edge plasmons in GNRs with scattering-type scanning
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near-field optical microscopy for real-space imaging of sur-
face or edge plasmons, which allowed the observation of
ultraconfined resonating edge modes.

Two basic shapes are possible for graphene edges in GNRs:
zigzag and armchair edges [11,12]. Nakada and Fujita [13]
employed a nearest-neighbor tight-binding model to predict
the existence of edge electron states in GNRs with general
edges consisting of mixtures of both zigzag and armchair
sites. The analytical wave function and energy dispersion
have been derived for zigzag and armchair edges [14,15].
Their work indicates that all zigzag GNRs are metallic with
confined edge electron states, whereas armchair GNRs are
either metallic or insulating, depending on the ribbon width.
For bulk plasmons in various GNRs, the dispersion relation
and edge-dependent reflection have been studied [16–21].
Furthermore, Nikitin et al. [22] predicted that GNRs can
support surface and edge-plasmon modes within the random-
phase approximation. Song et al. [23] predicted the existence
of chiral Berry plasmons (CBPs) and nonreciprocal chiral
edge modes in a semi-infinite system with a nonzero Berry
flux under zero magnetic field. We further investigated the
edge modes of CBPs in gapped graphene by using a quantum
hydrodynamic (QHD) model [24].

However, chiral edge plasmons in GNRs with zigzag (ZZ)
or armchair (AC) edges have yet to be characterized. The
objective of this paper is thus to demonstrate how boundary
conditions affect the existence of chiral or confined edge
plasmons. We consider gapped graphene with a nonzero
Berry flux and various boundary conditions. The analytical
dispersion relations in ZZ and AC nanoribbons are derived.
The appearance of nonreciprocal edge modes is discussed for
different edges. This work predicts a one-way propagating
edge-plasmon mode in AC GNRs with antisymmetric or
symmetric boundary conditions. A confined mode propagates
unidirectionally in the ZZ GNR with the hard-wall boundary
condition. In GNRs with a small ribbon width, the frequen-
cies of edge-plasmon modes and confined modes are always
lower than the bulk plasmon frequency. These results are in

2469-9950/2019/99(19)/195450(10) 195450-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.195450&domain=pdf&date_stamp=2019-05-28
https://doi.org/10.1103/PhysRevB.99.195450


YA ZHANG, JIANGUO GU, AND FENG ZHAI PHYSICAL REVIEW B 99, 195450 (2019)

contrast to those in a semi-infinite structure [23,24] where
counterpropagating edge modes exist and edge-plasmon dis-
persion can intersect the bulk plasmon dispersion. We also
discuss how ribbon width and the Berry flux affect the fre-
quency and lateral confinement length of edge plasmons. For
edge-plasmon modes in AC GNR under symmetric boundary
condition and confined modes in ZZ GNR, the transverse
confinement length is about an order of magnitude shorter
than that in a semi-infinite structure. The effect of Berry flux
on the edge modes depends on the edge type, which cannot be
revealed from a semi-infinite system.

II. MODEL AND FORMALISM

We adopt the QHD model to investigate edge plasmons
in graphene nanoribbons. The QHD model has been devel-
oped by solving the Wigner-Poisson kinetic model or the
Schrödinger-Poisson system [25,26], which can effectively
capture the essential features of a quantum electron gas. The
explicit descriptions of the macroscopic variables in QHD,
such as density and momentum, were derived from the first
two moments of the Wigner function integrated over the
velocity space, which make it easier to interpret the terms of
fluid quantities that are employed in classical physics. The
QHD model has been used in many works [25–28]. Haas
et al. [25] used the QHD model to investigate two-stream
instability, where the dispersion relation possesses a semi-
classical branch and two quantum branches. Manfredi et al.
[26] used the QHD model to describe the stationary states of
a quantum electron gas and the two-stream instability. They
found that the quantum effect reduced the region of instability.
Garcia et al. [27] adopted the QHD model to discuss the
suppression of four-wave instability. Shukla [29] employed
the QHD model to study electron-ion-dust plasmas, where
a dispersion relation for a new dust mode was derived. The
QHD model was also used to calculate the energy loss of
charged particles [30,31]. Recently, a nonlinear dispersion
relation of low frequency wave in degenerate plasmas was
derived in the homogeneous quantum dusty magnetoplasmas
based on the QHD model [32].

We consider a 2DEG in GNRs with ZZ or AC edges in
the (x, y) plane (see Fig. 1). The 2DEG is fully degenerate at
zero temperature and subject to a finite Berry flux. The ZZ
nanoribbon has top and bottom edges at y = ∓L/2, and the
AC nanoribbon has left and right edges at x = ∓L/2, where L
is the width of the GNR.

A linearized QHD model [24–26,33] is applied to describe
plasmon motion in GNRs:

0 = ∂ne1

∂t
+ n0∇ · V, (1)

∂ue

∂t
= e

m∗ ∇φ − v2
F

n0
∇ne1 + h̄2

4m∗2n0
∇(∇2ne1), (2)

φ(r, t ) =
∫

d2r′W (r − r′)ne1(r′, t ). (3)

Here, ∇ = ∂
∂x ex + ∂

∂y ey, ne1 = ne − n0 is the two-dimensional
electron density fluctuation, n0 is the equilibrium density
of the 2DEG, vF = 1 × 108 cm/s is the Fermi velocity
[34], m∗ = h̄

√
πn0/vF is the plasmon mass [34], e is the
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FIG. 1. Schematic illustration of a graphene nanoribbon with
zigzag edges (top and bottom) and armchair edges (left and right).
Under a finite Berry flux and Fermi pressure, chiral edge plasmons
propagate along the armchair edges with direction-dependent fre-
quency ω±edge, whereas a confined mode exists along the zigzag
edges. Antisymmetric or symmetric boundary conditions are im-
posed on armchair edges [38,39], while hard-wall boundary con-
ditions are imposed on zigzag edges [14,15,40]. The primitive lat-
tice vectors (blue arrows) are a = a0(1, 0) and b = a0(1/2,

√
3/2),

where a0 = 0.246 nm is the graphene lattice constant.

elementary charge, h̄ is the reduced Planck constant, φ is the
electrostatic potential, W (r − r′) is the Coulomb interaction,
and ue is the mean fluid velocity. The total velocity field
V consists of not only the fluid component ue but also an
additional anomalous velocity Va due to the nonzero Berry
flux [23],

V = ue + Va, Va = eF

n0 h̄
[∇φ × ez], (4)

where F = ∑
i

∫
d2k �i(k) f 0

i (k)/(2π )2 is the dimensionless
Berry flux [35,36], and f 0

i (k) and �i(k) are, respectively, the
equilibrium occupancy and Berry curvature for band i. The
form of �i(k) is given in Refs. [35,36].

The certification of the QHD model is discussed in detail
in our previous work [24]. On the right-hand side of Eq. (2),
the first term is the electrostatic force, the second term is the
zero-temperature Fermi pressure due to the Pauli exclusion
principle [33], and the third term is the quantum diffraction
pressure induced by the Bohm force [33]. For definiteness,
the quantum diffraction pressure is omitted, because our nu-
merical results indicate that the effect of this term is indeed
negligible in the considered range of wave vector. Finally, the
damping effect is not considered in Eq. (2), because the Pauli
blocking could suppress it [26,37].

A. One unified constraint equation of edge plasmons

We find a unified constraint equation for the edge plasmons
with propagating wave vector k and frequency ω. Near the
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boundary y = ∓L/2, edge plasmons are given as

φ(r, t ) = φk (y) exp(iωt − ikx),

ne1(r, t ) = ne1k (y) exp(iωt − ikx),

ue(r, t ) = uek (y) exp(iωt − ikx), (5)

V(r, t ) = Vk (y) exp(iωt − ikx),

W (r, t ) = Wk (y) exp(iωt − ikx).

For a GNR with boundary y = ∓L/2, V(r, t ) is gener-
ally finite for |y| � L/2 but vanishes for |y| > L/2. A jump
condition of ∂yφk (y) is derived [23] by replacing ne1(r) =
−n0∇ · V(r, t )/iω in Eq. (3). At the boundary y = ∓L/2,
using the identity

∂yVy(y) |y=(∓L/2)±= Vy |y=(∓L/2)± δ(y ± L/2), (6)

one gets

∂φk

∂y

∣∣∣∣
y=(∓L/2)+

− ∂φk

∂y

∣∣∣∣
y=(∓L/2)−

= − 1

iω

[
∂Wk (y ± L/2)

∂y

∣∣∣∣
y=(∓L/2)−

−∂Wk (y ± L/2)

∂y

∣∣∣∣
y=(∓L/2)+

]
n0Vy |y=(∓L/2)± . (7)

Note that the jump condition in the above equation depends on
the perpendicular velocity at the edges, Vy |y=(∓L/2)± , where
the subscript (∓L/2)± represents that the velocity should be
evaluated in the region of the GNR. Here q/k � kF = √

πn0

(kF is the Fermi wave number). In this long-wavelength limit
[2,23], Wk can be approximated as

Wk (y) ≈ −4π
e

κ

∫
dq

2π

|k|
q2 + 2k2

exp(iqy)

= − 4πe

2
√

2κ
exp(−

√
2|ky|). (8)

Here q describes the wave vector in x (perpendicular to the
boundary), and κ is the background dielectric constant. A
justification of Eq. (8) together with the detailed derivation
of Eqs. (9)–(12) is given in the Appendix. With this approxi-
mated form of Wk (y), from Eqs. (3) and (5) we find(

∂2
y − 2k2

)
φk (y) = 4π (e/κ )|k|ne1k (y), |y| � L/2,(

∂2
y − 2k2

)
φk (y) = 0, |y| > L/2. (9)

Applying ∂/∂t to the continuity equation [Eq. (1)] and
substituting ∂V

∂t = ∂ue
∂t + ∂Va

∂t into the resulting identity, we
obtain

∂2ne1

∂t2
= − e

m∗ n0∇2φ + π h̄2n0

m∗2 ∇2ne1. (10)

The electron density fluctuation ne1(r, t ) can be expressed in
terms of φk (y) from Eq. (9),

ne1(r, t ) = κ

(
k2

n − 2k2
)

4πe|k| φk (y) exp(iωt − ikx). (11)

Here, ikn is a real (purely imaginary) wave vector for which
∂2

y φk (y) = k2
nφk (y) holds in the region |y| < L/2. The value

of kn depends on the boundary condition (see the following
subsections B and C). By substituting Eq. (11) into Eq. (10),
we derive

1 = 2[ωP(k)]2

ω2

k2
n − k2

k2
n − 2k2

− AS
k2

n − k2

ω2
, (12)

where ωP(k) = [2πn0e2|k|/(m∗κ )]1/2 is the two-dimensional
(2D) bulk plasmon frequency [2,23] in the absence of the
Fermi pressure and Berry flux terms, and AS = π h̄2n0/m∗2 is
the coefficient of the Fermi pressure term.

The derivation of the constraint equation (12) for the
boundary y = ∓L/2 can be applied for the boundary x =
∓L/2 after exchanging the x and y coordinates in all the above
expressions. This equation is derived from coupling the con-
tinuity and momentum balance equations [Eqs. (1) and (2)]
with the definitions of edge plasmon waves [Eq. (5)]. We also
utilize the property of the edge plasmon ∇2φ = (k2

n − k2)φ,
which holds for all considered boundary conditions. There-
fore, Eq. (12) is indeed independent of the specific edge of ZZ
GNR or AC GNR. In Eq. (12) the edge-plasmon frequency ω

and the wave vector kn are unknown for a given propagating
wave vector k. To determine the dispersion relation of the edge
plasmons, one needs another constraint equation that depends
on the boundary condition of φk (y), which will represent the
unique character of the ZZ and AC edges.

Here the boundary conditions used for the wave function
of electrons are used for the electric potential φ. The physical
reason is that it is possible to combine Eqs. (1) and (2)
into an effective Schrödinger equation. Indeed, let us define
the effective wave function, ψ = √

ne exp(iS/h̄), where ne =
|ψ |2, and S is the phase related to the mean fluid velocity ue.
The electron density is determined by the effective wave func-
tion (ψ), while the electric potential (φ) is produced by the
electron density fluctuation ne1 = ne − n0. Since the electric
potential and the density fluctuation have the same form of
plasmon wave shown in Eq. (5), the boundary conditions used
for the wave function of electrons can be used for the electric
potential.

B. Edge-plasmon mode in armchair nanoribbons

Both edges of an AC GNR are an admixing of atoms
belonging to different sublattices. Based on Refs. [38,39], an
antisymmetric or symmetric boundary condition is imposed
on the AC edges so that the solution of Eq. (9) can be written
as (after exchanging the x and y coordinates)

φk (x) = φ0 exp(κ0x), x < −L/2,

φk (x) = φ1[exp(knx) + s exp(−knx)], |x| � L/2,

φk (x) = φ2 exp(−κ0x), x > L/2, (13)

where s = 1 (s = −1) under the symmetric (antisymmetric)
boundary conditions, κ0 = √

2|k|, φ0, φ1, and φ2 are real, and
kn is either real or purely imaginary [14,15,34]. When kn is
positive, the ratio |φk (x = ±L/2)|/|φk (x → 0)| tends to ∞ as
L → ∞, indicating an edge mode.

By using the boundary condition of continuous φ, the jump
condition (7), and Eq. (13), one yields the second transcen-
dental equation that ω and kn satisfy. Under the antisymmetric
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boundary condition (s = −1), it is[
1 + ω2

p(k)

ω2
− AS

k2
n − 2k2

ω2

]
kn cosh(knL/2)

+
[√

2|k| − AF
k2sgn(k)

ω

]
sinh(knL/2) = 0. (14)

Here, AF = 4πe2F/κ h̄ is the coefficient of the chiral Berry
term. Under the symmetric boundary condition (s = 1), this
transcendental equation becomes

0 =
[

1 + ω2
p(k)

ω2
− AS

k2
n − 2k2

ω2

]
kn sinh(knL/2)

+
[√

2|k| + AF
k2sgn(k)

ω

]
cosh(knL/2). (15)

For a given wave vector k and under antisymmetric (sym-
metric) boundary conditions, the two nonlinear equations (12)
and (14) [(12) and (15)] are solved numerically to calculate
the edge-plasmon frequency ω together with the wave vector
kn. Due to the presence of a term ∝ sgn(k) in Eqs. (14) and
(15), the propagating velocity of the edge plasmon depends on
the propagating direction [23]. The frequency of a forward-
propagating (backward-propagating) edge-plasmon mode is
defined as ω−edge (ω+edge) for k>0 (k<0). The calculation
predicts that the ω−edge mode exists under antisymmetric
boundary conditions, while the ω+edge mode appears under
symmetric boundary conditions. Under the antisymmetric
boundary condition and the long-wavelength limit k → 0+,
one has

kn(k → 0+) =
√

2ωp(k)√
1.3AS

,

ω−edge(k → 0+) = 2

3
ωp(k). (16)

Under symmetric boundary conditions, ω+edge and kn have the
long-wavelength limit

kn(k → 0−) = |k|,
ω+edge(k → 0−) = Lω2

p(k)/AF . (17)

C. Confined plasmon mode in zigzag nanoribbons

Each edge of a ZZ GNR consists of atoms in the same
sublattice (A for the top edge and B for the bottom edge).
According to Refs. [14,15,40], we adopt a hard-wall boundary
condition on ZZ edges so that V(y = ±L/2) ≡ 0, which
is actually a homogeneous Dirichlet boundary condition on
V(r, t ). In this case, the solution of φk (y) in the region |y| �
L/2 can be written as [14,15,40]

φk (y) = φ1 sin(ikny), (18)

where φ1 and ikn are real. After some algebra, one obtains the
second constraint equation on ω and kn, which reads

0 =
[

ω2
p(k)

ω2
− AS

k2
n − 2k2

ω2

]
kn cos(knL/2)

− AF
k2sgn(k)

ω
sin(knL/2). (19)

This solution of Eqs. (12) and (19) is called the “confined edge
mode” in Refs. [14,15,34].

Note that there is no confined plasmon mode in the AC
GNR even under the hard-wall boundary condition V(y =
±L/2) ≡ 0, which agrees with the theoretical prediction
[15,34] and experimental observation [41]. In this situation
the bulk solution of φk (x) in the GNR region has the form
φ1 cos(knx) or φ1 sin(knx), where kn is real. Substituting this
solution into the hard-wall boundary condition, one obtains

0 =
[

ω2
p(k)

ω2
− AS

k2
n − 2k2

ω2

]
kn sin(knL/2)

− AF
k2sgn(k)

ω
cos(knL/2). (20)

Since the set of equations (12) and (20) has no real solution of
kn and ω, no confined mode exists in the AC nanoribbon.

III. RESULTS AND DISCUSSIONS

In this section, we show the numerical results of the
dispersion relation and transverse confinement length for the
edge modes in the AC GNR and confined modes in the ZZ
GNR, where the MATLAB solver function is used. The electron
density in equilibrium and the background dielectric constant
are taken to be the same as in Ref. [23]: n0 = 6 × 1010 cm−2

and κ = 1. The plasmon frequency ω and wave number k are
in units of EF /h̄ and kF , respectively, where EF = h̄vF kF is
the Fermi energy. The dimensionless Berry flux F is fixed at
F = 1 without specification. The ribbon width is in units of
the lattice constant of graphene a0 = 0.246 nm.

The dispersion relations for edge plasmons in AC GNR are
shown in Figs. 2(a) and 2(b) where the ribbon width is L =
24a0. The results are compared to the bulk plasmon frequency
ωP. It is evident that the one-way acoustic edge mode exists in
AC GNRs under both antisymmetric and symmetric boundary
conditions. These edge modes are induced by the Fermi pres-
sure and Berry flux. The finite Berry flux brings chirality into
the dispersion relation [Eqs. (14) and (15)], which depends
on the sign of the wave number k. The zero-temperature
Fermi pressure due to the Pauli exclusion principle breaks
the space-reversal symmetry, where fermions are described
by antisymmetric states. An antisymmetric two-particle state
is regarded as a sum of states with one particle in a forward-
propagating state while the other is in a backward-propagating
state. The total antisymmetric wave function changes sign
under space reversal, yielding the singularity of nonlinear
Eqs. (12) and (14) [Eqs. (12) and (15)]. This scenario induces
a frequency gap for k � 0 (k � 0) under antisymmetric (sym-
metric) boundary conditions. Under antisymmetric bound-
ary conditions, the edge plasmon propagates only along the
−y direction and has a long-wavelength limit ω−edge ∝ √|k|
[Eq. (16)]. Under symmetric boundary conditions, the edge
plasmon propagates only along the +y direction. In the long-
wavelength limit, ω+edge(k) ∝ |k| [Eq. (16)] is much smaller
than ω−edge(−k).

In Fig. 2(c) the dispersion of confined plasmon mode is
plotted for a ZZ GNR with width L = 1212.5a0 under the
hard-wall boundary conditions. The confined plasmon mode
is only forward-propagating. Its dispersion curve is almost
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FIG. 2. (a),(b) Dispersion of chiral edge plasmons in an armchair
nanoribbon with antisymmetric or symmetric boundary conditions.
(c) Dispersion of confined modes in a zigzag nanoribbon under hard-
wall boundary conditions. The dispersion of the bulk plasmon ωP

(squares) is plotted for comparison. The parameters are F = 1 and
L = 1212.5a0 (L = 24a0) for the zigzag (armchair) nanoribbon. No
confined mode is found in the AC nanoribbon.

the same as the bulk plasmon dispersion under the threshold
frequency ωth = 0.115 92EF /h̄ and it has a frequency gap
within 0.003 02 < |k|/kF � 0.006 73. The calculation step of
the wave number is 0.000 02kF near the gap, which substitutes

the maximum error of 0.3% for determining the lower and
upper bound of the gap. There is no real solution in the gap.
Here the gap formation is similar to that in the semi-infinite
case (see the ω−edge branch in Ref. [24]). By comparing the
results in [23,24], it can be seen that such a gap is caused by
the second term (∝∇ne1) on the right side of Eq. (2). Thus the
confined mode for ZZ GNR exists only at proper frequencies
and wave numbers, which is also predicted theoretically [17].
In a recent experiment [41], confined plasmon modes in ZZ
GNRs were revealed from the enhanced near-field optical
response near the ZZ edges. Such a signal is not observed near
the AC edges.

We now compare the one-way edge modes in AC nanorib-
bons and one-way confined modes in ZZ nanoribbons with
edge plasmons in a semi-infinite geometry calculated in our
previous work [24]. The frequencies of edge plasmons in AC
nanoribbons (ω−edge and ω+edge) are always lower than the
bulk-plasmon frequency ωP. This fact is useful for enhancing
the lifetime of the edge mode propagating along the ribbon
edge. In contrast, the one-way confined mode in ZZ nanorib-
bons presents a frequency gap and has frequency < ωP at
the right side of the gap region, which is very similar to the
ω−edge mode of the semi-infinite system [24]. Its plasmon
frequency almost coincides with ωP at small wave vector k.
This nonreciprocal waveguide at the nanoscale could have
potential applications for nonreciprocal devices without a
magnetic field.

Edge plasmon modes in GNRs have also been proposed
theoretically [42] and reported experimentally [6,10]. Kumar
et al. [42] predicted one-way edge modes with a valley-
dependent propagation direction, which shows some char-
acteristics similar to our results. However, in their work,
the one-way edge modes have a symmetric dispersion due
to spatial symmetry [43]. Fei et al. [10] observed peculiar
one-dimensional modes propagating along the ribbon edges
in infrared nanoimaging experiments, where the plasmon
fringe patterns changed upon varying the infrared frequencies.
In addition, Nikitin et al. [6] imaged a dipole’s near-field
structure of edge-plasmon modes by using scattering-type
scanning near-field optical microscopy with the dipole located
at different positions inside and at the boundary of the GNR.
In these experiments, the edge modes are strictly confined to
the ribbon edges, which is confirmed by our results.

The transverse confinement length of these one-way plas-
mon modes, defined as the ratio |k/kn|, is plotted in Fig. 3.
The parameters of Figs. 2 and 3 are the same. For the edge
plasmons in the AC GNR, the electrostatic potential φ decays
exponentially from the edges to the center, as shown in
Fig. 3(a). For the confined mode in the ZZ GNR under con-
dition V(y = ±L/2) ≡ 0, the potential φ varies sinusoidally
from one edge to the other [see Fig. 3(b)]. As shown in
Figs. 3(c) and 3(d), for the edge-plasmon mode ω−edge in
AC GNR and the confined mode in ZZ GNR, the transverse
confinement length is lower than 0.1 in the considered region
of the wave vector. It tends to zero for |k| → 0+. The trans-
verse confinement length in this case is an order of magnitude
smaller than that in a semi-infinite system [24], which is help-
ful to achieve optical nonreciprocity in GNRs without a mag-
netic field. For the edge-plasmon mode ω+edge in AC GNRs,
the transverse confinement length changes slightly around the
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FIG. 3. (a),(b) Normalized electric potential φ/φ1 and (c), (d) transverse confinement length |k/kn| for chiral edge plasmons and confined
mode. In panels (a) and (c), the armchair nanoribbons are considered under antisymmetric or symmetric boundary conditions, whereas, in
panels (b) and (d), zigzag nanoribbons are considered under hard-wall boundary conditions. The parameters of Figs. 2 and 3 are the same.
The electric potential φ under edge-plasmon modes ω±edge decays rapidly from the edges to the center. Under the confined mode, φ displays a
sinusoidal variation. The transverse confinement length of the ω−edge branch (<0.1) is much less than that of the ω+edge branch (≈1). Similar
to the ω−edge edge mode in the armchair nanoribbon, the confined mode in the zigzag ribbon is strongly localized near the edge (|k/kn|<0.1).

constant 1. The localization of plasmon-induced potential near
the edges requires |knL|>1. For a given propagating wave
vector k, the ω−edge mode and the confined mode can appear
under L≈0.1/|k|, while the ω+edge mode appears only under
L � 1/|k|.

It has been reported [6,10,22,42] that the ribbon width can
influence the properties of edge plasmons. In Figs. 4(a) and
4(b), the dispersion of the edge plasmons in AC ribbons is
plotted for different values of ribbon width L. Under anti-
symmetric boundary conditions [Fig. 4(a)], the edge-plasmon
frequency ω−edge can exceed the bulk plasmon frequency ωP

(at large wave vector) for L = 720a0 = 177 nm. However, the
frequency ω−edge is always less than ωP for a smaller L. In
this case, this type of edge-plasmon mode may be applicable
for GNR plasmonics due to its small transverse confine-
ment length (<0.1). Under symmetric boundary conditions
[Fig. 4(b)], the edge-plasmon frequency ω+edge is less than

ωP over the entire wave-vector region considered, even for
a large ribbon width L = 24 250a0 = 6 μm. With increasing
the ribbon width, the edge-plasmon frequency approaches the
bulk value ωP globally. For the confined mode in ZZ ribbons
under hard-wall boundary conditions, the plasmon frequency
at a fixed wave vector k = 0.023 is plotted as a function of
ribbon width. The frequency decreases monotonically with
increasing ribbon width, which is similar to the eigenenergy
of electron edge states in ZZ GNR [15]. In contrast, in AC rib-
bons the edge-plasmon frequency ω±edge increases generally
as the ribbon width increases. Such a difference arises from
the boundary-condition dependence of one transcendental
equation used to determine the dispersion relation.

Due to time-reversal symmetry, the Berry curvature has
opposite signs for electrons in the K and K ′ valley. Elec-
trons in the K (K ′) valley are subject to the Berry flux
FK>0 (FK ′ = −FK<0). Naively, the two valleys are treated

195450-6



EDGE MODES OF CHIRAL BERRY PLASMONS IN … PHYSICAL REVIEW B 99, 195450 (2019)

FIG. 4. (a),(b) Dispersion of chiral edge plasmons in armchair
nanoribbons under antisymmetric and symmetric boundary condi-
tions for different ribbon widths. The dispersion ωP of the bulk
plasmon is plotted as squares for comparison. (c) Frequency of
confined mode in zigzag nanoribbons under hard-wall boundary
conditions plotted as a function of ribbon width L. The wave number
k is fixed at |k| = 0.023. In all panels, the Berry flux is set at F = 1.

separately in the present work. Figure 5 demonstrates the
effect of Berry flux F on the edge plasmons for both the K and
K ′ subsystem under different boundary conditions. The wave
vector is fixed at |k| = 0.023 at which ωp≈0.32. The width of

FIG. 5. (a) Frequency ω and (b) transverse confinement length
|k/kn| plotted as functions of the dimensionless Berry flux F . The
three curves are for edge plasmons in armchair ribbons under anti-
symmetric (square) and symmetric (circle) boundary conditions and
for confined modes (up-triangle) in zigzag ribbons under hard-wall
boundary conditions. The wave number |k| is fixed at 0.023 at which
ωp≈0.32. The ribbon width is L = 24a0 (L = 1212.5a0) for the
armchair (zigzag) nanoribbon.

the ribbon is set as L = 24a0 (L = 1212.5a0) for the AC (ZZ)
ribbon.

It is evident that the Berry flux F has a different in-
fluence on the edge plasmons for AC and ZZ GNRs. For
the K ′ subsystem in AC GNR (F<0), with increasing |F |,
both the frequency and the transverse confinement length
of the ω+edge mode (under symmetric boundary condition)
decrease quickly, while those of the ω−edge mode (under
antisymmetric boundary condition) is almost unchanged. For
the K subsystem in AC GNR (F>0), both the frequency and
the transverse confinement length of edge modes ω±edge are
almost unchanged by the Berry flux. This indicates that the
presence of edge plasmons in AC GNRs is almost independent
of the strength of Berry flux. For ZZ GNR, with increas-
ing |F |, both the frequency and the transverse confinement
length of the confined mode (under the hard-wall boundary
condition) increase (decrease) for the K ′ (K) subsystem. This
feature agrees with the results in Ref. [23]. It is also seen
that the transverse confinement length for the ω−edge mode
in AC GNR is always smaller than that for the confined
mode in ZZ GNR. This feature has been experimentally
reported by Duan et al. [41], and now our theoretical result
confirms it.

IV. CONCLUSION

In this paper, we use a quantum hydrodynamic method
to investigate chiral Berry plasmons in graphene nanoribbons
with zigzag or armchair edges. A finite Berry flux and Fermi
pressure are considered simultaneously. The results indicate
that a one-way acoustic edge mode exists in armchair rib-
bons under antisymmetric or symmetric boundary conditions,
whereas a confined mode occurs in zigzag ribbons under hard-
wall boundary conditions. The analytical dispersion relations
and the transverse confinement length are derived for edge
and confined plasmon modes. At a small ribbon width, the
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frequencies of edge-plasmon modes and confined modes are
always lower than the bulk plasmon frequency. In contrast, the
edge-plasmon dispersion in a semi-infinite structure can inter-
sect the bulk plasmon dispersion. For edge-plasmon modes
in armchair ribbons under symmetric boundary condition and
confined modes in zigzag ribbons, the transverse confinement
length is an order of magnitude less than that in a semi-infinite
structure. The boundary condition for ribbon edges can greatly
alter the dispersion and the transverse confinement of chiral
Berry plasmons in graphene nanoribbons. These supercon-
fined one-way edge-plasmon or confined modes are useful for

optoelectronic and nanophotonic applications and are relevant
for realizing optical nonreciprocity and developing highly
sensitive spectroscopy without magnetic fields.
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APPENDIX: DETAILS ON EQS. (8)–(12)

In this Appendix, we present a detailed derivation of Eqs. (8)–(12). In the long-wave-length limit [2,23], the nonlocal kernel
Wk (y) with Fourier transform Wk (q) can be well approximated by a local kernel Ŵk (y) with Fourier transform Ŵk (q), where

Wk (y) =
∫

dq

2π
Wk (q) exp(iqy),

Wk (q) = (−2πe/κ )|q2 + k2|−1/2, (A1)

Ŵk (q) = (−2πe/κ ) × 2|k|/(q2 + 2k2).

In these expressions, k is the wave vector of the edge plasmon and can be negative. As emphasized in Ref. [2], the exact and
approximate Fourier transforms of Wk (y) for k = 0 must have the same first two terms in a power series about q2 = 0, that is,
|Wk (q) − Ŵk (q)| = O(q4). This requirement explains why it is the factor |k| rather than k that appears in Ŵk (q). The approximate
kernel Ŵk (y) = ∫ dq

2π
Ŵk (q) exp(iqy) can be written as −2(e/κ )|k|A, where

A =
∫

dq exp(iqy)

q2 + 2k2
=

∫
dq cos(qy)

q2 + 2k2
=

∫
dq exp(iq|y|)

q2 + 2k2
. (A2)

Here we have used the identity exp(iqy) = cos(qy) + i sin(qy) and
∫ dq sin(qy)

q2+2k2 = 0. The integral A is calculated directly by the

residue theorem on the complex-variable function f (q) = exp(iq|y|)
q2+2k2 . Note that f (q) has only one pole q0 = √

2|k|i in the upper

half q-plane and satisfies Jordan’s Lemma (since |y| � 0). One has A = 2π ires f (q0) = 2π i exp(iq|y|)
2q |q=q0 = π exp(−√

2|ky|)√
2|k| . This

gives Ŵk (y) = − 4πe/κ
2
√

2
exp(−√

2|ky|). This is the second identity of Eq. (8).
From Eqs. (3) and (5) we get

φk (y) =
∫

dy′Wk (y − y′)ne1k (y′). (A3)

From the convolution theorem, the Fourier transform of φk (y) reads

F {φk (y)} = F {Wk (y)}F {ne1k (y)}. (A4)

Here F is the Fourier transform operator. With the approximated form F {Wk (y)} ≈ Ŵk (q) and Eq. (A1), one has

F {φk (y)} = −(4πe|k|/κ )/(q2 + 2k2)F {ne1k (y)}. (A5)

Applying the inverse Fourier transform to

(−q2 − 2k2)F {φk (y)} = (4πe|k|/κ )F {ne1k (y)}, (A6)

we get (
∂2

y − 2k2
)
φk (y) = 4π (e/κ )|k|ne1k (y) (A7)

for |y| � L/2. For |y| > L/2, where ne1k (y) = 0, one has (∂2
y − 2k2)φk (y) = 0. In this way, we obtain Eq. (9), which is one

prerequisite for Eq. (12). In the region |y| � L/2, the edge plasmon is assumed to satisfy [2,23]

∂2
y φk (y) = k2

nφk (y). (A8)

This gives

∇2φ = (
k2

n − k2)φ, (A9)

which holds for all considered boundary conditions. The value of kn depends on the type of boundary conditions.
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Applying ∂/∂t to the continuity relation in Eq. (1), we obtain

0 = ∂2ne1

∂t2
+ n0∇ · ∂V

∂t
. (A10)

From Eqs. (2) and (4), we get

∂V
∂t

= ∂ue

∂t
+ ∂Va

∂t
= e

m∗ ∇φ − v2
F

n0
∇ne1 + eF

n0 h̄

∂

∂t
(∇φ × ez ). (A11)

Note that the last term in Eq. (2) is neglected [see the argument in the paragraph above Sec. II(A)]. The divergence of the vector
∂V/∂t appears in Eq. (A10), which is

∇ · ∂V
∂t

= e

m∗ ∇2φ − v2
F

n0
∇2ne1 + eF

n0 h̄

∂

∂t
∇ · (∇φ × ez ). (A12)

Here we have used the relation ∇ · ∇ = ∇2 between the nabla operator ∇ and the Laplacian operator ∇2. This calculation gives

0 = ∂2ne1

∂t2
+ n0

e

m∗ ∇2φ − v2
F ∇2ne1 + eF

h̄

∂

∂t
∇ · (∇φ × ez ). (A13)

Since ∇ · (∇φ × ez ) = ∂2φ

∂x∂y − ∂2φ

∂y∂x = 0 and v2
F = h̄2πn0

m∗2 , Eq. (A13) yields Eq. (10).
From Eq. (9) we get Eq. (11), which together with Eq. (A8) leads to

∇2ne1 = (
k2

n − k2
)
ne1,

∂2ne1

∂t2
= −ω2ne1, ∇2φ = ne1

(
k2

n − k2
)4πe|k|/κ

k2
n − 2k2

.

Substituting these expressions into Eq. (10), we obtain Eq. (12).
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