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Statistics of heat transport across a capacitively coupled double quantum dot circuit
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We study heat current and the full statistics of heat fluctuations in a capacitively coupled double quantum
dot system. This work is motivated by recent theoretical studies and experimental works on heat currents in
quantum dot circuits. As expected intuitively, within the (static) mean-field approximation, the system at steady
state decouples into two single-dot equilibrium systems with renormalized dot energies, leading to zero average
heat flux and fluctuations. This reveals that dynamic correlations induced between electrons on the dots are solely
responsible for the heat transport between the two reservoirs. To study heat current fluctuations, we compute the
steady-state cumulant generating function for heat exchanged between reservoirs using two approaches: the
Lindblad quantum master equation approach, which is valid for arbitrary Coulomb interaction strength but weak
system-reservoir coupling strength, and the saddle point approximation for the Schwinger-Keldysh coherent-
state path integral, which is valid for arbitrary system-reservoir coupling strength but weak Coulomb interaction
strength. Using thus obtained generating functions, we verify the steady-state fluctuation theorem for stochastic
heat flux and study the average heat current and its fluctuations. We find that the heat current and its fluctuations
change nonmonotonically with the Coulomb interaction strength (U ) and system-reservoir coupling strength (�)
and are suppressed for large values of U and �.
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I. INTRODUCTION

Studying transport processes in nanosized electronic quan-
tum dot junctions has been an active research area for past
two decades [1–7]. The motivation is twofold: the desire
to design more efficient electronic devices and heat engines
[8–12] and also the need for a platform for testing funda-
mental principles. From the technological perspective, useful
devices have been proposed theoretically, and a few have
been tested experimentally. For example, nanodiodes [13],
transistors [14], switches [15], and other electronic elements
relevant for device applications have been proposed [16].
Understanding charge and heat transport in nanosystems is
relevant for these applications. However, due to the small
size, fluctuations of fluxes flowing through these systems
are not negligible. These fluctuations are not arbitrary but
follow universal relations called fluctuation theorems which
generalize the second law of thermodynamics to small scale
[17–27]. These identities relate the number of microscopic
realizations of transport processes which produce a certain
amount of entropy to those which annihilate the same amount
of entropy. Nanoelectronic devices have served as useful
platforms for testing these identities [28–31]. These theorems
are not only aesthetically appealing but also are used to
gain insights into transport processes. For example, they have
been used to characterize efficiency fluctuations [32–34] of
nanoscale heat engines, which is an important fundamental
generalization of Carnot’s analysis [35] of macroscopic heat
engines to microscale. Thermoelectric engines, which are of
current theoretical and experimental interest, constitute one
such class of nanoscale heat engines [8,36–39] that convert
heat to electrical work.

Although heat flow plays a central role in determining the
efficiencies of these engines, heat currents at nanoelectronic
junctions are not as well explored as the charge currents.
Recently, there has been some interest in exploring the ef-
fects of various many-body interactions in thermoelectric
heat engines. For example, effects of electron-phonon and
electron-electron interactions on efficiencies of two-terminal
and three-terminal thermoelectric engines have been studied
[40–51]. Furthermore, important experimental advancements
in measuring heat currents in nanoelectric junctions have been
achieved recently [39,52,53].

Motivated by these works, we study steady-state heat flux
and fluctuations across a capacitively (Coulomb) coupled
double quantum dot system. This system is known to act as a
heat rectifier in some parameter regime [54]. A similar model
with spin-degenerate states on each dot [55–57] is shown to
exhibit a quantum phase transition in the Kondo regime at
equilibrium. Capacitive coupling has been exploited to probe
charge fluctuations in nanojunctions [58–60] to understand
Coulomb drag effects, where electric charge flux in a circuit
induces a charge flux in another capacitively coupled circuit
[61–69]. In this work we are interested in the study of heat
flux that is induced due to Coulomb interactions between
electrons in a capacitively coupled double quantum dot sys-
tem. To study heat flux and its fluctuations, we calculate its
cumulant generating function, defined using the two-point
measurement scheme, using two different approaches valid
in different parameter regimes (for temperatures above the
Kondo temperature [70,71]): the Lindblad quantum master
equation [72–75], which is valid at high temperatures, weak
system reservoir coupling strength, and arbitrary Coulomb in-
teraction strength, and the Schwinger-Keldysh [76–79] saddle
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FIG. 1. Schematic of the model considered.

point method (random-phase approximation with mean-field
dressed propagators) [77,78,80–82], which is valid for weak
Coulomb interaction strength and arbitrary system reservoir
coupling strength. We verify the steady-state heat fluctuation
theorem and calculate heat flux and its fluctuations. Heat
flux through the same model system [83] and fluctuations of
heat flow in a variant of this model were studied recently to
understand near-field radiative heat transfer within the bare
random-phase approximation [84]. Here we present results
that are valid beyond the bare random-phase approximation
(the random-phase approximation with mean-field dressed
propagators). We find that the steady-state scaled cumulant
generating functions obtained using both the approximation
schemes satisfy Gallavotti-Cohen symmetry and hence the
steady-state fluctuation theorem for the heat fluctuations.
Heat flux and its fluctuations are nonmonotonic functions
of Coulomb interaction strength and decay exponentially
for asymptotically large Coulomb interaction strength. Sim-
ilar nonmonotonic behavior is seen with respect to system-
reservoir coupling strength. The flux and its fluctuations are
suppressed as a power law (�−4) for large coupling strength.

In Sec. II we introduce the model system and define the
moment generating function for stochastic heat transfer using
the two-point measurement scheme. In Sec. III we compute
this moment generating function using two approximation
schemes and discuss heat flux and fluctuations. We conclude
in Sec. IV.

Note that in this work we use natural units such that
h̄ = 1. With this, all quantities are expressed in units
of frequency, i.e., [εα] = [εαk] = [gαk] = [time−1] = [μα] =
[β−1

α ] = [�Q].

II. MODEL SYSTEM AND MOMENT GENERATING
FUNCTION

A schematic of the model system considered in this work
is shown in Fig. 1. It consists of two capacitively (Coulomb)
coupled quantum dots (each having a single orbital) individu-
ally coupled to two different fermionic reservoirs. The whole
system is described by the following Hamiltonian:

Ĥ =
∑

α=L,R

εαc†
αcα

︸ ︷︷ ︸
HS

+Uc†
LcLc†

RcR +
∑

α=L,R

∑
k

εαkd†
αkdαk︸ ︷︷ ︸

Hα

+
∑

k
α=L,R

[gαkd†
αkcα + g∗

αkc†
αdαk]. (1)

Here c†
α (cα) and d†

αk (dαk) stand for the fermionic creation
(annihilation) operator for creating (annihilating) an electron
in the αth (α = L, R) quantum dot and in the state labeled by
k in the αth fermionic reservoir, respectively. The first term
in Eq. (1) represents the Hamiltonian of two isolated quantum
dots, each having a single orbital with energies εα; the second
term represents Coulomb interaction between electrons on
the two quantum dots, the third term is the Hamiltonian for
the free electrons in the reservoirs, and the last term stands
for hybridization between electrons on quantum dots and
the reservoirs. Throughout this work we assume wideband
approximation; that is, we assume that gαk is independent of
k and the density of states of reservoirs is a constant function
of energy. We note that the Hamiltonian given in Eq. (1) is a
variant of the Anderson Hamiltonian [70,85,86].

When the quantum dots are brought together and are
coupled to two reservoirs, energy and particles are exchanged.
In this work, we are interested in calculating the statistics of
steady-state fluxes flowing through the double quantum dot
system. In the long-time limit, only the heat flows between
the left and the right reservoirs. The heat fluxes at the left and
right interfaces are balanced at steady state, and the particle
flux between the system and reservoirs vanishes. The physical
reason for this is as follows: (i) since the coupling between
the two quantum dots does not change the number of particles
on the dots (i.e., the particle exchange between the two dots
is not allowed by microscopic dynamics), the net number
of particles exchanged between the left (right) dot and the
left (right) reservoir is constrained to 0 and 1 and does not
grow with time; hence, the particle flux and fluctuations are
suppressed at the steady state. (ii) Similarly, energy cannot
indefinitely accumulate in the system due to the boundedness
of the system energy spectrum, and energy fluxes at the left
and right interfaces balance out at long times.

The distribution function P[�Q; (T − T0)] for heat (�Q)
flowing from the right reservoir to the left reservoir within a
time T − T0 can be obtained using a two-point measurement
protocol [25,26] for the observable corresponding to the oper-
ator 1

2 [(HL − μLNL ) − (HR − μRNR)] as

P[�Q; T − T0] =
∫ +∞

−∞

dχ

2π
Z[χ ; T − T0]eiχ�Q, (2)

where Z[χ ; T − T0] is the moment generating function for
�Q and is given as

Z[χ ; T − T0] = Tr[Uχ (T, T0)ρ(T0)U0(T0, T )], (3)

where Uχ (T1, T2) = e−i(T1−T2 )Hχ , with

Hχ =
∑

α=L,R

εαc†
αcα + Uc†

LcLc†
RcR +

∑
k

α=L,R

εαkd†
αkdαk

+
∑

k
α=L,R

[gαke−i(εαk−μα )χα d†
αkcα + g∗

αkei(εαk−μα )χα c†
αdαk]

(4)

and χL = −χR = χ

2 . The trace in Eq. (3) is over the combined
Fock space of the system and reservoirs, and ρ(T0) is the
density matrix of the whole system at initial time T0, taken
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here as

ρ(T0) = e
− ∑

α=L,R,S
βα [Hα−μαNα]

Tr
[
e
− ∑

α=L,R,S
βα[Hα−μαNα]] ; (5)

that is, system and reservoir initial states are noninteracting
equilibrium states with different temperatures and chemical
potentials.

In the next section, we calculate Z[χ ; T − T0] approxi-
mately using two approaches and study the heat flux and its
fluctuations.

III. APPROXIMATE CALCULATION OF THE MOMENT
GENERATING FUNCTION

In this section we compute Z[χ ; T − T0] defined in Eq. (3)
using two approaches approximately: (i) the Lindblad quan-

tum master equation approach in which coupling between
the system and reservoirs is assumed to be weak and (ii) the
Schwinger-Keldysh path integral approach in which Coulomb
interaction strength is assumed to be weak but the system
reservoir coupling can be arbitrary.

A. Lindblad quantum master equation approach

Z[χ ; T − T0] defined in Eq. (3) can be reexpressed as

Z[χ ; T − T0] = Trs
[
ρχ

s (T )
]
, (6)

where ρχ
s (T ) = TrRes[Uχ (T, T0)ρ(T0)U{0,0}(T0, T )] is the

counting-field-dependent reduced system density matrix at
time T obtained by tracing out the two reservoirs. Us-
ing the standard Born-Markov-Secular approximations, the
(counting-field-dependent) Lindblad quantum master equa-
tion can be derived for ρχ

s (T ) [72–75], which is given as

d

dT
ρχ

s (T ) = −i
∑

α=L,R

εα

[
c†
αcα, ρχ

s (T )
] − 1

2

∑
α=L,R

[
�α fα (εα + Uc†

ᾱcᾱ )
{
cαc†

α, ρχ
s (T )

} + �α[1 − fα (εα + Uc†
ᾱcᾱ )]

{
c†
αcα, ρχ

s (T )
}]

+
∑

α=L,R

[
�α fα (εα + Uc†

ᾱcᾱ )ei(εα−μα+Uc†
ᾱcᾱ )χα c†

αρχ
s (T )cα + �α[1 − fα (εα + Uc†

ᾱcᾱ )]e−i(εα−μα+Uc†
ᾱcᾱ )χα cαρχ

s (T )c†
α

]
,

(7)

where α �= ᾱ = L, R; �α = 2π
∑

k |gαk|2δ(ε − εαk ) = 2π |gα|2ρα [here the wideband approximation is invoked, i.e., coupling
between system and reservoirs states, gαk = gα , and the density of states of the reservoirs,

∑
k δ(ε − εαk ) = ρα , is assumed

to be independent of k and energy, respectively], and fα (ô) = (eβα (ô−μα ) + 1)
−1

, with βα and μα being the temperature and
chemical potential of the αth reservoir. It is important to note that if the (static) mean-field approximation is made here, i.e.,

replacing c†
ᾱcᾱ by 〈c†

ᾱcᾱ〉S = lim(T −T0 )→∞
Trs[c†

ᾱcᾱρ
χ
s (T )]

Trs[ρχ
s (T )]

, the right-hand side of Eq. (7) can be separated into two terms which

depend only on the dynamics of individual dots whose energies are renormalized by coupling to the other dot. This results in
two decoupled quantum dots which equilibrate with their own reservoirs at long time. Thus, within this approximation, heat flux
and fluctuations through the system vanish at steady state. Hence, mean-field approximation leads to no steady-state heat flux
and fluctuations. We therefore need to go beyond the mean-field approximation to have nonzero flux and fluctuations at steady
state.

By taking matrix elements in the occupation number basis of the two dots, |NL, NR〉 (with Nα = 0, 1), it can be seen that the
populations [〈NL, NR|ρχ

s (T )|NL, NR〉] are decoupled from the coherences [〈NL, NR|ρχ
s (T )|N ′

L, N ′
R〉], which die out exponentially

fast with time. Further, we restrict ourselves to the parameter regime εα = (μα − U
2 ), which simplifies the analysis. In this

regime, we need to solve only the following 2 × 2 matrix equation:

d

dT

∣∣Pχ
s (T )

〉 = Lχ
∣∣Pχ

s (T )
〉
, (8)

where

∣∣Pχ
s (T )

〉 =
[〈1, 0|ρχ

s (T )|1, 0〉 + 〈0, 1|ρχ
s (T )|0, 1〉

〈0, 0|ρχ
s (T )|0, 0〉 + 〈1, 1|ρχ

s (T )|1, 1〉
]

(9)

and the Liouvillian Lχ is given as

Lχ =
∑

α=L,R

[
−�α f̄α �α[1 − f̄α]e−i U

2 χα

�α f̄αei U
2 χα −�α[1 − f̄α]

]
, (10)

where f̄α = (eβαU/2 + 1)
−1

. Note that the structure of the Liouvillian given in Eq. (8) is very similar to the case of charge
transport through a resonant level system [87] when the two many-body states of the level are identified with the singly occupied
and doubly (un)occupied states of the double quantum dot system.
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Using the solution of Eq. (8) in Eq. (6) (equivalent to Z[χ ; T − T0] = 〈I|eLχ (T −T0 )|P0
s (T0)〉, with 〈I| = [1 1]), Z[χ ; T −

T0] is obtained as

Z[χ ; T − T0] = e− (�L+�R )
2 (T −T0 )

{
cosh{�[χ ](T − T0)} + sinh{�[χ ](T − T0)}

�[χ ]

[ ∑
α=L,R

�α

(
1

2
+ [ fα[ fSL(1 − fSR) + fSR(1 − fSL )]

× (eiUχα/2 − 1) + (1 − fα )[1 − fSL(1 − fSR) − fSR(1 − fSL )](e−iUχα/2 − 1)]

)]}
. (11)

To arrive at this explicit expression for Z[χ ; T − T0], we have used the initial condition, i.e.,∣∣P0
s (T0)

〉 =
[

fSL(1 − fSR) + fSR(1 − fSL )
1 − fSL(1 − fSR) − fSR(1 − fSL )

]
, (12)

which is equivalent to ρχ
s (T0) = e−βS [HS−μS NS ]

Tr[e−βS [HS−μS NS ]] . Further, fSα = (eβS (εα−μS ) + 1)
−1

represents the initial occupation of the two
isolated dots, with βS and μS being the temperature and chemical potential of the dots. The function �[χ ] is

�[χ ] =
√(

�L + �R

2

)2

+ �L�R{ f̄L[1 − f̄R](eiUχ/2 − 1) + f̄R[1 − f̄L](e−iUχ/2 − 1)}. (13)

In the long-time limit (i.e., T − T0 → ∞), the scaled
cumulant generating function, defined as

F[χ ] = lim
(T −T0 )→∞

lnZ[χ ; T − T0]

(T − T0)
, (14)

is given by

F[χ ] = − (�L + �R)

2
+ �[χ ]. (15)

This scaled cumulant generating function has the same form
as that of charge transport through a resonant level model
[87]. This is due to the mapping between the two models, as
discussed earlier. It is straightforward to see that the cumulant
generating function (F[χ ]) satisfies Gallavotti-Cohen sym-
metry: F[−χ − i(βL − βR)] = F[χ ]. This symmetry leads
to the detailed steady-state fluctuation theorem for the dis-
tribution function for heat flow: lim(T −T0 )→∞ P[+�Q;T −T0]

P[−�Q;T −T0] =
e(βL−βR )�Q. Note that the last two terms of Eq. (11), which
depend on the initial condition, do not have the required
symmetry and the fluctuation theorem is not satisfied at short
times. This is because the moment generating function defined
in Eq. (3) keeps track of only the net heat flowing between
the left and right reservoirs and does not keep track of the
energy change in the system, which also contributes to the
total entropy production at short times.

Further, using the above long-time-limit scaled cumulant
generating function (F[χ ]), cumulants of heat flux can be
obtained as Cn = in d

dχn F[χ ] (given in Appendix A). Figure 2
shows the four cumulants as a function of Coulomb inter-
action strength. It is clear from Fig. 2 that heat flux and
fluctuations are suppressed exponentially for large U . This
is due to the exponential dependence of Fermi functions on
U . Physically, the transition from the singly occupied states
to the doubly (un)occupied state becomes exponentially less
probable as U is increased [54]. Further, we note that for
intermediate values of U , fluctuations of heat are enhanced.

Since F[χ ] is a periodic function of χ with pe-
riod 4π

U , in the long time limit P[�Q; T − T0] ac-
quires the Dirac comb structure: lim(T −T0 )→∞P[�Q; T −

T0] = ∑+∞
n=−∞ p[n; T − T0]δ[�Q − nU

2 ], with p[n; T − T0] =∫ 2π

0
dχ

2π
eF[ 2χ

U ](T −T0 )eiχn.
p[n; T − T0] is computed numerically and is shown in

Fig. 3 along with ln p[n,T −T0]
p[−n,T −T0] in the inset, demonstrating

the validity of the steady-state Gallavotti-Cohen fluctuation
theorem for the stochastic heat flow.

In the next sub-section we present results obtained within
the saddle point approximation for the path integral formula-
tion of the Schwinger-Keldysh technique.

B. Schwinger-Keldysh path integral approach

We compute the moment generating function Z[χ ; (T −
T0)] using the path integral on the Schwinger-Keldysh con-
tour. The results obtained are valid for arbitrary dot-reservoir
coupling strength. However, the effect of the Coulomb inter-
action is treated approximately.

Z[χ ; T − T0], defined in Eq. (3), can be expressed as

Z[χ ; T − T0] = Tr[Tce−i
∫

c dτHχ (τ ) (τ )ρ(T0)], (16)

FIG. 2. First and second cumulants of heat transferred from the
right to left reservoir as a function of Coulomb interaction strength U
(in units of β−1

L ) for the parameters βR = 0.5βL , �L = �R = 0.1β−1
L .

The inset shows the third and fourth cumulants. Cumulants (Cn) are
plotted in units of β

−(n+1)
L .
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FIG. 3. Plot of p[n, T − T0] vs n for U = 5.0β−1
L , T − T0 =

100.0( �L+�R
2 )

−1
, with all other parameters being the same as in

Fig. 2. A plot of ln p[n,T −T0]
p[−n,T −T0] vs n is shown in the inset.

where Tce−i
∫

c dτHχ (τ ) (τ ) is the evolution operator defined on the
Schwinger-Keldysh contour [76,78,79,88,89] shown in Fig. 4,
going from T0 to T and back to T0. Here Hχ (τ )(τ ) = Hχ on
the forward contour, and Hχ (τ )(τ ) = Hχ=0 on the backward
contour.

Z[χ ; T − T0] can be expressed as a functional integral
using Grassmann field variables. The resultant path integral
over Grassmann fields cannot be evaluated exactly due to
the presence of the quartic term (with coupling constant U ).
It can be evaluated approximately by bosonizing the action
using Hubbard-Stratonovich decoupling [77,78,90–93] and
evaluating the resulting action using the saddle point approxi-
mation [77,78,80–82]. Details of the calculation are provided
in Appendix B.

The final expression for the long-time-limit scaled cumu-
lant generating function is obtained as

F[χ ] = −1

2

∫ +∞

−∞

dω

2π
ln[1 − T(ω){nL(ω)[1 + nR(ω)]

× [eiχω − 1] + nR(ω)[1 + nL(ω)][e−iχω − 1]}],
(17)

with the bosonic distribution function given by nα (ω) =
(eβαω − 1)

−1
and the transmission function (an even function

of ω) given as

T(ω) = 4U 2Re
{[

P̃0
LL

]R
(ω)

}
Re

{[
P̃0

RR

]R
(ω)

}
∣∣1 + U 2

[
P̃0

LL

]R
(ω)

[
P̃0

RR

]R
(ω)

∣∣2 . (18)

T+
0

T−
0

T

FIG. 4. Schematic of the Schwinger-Keldysh contour.

The general expression for [P̃0
αα]R(ω) (χ independent) is

given in Eq. (B30), where {φ0
α} have to be determined self-

consistently by solving Eqs. (B24). For the case εα = μα − U
2 ,

Eqs. (B24) have a unique stable solution, φ0
α = U

2 , in the
regime√

βLU

2

√
βRU

2
<

π√
� ′[ 1

2 + βL�L

4π

] π√
� ′[ 1

2 + βR�R

4π

] . (19)

Using this in Eq. (B30), we get a simple-looking expression
for [P̃0

αα]R(ω), which is given as[
P̃0

αα

]R
(ω) = i

π

�α

(ω + i�α )

×
[

�
[

1
2 + βα�α

4π
−i βαω

2π

] − �
[

1
2+ βα�α

4π

]
ω

]
. (20)

As discussed in Appendix B, the Fourier transform of
[P̃0

αα]R(ω) in the time domain decays exponentially with rates
linear in �α and β−1

α . As [P̃0
αα]R is directly related to charge

density fluctuations on the quantum dots [78], charge density
fluctuations on quantum dots are exponentially suppressed in
time for large �α and β−1

α .
Note that F[−χ − i(βL − βR)] = F[χ ], which is the

steady-state Gallavotti-Cohen fluctuation symmetry; this
symmetry leads to the standard steady-state fluctuation
theorem for the stochastic heat flux flowing from the
right reservoir to the left reservoir (P[�Q; T − T0]) i.e.,
lim(T −T0 )→∞ P[+�Q;T −T0]

P[−�Q;T −T0] = e(βL−βR )�Q.
The algebraic form of the scaled cumulant generating

function given in Eq. (17) is similar to that of heat transport
across two-terminal harmonic oscillator junctions [94–96].
However, unlike harmonic oscillator junctions, the transmis-
sion function given in Eq. (18) depends on temperatures of
the reservoirs. We note that a similar expression for the scaled
cumulant generating function [Eq. (17)] for a variant of the
model considered here [84] and the transmission function
[Eq. (18)] for the same model [83] were obtained using
the bare random-phase approximation recently. In contrast to
these works, analytical expressions for polarization functions
could be obtained here by invoking the wideband assumption.
Using P0

αα (ω) as defined in Eq. (B30) with φ0
L = φ0

R = 0 in
Eq. (18) gives the transmission function obtained in Ref. [83]
for the wideband reservoir case.

In Fig. 5, transmission functions T(ω) obtained within
the bare random-phase approximation [Bare-RPA; Eq. (18)
along with Eq. (B30) for φα = 0] and the random-phase
approximation [RPA; Eq. (18) along with Eq. (20)] for the
case εα = μα − U

2 [within the regime defined by Eq. (19)]
are plotted as a function of ω for comparison. The difference
between transmission functions obtained within Bare-RPA
and RPA is through an extra factor of ± βαU

4π
in the argument

of digamma functions in the expressions for bare polarization
functions [P̃0

αα]R(ω) [Eq. (B30)] compared to mean-field po-
larization functions [Eq. (20)]. Hence, the difference between
the two transmission functions vanishes for high temperatures
or small Coulomb interaction strengths (βαU 	 1), which can
clearly be seen in Fig. 5.

Figure 6 shows long-time limit of the first four (scaled)
cumulants (Cn = in dn

dχn F[χ ] given in Appendix C) of heat
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FIG. 5. Plots of transmission functions T(ω) obtained using the bare random-phase approximation (Bare-RPA) and random-phase
approximation (RPA) as a function of ω (in units of �L) for εα = μα − U

2 [in the parameter regime defined by Eq. (19)] for different values of
U (in units of �L) for �R = 1.0�L and βL = 10.0�−1

L , βR = 5.0�−1
L (first row); βL = 1.0�−1

L , βR = 0.5�−1
L (second row); and βL = 0.1�−1

L ,
βR = 0.05�−1

L (third row). As the transmission functions are even functions of ω, here we plot only positive values of ω.

flux as a function of the system reservoir coupling strength
(�L = �R = �). Heat flux and its fluctuations exhibit non-
monotonic behavior as a function of �. This can be understood

FIG. 6. First and second cumulants of heat transferred from the
right to left reservoir as a function of system reservoir coupling
strength (�L = �R = � in units of β−1

L ) for the parameters βR =
0.5βL , U = 0.1β−1

L . The inset shows the third and fourth cumulants.
Cumulants (Cn) are plotted in units of β

−(n+1)
L .

as follows: as noted in the Appendix B, electron density
fluctuations on dots are solely responsible for heat flux, which
are exponentially suppressed in time with the rate depending
linearly on �. Hence, the heat flux is suppressed for large �.
At low temperatures (β−1

L ≈ 0, β−1
R ≈ 0), only low-frequency

behavior of the transmission function is important, and for
small ω, T(ω) ≈ 16U 2

π2�4 ω
2. Hence, at low temperatures and

large system-reservoir coupling strength �, heat flux and its
fluctuations decay as a power law (≈ �−4) with �. Similar
nonmonotonic behavior of the particle flux through the double
quantum dot system was reported recently [97]. If we use this
approximate expression for the transmission function in the
expression for heat flux [C1 given in Eq. (C1)], we get the
result [98] C1 = 16π2U 2

15�4 (β−4
R − β−4

L ) (the Stefan-Boltzmann
law [99]), as discussed in Ref. [83].

Figure 7 shows P[�Q; T − T0], with the inset plot
of ln P[�Q;T −T0]

P[−�Q;T −T0] showing the validity of the steady-state
Gallavotti-Cohen fluctuation theorem.

IV. CONCLUSION

In this work we studied the heat flux and fluctuations of
heat flowing across a capacitively coupled double quantum
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FIG. 7. Plot of P[�Q; T − T0] vs �Q (in units of β−1
L ) for �L =

�R = 2.0β−1
L , T − T0 = 105( �L+�R

2 )
−1

, with all other parameters
being the same as in Fig. 6. A plot of ln P[�Q;T −T0]

P[−�Q;T −T0] vs �Q (in units

of β−1
L ) is shown in the inset.

dot circuit. We calculated the moment generating function
using two theoretical approaches valid in different parameter
regimes. Heat flux and its fluctuations (calculated using the
Lindblad quantum master equation) exhibit nonmonotonic
behavior as a function of Coulomb interaction strength and

decay exponentially for asymptotically large Coulomb inter-
action strengths. Similarly, using the saddle point approxi-
mation scheme for the bosonized Schwinger-Keldysh path
integral, heat flux and its fluctuations were found to exhibit
nonmonotonic behavior as a function of system reservoir
coupling strength and to decay as the inverse fourth power
of the system-reservoir coupling strength for an asymptoti-
cally large system-reservoir coupling strength. A comparison
of transmission functions for heat flux obtained using the
random-phase approximation (with mean-field dressed propa-
gators) and the bare random-phase approximation showed that
although the obtained transmission functions show similar
qualitative behavior, they differ quantitatively for stronger
Coulomb interaction strength. Further, we have verified that
the scaled cumulant generating function obtained using both
the approximation schemes has Gallavotti-Cohen symmetry
and hence the steady-state fluctuation theorem for the fluctu-
ating heat flux is satisfied.
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APPENDIX A: CUMULANTS OF HEAT FLUX USING THE LINDBLAD MASTER EQUATION APPROACH

The analytical expressions for the first four (scaled) cumulants, i.e., heat flux (C1), heat noise (C2), the third cumulant (C3),
and the fourth cumulant (C4), as obtained using the Lindblad quantum master equation are given as

C1 = −U

2

�L�R

�L + �R
[ f̄L − f̄R],

C2 =
(

U

2

)2
�L�R

�L + �R

[
[ f̄L(1 − f̄R) + f̄R(1 − f̄L )] − 2

�L�R

(�L + �R)2
[ f̄L − f̄R]2

]
,

C3 = −
(

U

2

)3
�L�R

(�L + �R)

[
( f̄L − f̄R) − 6

�L�R

(�L + �R)2
( f̄L − f̄R)[ f̄L(1 − f̄R) + f̄R(1 − f̄L )] + 12

�2
L�2

R

(�L + �R)4
( f̄L − f̄R)3

]
,

C4 =
(

U

2

)4
�L�R

�L + �R

[
[ f̄L(1 − f̄R) + f̄R(1 − f̄L )] − 8

�L�R

(�L + �R)2
[ f̄L − f̄R]2 − 120

�3
L�3

R

(�L + �R)6
[ f̄L − f̄R]4

−6
�L�R

(�L + �R)2
[ f̄L(1 − f̄R) + f̄R(1 − f̄L )]2 + 72

�2
L�2

R

(�L + �R)4
[ f̄L − f̄R]2[ f̄L(1 − f̄R) + f̄R(1 − f̄L )]

]
. (A1)

APPENDIX B: SADDLE POINT APPROXIMATION FOR THE BOSONIZED SCHWINGER-KELDYSH PATH INTEGRAL

Z[χ ; T − T0] given in Eq. (16) can be expressed as a functional integral using Grassmann field variables [76–78,93],
{ψ†

α (τ ), ψα (τ )} for the system and {ψ†
αk (τ ), ψαk (τ )} for the reservoirs. This gives

Z[χ ; T − T0] = 1

N

∫
D[{ψ†

α (τ ), ψα (τ )}]
∫

D[{ψ†
αk (τ ), ψαk (τ )}]eiSχ [{ψ†

α (τ ),ψα (τ )},{ψ†
αk (τ ),ψαk (τ )}], (B1)

where N is the normalization constant (independent of χ ) such that Z[χ ; T − T0]|χ=0 = 1. Here we do not compute N explicitly
and modify it at intermediate steps by absorbing all constants (χ independent). Its value is determined finally by imposing

195449-7



HARI KUMAR YADALAM AND UPENDRA HARBOLA PHYSICAL REVIEW B 99, 195449 (2019)

Z[χ ; T − T0]|χ=0 = 1. Sχ [{ψ†
α (τ ), ψα (τ )}, {ψ†

αk (τ ), ψαk (τ )}] is the action of the whole system, given as

Sχ [{ψ†
α (τ ), ψα (τ )}, {ψ†

αk (τ ), ψαk (τ )}]

=
∑

α,α′=L,R

∫
c

dτ

∫
c

dτ ′

⎡
⎣ψ†

α (τ )
[
G0

sys

]−1
αα′ (τ, τ

′)ψα′ (τ ′) +
∑
k,k′

ψ
†
αk (τ )

[
G0

res

]−1
αkα′k′ (τ, τ

′)ψα′k′ (τ ′)

⎤
⎦

−
∑

α=L,R

∑
k

∫
c

dτ [gαke−i(εαk−μα )χα (τ )ψ
†
αk (τ )ψα (τ ) + g∗

αkei(εαk−μα )χα (τ )ψ†
α (τ )ψαk (τ )] −

∫
c

dτUψ
†
L (τ )ψL(τ )ψ†

R(τ )ψR(τ ),

(B2)

where χL(τ ) = −χR(τ ) = χ

2 on the forward contour and χL(τ ) = χR(τ ) = 0 on the backward contour. Further, [G0
sys]

−1
αα′ (τ, τ ′)

and [G0
res]

−1
αkα′k′ (τ, τ ′) are matrix elements (with indices spanning state labels and contour times) of inverse of matrices with

elements satisfying the following Schwinger-Dyson or Kadanoff-Baym equations on the Schwinger-Keldysh contour:

∑
α1=L,R

∫
c

dτ1

[(
i

∂

∂τ
− εα

)
δαα1δ

c(τ, τ1)

][
G0

sys

]
α1α′ (τ1, τ

′) = δαα′δc(τ, τ ′),

∑
α1=L,R

∫
c

dτ1

[(
−i

∂

∂τ ′ − εα′

)
δα1α′δc(τ1, τ

′)
][

G0
sys

]
αα1

(τ, τ1) = δαα′δc(τ, τ ′),

∑
α1=L,R

∑
k1

∫
c

dτ1

[(
i

∂

∂τ
− εαk

)
δαα1δkk1δ

c(τ, τ1)

][
G0

res

]
α1k1α′k′ (τ1, τ

′) = δαα′δkk′δc(τ, τ ′),

∑
α1=L,R

∑
k1

∫
c

dτ1

[(
−i

∂

∂τ ′ − εα′k′

)
δα1α′δk1k′δc(τ1, τ

′)
][

G0
res

]
αkα1k1

(τ, τ1) = δαα′δkk′δc(τ, τ ′), (B3)

with the following Kubo-Martin-Schwinger boundary conditions [79,100,101] enforcing the information of the initial state of
the system and reservoirs: [

G0
sys

]
αα′ (T

−
0 , τ ′) = −eβS (εα−μS )[G0

sys

]
αα′ (T

+
0 , τ ′),[

G0
sys

]
αα′ (τ, T −

0 ) = −e−βS (εα′−μS )[G0
sys

]
αα′ (τ, T +

0 ),[
G0

res

]
αkα′k′ (T

−
0 , τ ′) = −eβα (εαk−μα )[G0

res

]
αkα′k′ (T

+
0 , τ ′),[

G0
res

]
αkα′k′ (τ, T −

0 ) = −e−βα′ (εα′k′−μα′ )[G0
res

]
αkα′k′ (τ, T +

0 ). (B4)

Equations (B4) are one of the ways to take care of the initial-state information in the Schwinger-Keldysh path integral formalism
[77,78,102,103]. The solution of Eqs. (B3) along with the boundary conditions, Eqs. (B4), is[

G0
sys

]
αα′ (τ, τ

′) = −ie−iεα(τ−τ ′)δαα′ {�(τ, τ ′)[1 − fS (εα )] − �(τ ′, τ ) fS (εα )},[
G0

res

]
αkα′k′ (τ, τ

′) = −ie−iεαk (τ−τ ′)δαα′δkk′ {�(τ, τ ′)[1 − fα (εαk )] − �(τ ′, τ ) fα (εαk )}, (B5)

where fX (x) = (eβX (x−μX ) + 1)
−1

(X = L, R, S). We integrate over the reservoir Grassmann fields in Eq. (B1) to get Z[χ ; T − T0]
as a path integral only over the system Grassmann fields as

Z[χ ; T − T0] = 1

N

∫
D[{ψ†

α (τ ), ψα (τ )}]eiSχ
sys[{ψ†

α (τ ),ψα (τ )}],

(B6)

with

Sχ
sys[{ψ†

α (τ ), ψα (τ )}] =
∑

α,α′=L,R

∫
c

dτ

∫
c

dτ ′{ψ†
α (τ )[G0]−1

αα′ (τ, τ ′)ψα′ (τ ′)
} −

∫
c

dτUψ
†
L (τ )ψL(τ )ψ†

R(τ )ψR(τ ), (B7)

where ∑
α1=L,R

∫
c

dτ1
{[

G0
sys

]−1
αα1

(τ, τ1) − �c
αα1

(τ, τ1)
}
[G0]α1α′ (τ1, τ

′) = δαα′δc(τ, τ ′), (B8)
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with the self-energy acquired by the system due to the coupling with the reservoirs given as

�c
αα′ (τ, τ ′) = δαα′

∑
k,k′

g∗
αkei(εαk−μα )χα (τ )gα′k′e−i(εα′k′−μα′ )χα′ (τ ′ )[G0

res

]
αkαk′ (τ, τ

′). (B9)

The Grassmann field path integral given in Eq. (B6) cannot be evaluated exactly due to the quartic term (with coupling
constant U ). So we evaluate it approximately here. To that end, we decouple the above quartic term by introducing auxiliary
real fields (also known as Hubbard-Stratonovich decoupling), which can be interpreted as fluctuating external potentials
[77,78,90–93]. This gives

Z[χ ; T − T0] = 1

N

∫
D[{ψ†

α (τ ), ψα (τ )}]
∫

D[{φα (τ )}]eiSχ [{ψ†
α (τ ),ψα (τ )},{φα (τ )}], (B10)

where

Sχ [{ψ†
α (τ ), ψα (τ )}, {φα (τ )}] =

∫
c

dτ
φL(τ )φR(τ )

U
+

∑
α,α′=L,R

∫
c

dτ

∫
c

dτ ′{ψ†
α (τ )

[
Gc

φ

]−1
αα′ (τ, τ

′)ψα′ (τ ′)
}
, (B11)

with [Gc
φ]−1(τ, τ ′) being the inverse of [Gc

φ](τ, τ ′), which satisfies the following equation:

∑
α1=L,R

∫
c

dτ1
{[

G0
sys

]−1
αα1

(τ, τ1) − φα (τ )δαα1δ
c(τ, τ1) − �c

αα1
(τ, τ1)

}[
Gc

φ

]
α1α′ (τ1, τ

′) = δαα′δc(τ, τ ′). (B12)

Since the Grassmann path integral in Eq. (B10) is quadratic in terms of system fields {ψ†
α (τ ), ψα (τ )}, it can be performed

exactly (here we have used the identity ln det[A] = Tr[lnA]) to get

Z[χ ; T − T0] = 1

N

∫
D[{φα (τ )}]eiSχ [{φα (τ )}],

(B13)

with

Sχ [{ψα (τ )}, {φα (τ )}] =
∫

c
dτ

φL(τ )φR(τ )

U
− iTr ln

([
Gc

φ

]−1)
, (B14)

where Tr stands for the trace over contour time and orbital indices. The above algebraic gymnastics does not solve the problem
as the final path integral, Eq. (B13), has an action, Eq. (B14), which is highly nonlinear; nevertheless, it is a bosonic path integral,
which can be approximately evaluated using the saddle point/stationary-phase method. Within the saddle point approximation,
the action, Sχ [{φα (τ )}], is functional Taylor expanded around the path {φ0

α (τ )}, which makes the action stationary, i.e.,

δ

δφα (τ )
Sχ [{φα (τ )}]

∣∣∣∣
{φα (τ )}={φ0

α (τ )}
= 0. (B15)

Further, the action is approximated by retaining terms in the functional Taylor expansions up to quadratic order, making the
action functional, a quadratic form. This quadratic functional integral can be analytically evaluated to get a functional Fredholm
determinant multiplied by the exponential of the action evaluated at the stationary path. With this cursory description of the
saddle point/stationary-phase approximation, we move ahead.

Using Eq. (B15), the saddle point equations for the action given in Eq. (B14) are obtained as

φ0
L(τ ) = −iU

[
Gc

φ0

]
RR(τ, τ+),

φ0
R(τ ) = −iU

[
Gc

φ0

]
LL(τ, τ+), (B16)

where an infinitesimal forward shift (τ+) of the second argument compared to the first argument of [Gc
φ0

x
]xx(τ, τ+) along the

Schwinger-Keldysh contour can be deduced by consistently decoupling the fermionic quartic term using Hubbard-Stratonovich
fields in the discretized path integral. Otherwise, there will be an ambiguity, as [Gc

φ0
x
]xx(τ, τ ′) is discontinuous at τ = τ ′ with

a jump discontinuity of magnitude i. Equations (B16) for {φ0
α (τ )} together with Eqs. (B12) for [Gc

φ0 ]αα′ (τ, τ ′) constitute a
self-consistent system of equations, which may possess more than one solution. When more than one stationary solution exists,
then the functional integral is approximated by summing over the result obtained by Gaussian approximating the action around
each of the stationary solutions. Expanding the action given in Eq. (B14) around the stationary path and retaining only the
quadratic term, we get the approximate expression for Z[χ ; T − T0] as (assuming that there is a unique stationary path)

Z[χ ; T − T0] ≈ 1

N

∫
D[{φα (τ )}]eiSχ

app[{φα (τ )}], (B17)
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with Sχ
app[{φα (τ )}] representing the approximate action given as

Sχ
app[{ψα (τ )}, {φα (τ )}] =

∫
c

dτ
φ0

L(τ )φ0
R(τ )

U
− iTr ln

([
Gc

φ0

]−1) + 1

2

∫
c

dτ

∫
c

dτ ′
(

φL(τ ) − φ0
L(τ )

φR(τ ) − φ0
R(τ )

)T [(
0 δc (τ,τ ′ )

U
δc (τ,τ ′ )

U 0

)

+ i

(
P0

LL(τ, τ ′) 0
0 P0

RR(τ, τ ′)

)](
φL(τ ′) − φ0

L(τ ′)
φR(τ ′) − φ0

L(τ ′)

)
, (B18)

where P0
αα (τ, τ ′) = [Gc

φ0 ]αα (τ, τ ′)[Gc
φ0 ]αα (τ ′, τ ) for α = L, R are the contour-ordered polarization propagators within the

random-phase approximation expressed in terms of the mean-field system fermion propagators [solutions of Eqs. (B12) and
Eqs. (B16)]. Note that the polarization-dependent terms in Eq. (B18) represent the leading-order correction to the mean-
field (saddle point) contribution. After a change of variables (shift transformation {φα (τ )} → {φα (τ ) + φ0

α (τ )}), followed by
performing the final path integral over φα (τ ) and using the identity ln det[A] = Tr[lnA], we get

lnZ[χ ; T − T0] ≈ − lnN + i
∫

c
dτ

φ0
L(τ )φ0

R(τ )

U
+ Tr ln

[[
Gc

φ0

]−1] − 1

2
Tr ln

(
iP0

LL(τ, τ ′) δc (τ,τ ′ )
U

δc (τ,τ ′ )
U iP0

RR(τ, τ ′)

)
. (B19)

Further extracting

−1

2
ln det

(
0 Uδc(τ, τ ′)

Uδc(τ, τ ′) 0

)

from lnN and combining with

−1

2
ln det

(
iP0

LL(τ, τ ′) δc (τ,τ ′ )
U

δc (τ,τ ′ )
U iP0

RR(τ, τ ′)

)

and using the identities

det

(
I A
B I

)
= det [I − AB]

and ln det[A] = Tr[lnA], we get

lnZ[χ ; T − T0] ≈ − lnN + i
∫

c
dτ

φ0
L(τ )φ0

R(τ )

U
+ Tr ln

([
Gc

φ0

]−1) − 1

2
Tr ln

[
δc(τ, τ ′) + U 2

∫
c

dτ1P0
RR(τ, τ1)P0

LL(τ1, τ
′)
]
.

(B20)

Tr in the above equation now stands only for the trace over the contour time. The set of approximations made until now can
be termed as the mean-field dressed random-phase approximation based on the Feynman diagram representation of the final
expression.

The approximate expression for lnZ[χ ; T − T0] given in Eq. (B20) is valid for arbitrary measurement times (T − T0). But in
this work we are interested in only the steady state; hence, we take (T − T0) → ∞ and neglect information contained in the initial
state of the system. To solve the self-consistent system of equations given in Eqs. (B12) and (B16), we approximate {φ0

α (τ )} as
being independent of contour time ({φ0

α (τ )} = {φα}), meaning we assume that the stationary paths {φ0
α (τ )} are independent

of time and are the same on the forward and backward branches of the contour. At this level, neglecting the fluctuations
of the Hubbard field, or, equivalently, approximating the path integral within the self-consistent Hartree-Fock/mean-field
approximation, leads to no heat flux and fluctuations at steady state. This is because within this approximation only the second
and the third terms (apart from the normalization factor), which are independent of the counting field, are retained in Eq. (B20).
Hence, fluctuations of Hubbard fields (directly related to the charge density fluctuations [78] on the quantum dots) around
their mean-field values are necessary to have finite heat flux and fluctuations. Within this approximation, the equation for
[Gc

φ]αα′ (τ, τ ′), Eqs. (B12), is solved in the frequency domain by first projecting it onto real times, which gives four Keldysh
components for each α, α′ (notice that [Gc

φ]αα′ (τ, τ ′) ∝ δαα′ is block diagonal in orbital space) and sending all temporal integrals
from −∞ to +∞, followed by Fourier transforming to the frequency domain [76,88,104]. The solution of Eq. (B12) is then
given as

[Gφ0 ]αα (ω) = 1

(ω − εα − φα )2 + (
�α

2

)2

(
(ω − εα − φα ) − i �α

2 [1 − 2 fα (ω)] i�α fα (ω)ei(ω−μα )χα

−i�α[1 − fα (ω)]e−i(ω−μα )χα −(ω − εα − φα ) − i �α

2 [1 − 2 fα (ω)]

)
,

(B21)
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where �α = 2π |gα|2ρα . With this, [Gφ0 ]αα (ω) is a function of constant stationary paths {φ0}, which are determined self-
consistently using Eq. (B16), which in real time read

φ0
L = −iU

[
Gc

φ0

]++
RR (t, t+) = −iU

[
Gc

φ0

]−−
RR (t+, t ),

φ0
R = −iU

[
Gc

φ0

]++
LL (t, t+) = −iU

[
Gc

φ0

]−−
LL (t+, t ). (B22)

Expressing these equations in the frequency domain using Eq. (B21), we get

φ0
L = U

∫ +∞

−∞

dω

2π

�R fR(ω)(
ω − εR − φ0

R

)2 + (
�R
2

)2 ,

φ0
R = U

∫ +∞

−∞

dω

2π

�L fL(ω)(
ω − εL − φ0

L

)2 + (
�L
2

)2 .

(B23)

The ω integrals in the above equations can be analytically performed to get

φ0
L = U

{
1

2
− 1

π
Im�

[
1

2
+ βR�R

4π
+ i

βR

2π

(
εR + φ0

R − μR
)]}

,

φ0
R = U

{
1

2
− 1

π
Im�

[
1

2
+ βL�L

4π
+ i

βL

2π

(
εL + φ0

L − μL
)]}

,

(B24)

where Im�[z] is the imaginary part of the digamma function evaluated at z [98]. Equations (B24) are coupled nonlinear self-
consistent equations for {φ0

α} which are difficult to solve analytically. However, if we specialize to a special parameter regime,
εα = μα − U

2 , and noting that Im�[z] = 0 for real z, it is clear that φ0
L = φ0

R = U
2 is always a stable solution for Eqs. (B24) if√

βLU

2

√
βRU

2
<

π√
� ′[ 1

2 + βL�L

4π

] π√
� ′[ 1

2 + βR�R

4π

] .
(B25)

From here on we confine ourselves to this regime.
We simplify the expression for lnZ[χ ; T − T0] given in Eq. (B20) using the assumption that {φ0

α (τ )} are independent of

contour time, hence
∫

c dτ
φ0

L (τ )φ0
R (τ )

U = 0, and by absorbing Tr ln([Gc
φ0 ]−1), which is independent of χ into lnN . Expanding the

logarithmic term in the Taylor series, projecting onto real times, and sending intermediate time integrals to −∞ to +∞ and
going over to the frequency domain, we get the long-time expression for the scaled cumulant generating function as

F[χ ] ≈ − lnN − 1

2

∫ +∞

−∞

dω

2π
ln det

[
I2×2 + U 2P0

RR(ω)P0
LL(ω)

]
.

(B26)

Here

P0
αα (ω) =

∫ +∞

−∞

dω′

2π

(
[Gφ]++

αα (ω + ω′)[Gφ]++
αα (ω′) [Gφ]+−

αα (ω + ω′)[Gφ]−+
αα (ω′)

−[Gφ]−+
αα (ω + ω′)[Gφ]+−

αα (ω′) −[Gφ]−−
αα (ω + ω′)[Gφ]−−

αα (ω′)

)
. (B27)

We notice that

P0
αα (ω) = �α (ω)P̃0

αα (ω)�†
α (ω), (B28)

where P̃ = P|χ=0 and �α (ω) = ei χα
2 ωσz (where σz is the Pauli matrix). Further, P̃0

αα (ω) can be expressed in terms of retarded,
advanced, and Keldysh projections of counting-field-independent polarization propagators. After performing the ω′ integral
analytically in Eq. (B27), we get

P̃0
αα (ω) = UT

(
[P̃0

αα]R(ω) [P̃0
αα]K (ω)

0 [P̃0
αα]A(ω)

)
U , (B29)

with

U = 1√
2

(
1 −1
1 1

)
.
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Explicit expressions for counting-field-independent Keldysh rotated polarization propagators are given as [P̃0
αα]A(ω) =

−{[P̃0
αα]R(ω)}∗ and [P̃0

αα]K (ω) = [1 + 2nα (ω)]{[P̃0
αα]R(ω) − [P̃0

αα]A(ω)} (the bosonic fluctuation dissipation theorem [78]) with

the bosonic distribution function given by nα (ω) = (eβαω − 1)
−1

and

[
P̃0

αα

]R
(ω) = i

2π

�α

ω + i�α

[
�

[
1
2 + βα�α

4π
+ i βα

2π
(εα + φα − μα − ω)

] − �
[

1
2 + βα�α

4π
+ i βα

2π
(εα + φα − μα )

]
ω

]

+ i

2π

�α

ω + i�α

[
�

[
1
2 + βα�α

4π
− i βα

2π
(εα + φα − μα + ω)

] − �
[

1
2 + βα�α

4π
− i βα

2π
(εα + φα − μα )

]
ω

]
. (B30)

Using εα = μα − U
2 and φ0

L = φ0
R = U

2 in Eq. (B30) gives

[
P̃0

αα

]R
(ω) = i

π

�α

(ω + i�α )

[
�

[
1
2 + βα�α

4π
− i βαω

2π

] − �
[

1
2 + βα�α

4π

]
ω

]
.

(B31)

We note that P0
αα (ω) given in Eqs. (B30) and (B31) is a meromorphic function with simple poles in the lower complex

plane. Fourier transform (which can easily be obtained) of Eq. (B30) displays oscillations at the characteristic frequency
(εα + φα − μα ) and decays in time with rates depending linearly on �α and β−1

α , whereas Fourier transform of Eq. (B31)
displays pure decay behavior, as (εα + φα − μα ) = 0. As noted previously, P0

αα (ω) is related to the charge density fluctuations
on the quantum dots; hence, at the mean-field level, depending on the parameter regime, charge density fluctuations on the
quantum dots display in the time domain either a simple exponential relaxation or an exponential relaxation with oscillations at
the characteristic frequency.

Finally, on using P0
αα (ω) expressed above Eq. (B28) in terms of �α (ω) and Keldysh rotated quantities [Eq. (B29)] in Eq. (B26)

(and fixing lnN by imposing the normalization condition lnZ[χ = 0; T − T0] = 0), the final expression for the long-time-limit
scaled cumulant generating function is obtained as

F[χ ] = −1

2

∫ +∞

−∞

dω

2π
ln[1 − T(ω){nL(ω)[1 + nR(ω)][eiχω − 1] + nR(ω)[1 + nL(ω)][e−iχω − 1]}], (B32)

with the transmission function given by

T(ω) =
4U 2Re

{[
P̃0

LL

]R
(ω)

}
Re

{[
P̃0

RR

]R
(ω)

}
∣∣∣1 + U 2

[
P̃0

LL

]R
(ω)

[
P̃0

RR

]R
(ω)

∣∣∣2 , (B33)

where [P̃0
αα]R(ω) are given in Eq. (B31) and nα (ω) = (eβαω − 1)

−1
.

APPENDIX C: CUMULANTS OF HEAT FLUX USING THE SCHWINGER-KELDYSH APPROACH

Expressions for the first four long-time-limit scaled cumulants as obtained using the Schwinger-Keldysh saddle point
approximation are given as

C1 = −1

2

∫ +∞

−∞

dω

2π
ωT(ω)[nL(ω) − nR(ω)],

C2 = 1

2

∫ +∞

−∞

dω

2π
ω2T2(ω)[nL(ω) − nR(ω)]2 + 1

2

∫ +∞

−∞

dω

2π
ω2T(ω){nL(ω)[1 + nR(ω)] + nR(ω)[1 + nL(ω)]},

C3 = −1

2

∫ +∞

−∞

dω

2π
ω3T(ω)[nL(ω) − nR(ω)] −

∫ +∞

−∞

dω

2π
ω3T3(ω)[nL(ω) − nR(ω)]3

−3

2

∫ +∞

−∞

dω

2π
ω3T2(ω)[nL(ω) − nR(ω)]{nL(ω)[1 + nR(ω)] + nR(ω)[1 + nL(ω)]},

C4 = 3
∫ +∞

−∞

dω

2π
ω4T4(ω)[nL(ω) − nR(ω)]4 + 6

∫ +∞

−∞

dω

2π
ω4T3(ω)[nL(ω) − nR(ω)]2{nL(ω)[1 + nR(ω)] + nR(ω)[1 + nL(ω)]}

+1

2

∫ +∞

−∞

dω

2π
ω4T(ω){nL(ω)[1 + nR(ω)] + nR(ω)[1 + nL(ω)]} + 7

2

∫ +∞

−∞

dω

2π
ω4T2(ω)[nL(ω) − nR(ω)]2

+6
∫ +∞

−∞

dω

2π
ω4T2(ω)nL(ω)nR(ω)[1 + nR(ω)][1 + nL(ω)]. (C1)
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