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Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays
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An analytical model for investigations of multipole coupling effects in the finite and infinite nanoparticle
arrays supporting electromagnetic resonances is presented and discussed. This model considers the contributions
of both electric and magnetic modes excited in the nanoparticles, including electric and magnetic dipoles and
electric and magnetic quadrupoles. The magnetic quadrupole propagator (Green’s tensor) that describes the
electromagnetic field generated by a point magnetic quadrupole source in all wave zones is derived. As an
example, we apply the developed model to study infinite two-dimensional rectangular periodic arrays of spherical
silicon nanoparticles supporting the dipole and quadrupole resonant responses. The correctness and accuracy
of the analytical model are confirmed by the agreement of its results with the results of full-wave numerical
simulations. Using the developed model, we show the electromagnetic coupling between electric dipole and
magnetic quadrupole moments as well as between magnetic dipole and electric quadrupole moments even for
the case of an infinite rectangular periodic array of spherical nanoparticles. The strong suppression of the dipole
or quadrupole moment due to the coupling effects is demonstrated and discussed for spherical nanoparticle
arrays. The analytical expressions for the reflection and transmission coefficients written with the effective dipole
and quadrupole polarizabilities are derived for normal light incidences and zero-order diffraction. The derived
expressions are applied to explain the lattice anapole (invisibility) states when the incident light is transmitted
unperturbed through the silicon nanoparticle array. The important role of dipole and quadrupole excitations in
scattering compensation resulting in the lattice anapole effect is explicitly demonstrated. The presented approach
can be used for designing metasurfaces and further utilizing them in developing ultrathin functional optical
elements.
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I. INTRODUCTION

Nanostructures have demonstrated a great potential to be
utilized in optical applications and photonic devices, with
particular interest in photovoltaics [1], sensing [2], flat func-
tional elements (e.g., based on metasurfaces) [3–5], enhanced
photoemission [6], near-field microscopy [7], and others.
Different materials with negative [8,9], positive [10,11], and
undefined [12] permittivity and nanoparticle shapes have been
explored with the aim to enhance light-matter interaction in
the nanostructure [8–12]. Nanocomposites, including core-
shell nanoparticles, allow for excitation of various multipole
resonances and precise control of nanostructures’ scattering
and absorption properties [13–16].

The strong magnetic response of the nanostructures is cru-
cial for efficient control of light at the nanoscale. In the visible
and infrared spectral ranges, materials have a very weak mag-
netic response, and nanostructures need to be designed to pos-
sess not only electric resonances but also artificial magnetic
ones. To induce the artificial magnetic response in metallic
(plasmonic) particles, one has to use U-shaped particles, split-
ring resonators, or a similar shape, and fabrication of such
metallic particles imposes severe limitations on their practical
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implementations. Recently, dielectrics with a high refractive
index (e.g., semiconductors such as silicon, germanium, and
III-V compounds) have attracted a lot of attention because
particles with the relatively simple shape, such as a sphere
or a disk, have shown that they can support both electric
and magnetic resonances [10,17]. Interplay and overlap of
resonances in such high-index particles offer the possibility
to effectively control light at subwavelength dimensions and
design ultrathin photonic elements based on such antennas
and their arrays [18–24].

Being arranged in the lattice, particles interact with each
other, and their effective polarizabilities are defined not only
by the properties of the individual particle but all particles
in the array as well as the distance between them [25–28].
Periodic arrays of nanoparticles enable excitation of addi-
tional resonance, so-called lattice resonance, that appears in
proximity to the Rayleigh anomaly (wavelength of diffraction)
[29–36]. Different particle multipoles respond differently to
the change in the lattice period in a particular direction and
incident light polarization [10,37]. It has been shown that
one can independently control electric and magnetic dipole
resonances in the rectangular periodic lattice and achieve
resonance overlap [38,39]. Analytical models for the infinite
rectangular periodic array based on coupled dipole equations
show that electric and magnetic dipoles do not couple [10],
which is similar to the case of a single particle without an
array. Likewise, an electric dipole does not couple to an
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electric quadrupole [37]. However, a magnetic dipole couples
to an electric quadrupole [40,41], and this coupling brings
about interesting effects that are enabled by the lattice (see,
e.g., the demonstration of the generalized Kerker effect in
Ref. [40]).

Here we take the next step in the analysis of nanostructure
properties with electric and magnetic multipole resonances.
We take into consideration both electric and magnetic re-
sponses of the particle for dipole and quadrupole moments,
and we focus mainly on the magnetic quadrupole response
of the nanoparticles. We study the effects stemming from
including the magnetic quadrupole moment in both cases of
single-particle and rectangular periodic array arrangement.
First, we derive the magnetic quadrupole propagator (Green’s
tensor) and show how electromagnetic fields are defined
through this tensor. Second, we derive the equations for an
array of nanoparticles with the electric and magnetic dipole
and quadrupole responses in a general case of arbitrary
nanoparticles (different from each other in terms of size,
shape, material, position in the array, etc.).

Consideration of a general case of arbitrary nanoparticle
arrangement is followed by a study of a particular case of
an infinite rectangular periodic array of identical spheres. We
introduce effective polarizabilities of each multipole of the
identical nanoparticles in the rectangular periodic array, and
we derive their expressions, which include terms responsible
for coupling between the electric dipole and the magnetic
quadrupole as well as reflection and transmission coefficients
of the array. Our results show that it is important to take into
account excitation of the magnetic quadrupole moment in the
nanoparticle lattice: (i) if magnetic quadrupole polarizability
is negligible for a single particle, it can be significant in the
lattice because of its coupling to the electric dipole; and (ii)
non-negligible magnetic quadrupole polarizability changes
an electric dipole. Finally, we show that it is possible to
achieve a condition when particle multipoles are excited,
but the transmitted wave changes neither the amplitude nor
the phase. Thus, we show the origin of the lattice anapole
effect. We would like to emphasize that this effect is different
from the perfect transmission in metalattices and metasurfaces
occurring when electric and magnetic dipoles compensate
for each other’s scattering and the first Kerker condition is
satisfied [18]. It is often referred to as the Kerker effect, it
manifests only as a suppression of backward scattering, and
the phase difference for the incident and transmitted waves
can be arbitrary [42].

One of the main results of our work is the explicit demon-
stration of the coupling effects between the electric dipole
and magnetic quadrupole moments of the identical nanopar-
ticles arranged in the infinite rectangular array. In contrast to
our previous work [40], which was devoted to the coupling
between electric and magnetic multipoles of the same order
(magnetic dipole to electric quadrupole coupling), here we
demonstrate the electromagnetic coupling between multipoles
of different orders. In our work, we show that under the
condition of the resonant dipole and quadrupole nanoparticle
responses, their coupling can play a crucial role, strongly
affect effective polarizability of both multipoles, and define
spectral features in transmission, reflection, and absorption in
the array.

II. ELECTRIC AND MAGNETIC FIELDS OF MULTIPOLES

In the multipole approximation, including the dipole and
quadrupole moments, nanoparticles are considered as point
electric and magnetic dipoles (ED and MD) and point elec-
tric and magnetic quadrupoles (EQ and MQ). The analytical
expressions for the electric and magnetic fields generated by
point electric and magnetic dipoles and electric quadrupoles
are considered elsewhere [10,17]. Here we obtain the expres-
sions for the electric and magnetic fields generated by the
point magnetic quadrupole source. In general, the presented
procedure can be applied to calculate field propagators of any
multipole moments. For example, using this approach the field
propagator for an electric toroidal dipole has been calculated
in Ref. [43].

A. Magnetic quadrupole propagator

The electric field propagator of multipole sources can be
obtained from the general expression for the electric field E
generated at a space point r by polarization P excited in a
local region with volume Vs [44]:

E(r) = k2
0

ε0

∫
Vs

Ĝ(r, r′)P(r′)dr′, (1)

where k0 is the wave number in vacuum, ε0 is the vacuum
dielectric constant, and Ĝ(r, r′) is the Green’s tensor of the
system without the polarization P (see Refs. [10,45]). The
multipole decomposition of the induced polarization P up to
the magnetic quadrupole term can be written as [43]

P(r′) � pδ(r′′) − 1

6
Q̂∇δ(r′′) + i

ω
[∇ × mδ(r′′)]

− i

2ω
[∇ × M̂∇δ(r′′)] + · · · , (2)

where δ(r′′) is the Dirac delta function, r′′ = r′ − r0 (r0 is the
radius-vector of the multipoles’ location), ∇ is the gradient
operator with respect to the radius-vector r′, ω is the angular
frequency [here we consider monochromatic time dependence
exp(−iωt )], and the values p, m, Q̂, and M̂ are the electric
dipole vector, magnetic dipole vector, electric quadrupole
tensor, and magnetic quadrupole tensor, respectively. Inserting
Eq. (2) into (1) and considering every term separately, one
can obtain the electric field generated by every multipole in
all wave zones. The fields generated by the dipoles and the
electric quadrupole are considered elsewhere [10,17,37], and
the results will be used in the following sections. The field
generated by the magnetic quadrupole tensor M̂ is calculated
from the following equation:

EM (r) = − ik2
0

2ε0ω

∫
Vs

Ĝ(r, r′)[∇ × M̂∇δ(r′ − r0)]dr′. (3)

After integration of (3), taking into account that the tensor
M̂ is traceless (Mxx + Myy + Mzz = 0) and symmetric (Mxy =
Myx, Mxz = Mzx, Myz = Mzy), and the Green’s tensor Ĝ(r, r′)
corresponds to a homogeneous medium with εS [43,45], one
obtains, for the local electric field at a point rl generated by
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the M̂ source located at a point r j , the following expression:

EM (rl ) = ik0k2
S

2

√
μ0

ε0

eikSRl j

4πRl j

(
1 + 3i

kSRl j
− 3

k2
SR2

l j

)

[n jl × (M̂n jl )], (4)

where n jl = (rl − r j )/|rl − r j | is the unit vector directed
from r j to rl , i is the imaginary unit, Rl j = rl − r j , Rl j =
|Rl j |, μ0 is the vacuum permeability, kS = k0

√
εS , and the

sign × denotes the vector product between corresponding
vectors.

The expression (4) can be presented as

EM (rl ) = [
GM

l j × (M̂n jl )
]
, (5)

where the vector

GM
l j = ik0k2

S

2

√
μ0

ε0

eikSRl j

4πR2
l j

(
1 + 3i

kSRl j
− 3

k2
SR2

l j

)
Rl j (6)

is the magnetic quadrupole propagator. From Maxwell equa-
tions, the magnetic field can be found as

HM (rl ) = cε0

ik0
∇ × EM (rl ) (7)

and correspondingly defined through the propagator ĜM
l j as

HM (rl ) = k2
SĜM

l j (M̂n jl ), (8)

where, after derivations, the magnetic quadrupole Green’s
tensor of the medium without particles is

ĜM
l j ≡ i3kSeikSRl j

24πRl j

[(
−1 − i3

kSRl j
+ 6

k2
SR2

l j

+ i6

k3
SR3

l j

)
Û

+
(

1 + i6

kSRl j
− 15

k2
SR2

l j

− i15

k3
SR3

l j

)
n jl n jl

]
, (9)

where Û is the 3 × 3 unit tensor, and n jln jl is the dyadic
product.

B. Electric and magnetic fields of dipole and quadrupole sources

Here we present general expressions for electric and mag-
netic fields generated by dipole and quadrupole point sources.
The electric dipole and electric quadrupole Green’s tensors of
the medium without particles are defined as (see the previous
works [10,37])

Ĝp
l j ≡

{(
1 + i

kSRl j
− 1

k2
SR2

l j

)
Û +

(
−1 − i3

kSRl j
+ 3

k2
SR2

l j

)
n jln jl

}
eikSRl j

4πRl j
(10)

and

ĜQ
l j ≡ ikSeikSRl j

24πRl j

{(
−1 − i3

kSRl j
+ 6

k2
SR2

l j

+ i6

k3
SR3

l j

)
Û +

(
1 + i6

kSRl j
− 15

k2
SR2

l j

− i15

k3
SR3

l j

)
n jl n jl

}
, (11)

respectively. We take into account that tensors Q̂ and M̂ are
traceless and symmetric and that

Ĝm
l j = Ĝp

l j, ĜM
l j = 3ĜQ

l j, (12)

where Ĝm
l j is the tensor determining the magnetic field at the

point rl generated by a magnetic dipole located at the point
r j . In this case, one can express electric and magnetic fields
of multipoles as the following:

Ep(rl ) = k2
0

ε0
Ĝp

l jp
j,

Hp(rl ) = ck0

i
∇ × Ĝp

l jp
j = ck0

i
[gl j × p j], (13)

Hm(rl ) = k2
SĜp

l jm
j,

Em(rl ) = ik0

cε0
∇ × Ĝp

l jm
j = ik0

cε0
[gl j × m j], (14)

EQ(rl ) = k2
0

ε0
ĜQ

l j (Q̂
jn jl ),

HQ(rl ) = ck0

i
∇ × ĜQ

l j (Q̂
jn jl ) = ck0

i
[ql j × (Q̂ jn jl )], (15)

HM (rl ) = k2
SĜM

l j (M̂
jn jl ) = 3k2

SĜQ
l j (M̂

jn jl ), (16)

EM (rl ) = ik0

cε0
∇ × ĜM

l j (M̂
jn jl ) = 3

ik0

cε0
∇ × ĜQ

l j (M̂
jn jl )

= 3
ik0

cε0
[ql j × (M̂ jn jl )],

where c = 1/
√

ε0μ0 is the speed of light in vacuum; the
introduced (for convenience) vectors gl j and ql j are

gl j = eikSRl j

4πRl j

(
ikS

Rl j
− 1

R2
l j

)
Rl j (17)

and

ql j = cε0

3ik0
GM

l j = k2
SeikSRl j

24πR2
l j

(
1 + 3i

kSRl j
− 3

k2
SR2

l j

)
Rl j . (18)

The connection between ql j and GM
l j follows from Eqs. (5),

(6), and (16).

III. MULTIPOLAR NANOPARTICLE STRUCTURES

A. General system of equations

Let us consider an arbitrarily shaped particle with number
j in the structure of N identical particles with ED, MD,
EQ, and MQ polarizability tensors α̂p, α̂m, α̂Q, and α̂M ,
respectively. The vectors of the electric p j and magnetic
m j dipole moments and the tensors of the electric Q̂ j and
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magnetic M̂ j quadrupole moments at the particle location r j

are proportional to the local electric Eloc(r j ) and magnetic
Hloc(r j ) fields and symmetrical parts of the gradients of the
local electric or magnetic field, respectively:

p j = α̂pEloc(r j ), (19)

m j = α̂mHloc(r j ), (20)

Q̂ j = α̂Q

2
[∇Eloc(r j ) + Eloc(r j )∇], (21)

M̂ j = α̂M

2
[∇Hloc(r j ) + Hloc(r j )∇], (22)

where ∇ is the nabla operator. For tensorial terms, we use
the convention [46] to define tensor elements ∇F + F∇ in a
Cartesian coordinate system as

(∇F + F∇)βγ = ∂Fγ

∂β
+ ∂Fβ

∂γ
,

where F is a vector of the electric or magnetic field, β =
x, y, z, and γ = x, y, z.

For the particle located at the position r j , the local electric
field is a superposition of the external electric E0(r j ), the field
Ẽp(r j ) produced by all EDs of the system except p j , the field
Ẽm(r j ) of all MDs except m j , the field ẼQ(r j ) of all EQs
except Q̂ j , and the field ẼM (r j ) of all MQs except M̂ j ; the
same considerations are applied to the magnetic field:

Eloc(r j ) = E0(r j ) + Ẽp(r j ) + Ẽm(r j )

+ ẼQ(r j ) + ẼM (r j ), (23)

Hloc(r j ) = H0(r j ) + H̃p(r j ) + H̃m(r j )

+ H̃Q(r j ) + H̃M (r j ). (24)

Using the exact expressions (13)–(16) for electromag-
netic fields generated by dipole and quadrupole sources, the
equation system (19)–(22) for calculation of the dipole and
quadrupole moments of all particles can be written in a more
explicit form:

p j = α̂pE0(r j ) + α̂p
k2

0

ε0

N∑
l �= j

{
Ĝp

jl p
l + i

ck0
[g jl × ml ]

+ ĜQ
jl (Q̂

lnl j ) + 3i

ck0
[q jl × (M̂lnl j )]

}
,

m j = α̂mH0(r j ) + α̂mk2
0

N∑
l �= j

{
c

ik0
[g jl × pl ] + εSĜp

jlm
l

+ c

ik0
[q jl × (Q̂lnl j )] + 3εSĜQ

jl (M̂
lnl j )

}
,

Q̂ j = α̂Q

2
[∇E0(r j ) + E0(r j )∇]

+ α̂Qk2
0

2ε0

N∑
l �= j

{[∇ j
(
Ĝp

jl p
l
) + (

Ĝp
jlp

l
)∇ j

]

+ i

ck0
(∇ j[g jl × ml ] + [g jl × ml ]∇ j )

+ {∇ j
[
ĜQ

jl (Q̂
lnl j )

] + [
ĜQ

jl (Q̂
lnl j )

]∇ j
}

+ 3i

ck0
{∇ j[q jl × (M̂lnl j )] + [q jl × (M̂lnl j )]∇ j}

}
,

M̂ j = α̂M

2
[∇H0(r j ) + H0(r j )∇]

+ α̂Mk2
0

2

N∑
l �= j

{
c

ik0
(∇ j[g jl × pl ] + [g jl × pl ]∇ j )

+ εS
[∇ j

(
Ĝp

jl m
l
) + (

Ĝp
jl m

l
)∇ j

]
+ c

ik0
{∇ j[q jl × (Q̂lnl j )] + [q jl × (Q̂lnl j )]∇ j}

+ 3εS
{∇ j

[
ĜQ

jl (M̂
lnl j )

] + [
ĜQ

jl (M̂
lnl j )

]∇ j
}}

, (25)

where j = 1, 2, 3, . . . , N , and ∇ j is the nabla operator with
respect to r j .

Note that the cases of the rectangular periodic nanoparticle
array with only ED, MD, or EQ response are considered in
earlier works [10,37]. After solving the system (25) for an
array of N nanoparticles, one can calculate the extinction
power Pext, using its multipole presentation [10,37,47],

Pext = ω

2
Im

N∑
j=1

[
E∗

0(r j ) · p j + μ0
[∇H∗

0(r j )]T

2
: M̂ j

+μ0H∗
0(r j ) · m j + ∇E∗

0(r j ) + E∗
0(r j )∇

12
: Q̂ j

]
, (26)

where the asterisk ∗ denotes complex conjugation, T de-
notes the transpose operation, and the signs · and : denote
the scalar products between vectors and dyads (tensors),
respectively [17].

B. Dipole and quadrupole polarizabilities of a sphere

Let us consider homogeneous nanoparticles of spherical
shape. In this case, the multipole responses of the nanoparti-
cles are characterized by corresponding scalar polarizabilities
αp, αm, αQ, and αM for ED, MD, EQ, and MQ, respectively.
In this subsection, we demonstrate the approach to derive
effective polarizabilities of spherical particles through Mie
coefficients. We show it based on the example of the MQ, and
we refer to the literature (see, e.g., [10,37]) for derivations and
expressions of ED, MD, and EQ.

For a single nanoparticle located at the origin of a coordi-
nate system, the angular dependence of the complex scattered
electric fields Eθ and Eφ in the far-field can be written as [48]

Eθ ≈ E0
eikSr

−ikSr
cos φ

∞∑
n=1

2n + 1

n(n + 1)

(
an

dP1
n

dθ
+ bn

P1
n

sin θ

)
,

Eφ ≈ −E0
eikSr

−ikSr
sin φ

∞∑
n=1

2n + 1

n(n + 1)

(
an

P1
n

sin θ
+ bn

dP1
n

dθ

)
,

(27)
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where E0 is the strength (amplitude) of the incident electric
field, θ and φ are the polar and azimuth scattering angles,
respectively, n defines the degree of the multipole mode, i.e.,
n = 1 and 2 for dipole and quadrupole modes, respectively,
P1

n represents the set of associated Legendre polynomials
of order 1, P1

2 (cos θ ) = 3 cos θ sin θ , dP1
2 /dθ = 3(cos2 θ −

sin2 θ ), and an and bn are the complex Mie coefficients calcu-
lated by evaluating the overlap integral between the incident
field and the field associated with the natural modes of the
system. For MQ related to the coefficient b2,

EM
θ ≈ E0

eikSr

−ikSr
cos φ

5

2
b2 cos θ,

EM
φ ≈ −E0

eikSr

−ikSr
sin φ

5

2
b2(− sin2 θ + cos2 θ ). (28)

From another side, the angular field components can be
expressed as [47]

EM
θ (r, φ, θ ) = −ikS

2

√
μ0

ε0εS

k2
SeikSr

4πr
(μy cos φ − μx sin φ),

EM
φ (r, φ, θ ) = −ikS

2

√
μ0

ε0εS

k2
SeikSr

4πr
(−μx cos φ cos θ

−μy sin φ cos θ + μz sin θ ), (29)

where the vector μ ≡ (M̂n) and for the sphere μ =
(0, nz, ny )M0 = (0, cos θ, sin θ sin φ)M0. Here we consider
that the nanoparticle is illuminated by a monochromatic plane
wave with linear polarization along the x-axis similar to
the case from [37]. Taking into account that the incident
magnetic field H = (0, H0, 0) exp (ikSz) and M̂ = αM (∇H +
H∇)/2, one obtains M0 = Myz = Mzy = αM (ikS/2)H0 =
αM (ikS/2)

√
ε0εS/μ0E0. Then, comparing (28) and (29), we

obtain an expression for MQ polarizability:

αM = i
40π

k5
S

b2. (30)

The other three polarizabilities of interest—αp, αm, and
αQ—are expressed through the scattering coefficients a1, b1,
and a2 of Mie theory as (see, e.g., [49])

αp = i
6πε0εS

k3
S

a1, αm = i
6π

k3
S

b1, αQ = i
120πε0εS

k5
S

a2.

(31)

In Mie theory, contributions of all toroidal moments are
included in the scattering coefficients a j and b j . Therefore,
our theoretical model automatically takes into account the
toroidal moments associated with the considered coefficients
a1, b1, a2, and b2. In particular, the coefficient a1 includes a
contribution of the toroidal dipole moment.

C. Infinite periodic array of identical spheres

1. Effective polarizabilities of a sphere in an array

Previous works [10,37] have shown that in the infinite
periodic two-dimensional array with a single nanoparticle in
the elementary cell, ED does not couple to either EQ [37] or
MD [10], and all nanoparticles of the array have the same
induced ED, MD, and EQ moments at the normal incidence of

FIG. 1. Schematic of the rectangular periodic nanoparticle array
under consideration.

external light excitation. We have also shown that the coupling
of EQ and MD takes place in the infinite arrays [40]. In the
present work, we generalize the concept to four multipoles
ED, MD, EQ, and MQ and demonstrate the coupling of ED
and MQ.

Let us consider a normally incident, monochromatic,
and x-polarized light wave with field components (Ex(r) =
E0 exp (ikSz), Hy(r) = H0 exp (ikSz), 0) (Fig. 1). Under these
conditions, the dipole and quadrupole moments of the iden-
tical spherical nanoparticles in infinite periodic rectangular
arrays will be the same for all nanoparticles and have the fol-
lowing components: p = (p0x̂ + 0ŷ + 0ẑ), m = (0x̂ + m0ŷ +
0ẑ), Q̂ = Q0(x̂ẑ + ẑx̂), and M̂ = M0(ŷẑ + ẑŷ), where x̂, ŷ, and
ẑ are the unit vectors of the Cartesian coordinate system. In
this case, the general system of Eqs. (25) can be simplified to
the following form:

p0 = αpEx(r0) + αp

ε0

[
Spp p0 + ik0

c
SpMM0

]
,

m0 = αmHy(r0) + αm

[
Smmm0 + ck0

i
SmQQ0

]
,

Q0 = αQikSEx(r0)

2
+ αQ

2ε0

[
ik0

c
SQmm0 + SQQQ0

]
,

M0 = αMikSHy(r0)

2
+ αM

2

[
ck0

i
SM p p0 + SMMM0

]
, (32)

where r0 is the position of an arbitrary particle with the
number 0 in the array, and we will consider that this particle
is located at the origin of the chosen Cartesian coordinate
system (Fig. 1) throughout the work. The multipole sums in
(32) are

Spp ≡ k2
0

∑
l �=0

Gp
xx(0, rl ) = k2

0

4π

∑
l �=0

eikSrl

rl

(
1 + i

kSrl

− 1

k2
Sr2

l

− x2
l

r2
l

− i3x2
l

kSr3
l

+ 3x2
l

k2
Sr4

l

)
, (33)

Smm ≡ k2
S

∑
l �=0

Gp
yy(0, rl ) = k2

S

4π

∑
l �=0

eikSrl

rl

(
1 + i

kSrl

− 1

k2
Sr2

l

− y2
l

r2
l

− i3y2
l

kSr3
l

+ 3y2
l

k2
Sr4

l

)
, (34)
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SQQ = k2
0

6

ikS

4π

∑
l �=0

eikSrl

r2
l

(
−2 − i

6 + k2
Sx2

l

kSrl
+ 12 + 7k2

Sx2
l

k2
Sr2

l

+ i
12 + 27k2

Sx2
l

k3
Sr3

l

− 60x2
l

k2
Sr4

l

− i60x2
l

k3
Sr5

l

)
, (35)

SMM = k2
0εS

2

ikS

4π

∑
l �=0

eikSrl

r2
l

(
−2 − i

6 + k2
Sy2

l

kSrl
+ 12 + 7k2

Sy2
l

k2
Sr2

l

+ i
12 + 27k2

Sy2
l

k3
Sr3

l

− 60y2
l

k2
Sr4

l

− i60y2
l

k3
Sr5

l

)
, (36)

SmQ ≡ 1

Q0

∑
l �=0

[q0l × (Q̂lnl0)]y

= 1

6

k2
S

4π

∑
l �=0

x2
l eikSrl

r3
l

(
−1 − 3i

kSrl
+ 3

k2
Sr2

l

)
, (37)

SQm ≡ 1

m0

∑
l �=0

[∇0[g0l × ml ] + [g0l × ml ]∇0]xz

= 6SmQ = k2
S

4π

∑
l �=0

x2
l eikSrl

r3
l

(
−1 − 3i

kSrl
+ 3

k2
Sr2

l

)
, (38)

SpM ≡ 1

M0

∑
l �=0

[q0l × (M̂lnl0)]x

= −k2
S

8π

∑
l �=0

y2
l eikSrl

r3
l

(
−1 − 3i

kSrl
+ 3

k2
Sr2

l

)
, (39)

SM p ≡ 1

p0

∑
l �=0

[∇0[g0l × pl ] + [g0l × pl ]∇0]yz = 2SpM

= −k2
S

4π

∑
l �=0

y2
l eikSrl

r3
l

(
−1 − 3i

kSrl
+ 3

k2
Sr2

l

)
. (40)

If we do not take into account the terms proportional to
SpM , SmQ, SQm, SM p corresponding to the cross-multipole cou-
pling in the system Eqs. (32), the effective polarizabilities of
dipoles and quadrupoles without coupling to other multipoles
are obtained as [10,37]

1

αeff
p

= 1

αp
− Spp

ε0
,

1

αeff
m

= 1

αm
− Smm,

1

αeff
Q

= 1

αQ
− SQQ

2ε0
,

1

αeff
M

= 1

αM
− SMM

2
. (41)

However, in the system (32), the coefficients SmQ, SQm,
SpM , and SM p are not equal to 0 for infinite arrays pro-
viding coupling between MD and EQ moments as well as
between ED and MQ moments. By solving the whole system
(32) taking into account the cross-multipole coupling, one
can find the total effective polarizabilities of the particles
in the array. These polarizabilities are determined by the
expressions α

eff/coup
p = p0/Ex, α

eff/coup
m = m0/Hy, α

eff/coup
Q =

2Q0/(ikSEx ), and α
eff/coup
M = 2M0/(ikSHy) taking into account

Hy = Ex
√

εSε0/μ0.
Thus we obtain

1

α
eff/coup
p

= 1 − SM pα
eff
p SpMαeff

M k2
0/(2ε0)

αeff
p

[
1 − SpMαeff

M k2
S/2

] , (42)

1

α
eff/coup
m

= 1 − SQmαeff
m SmQαeff

Q k2
0/(2ε0)

αeff
m

[
1 + SmQαeff

Q k2
0/(2ε0)

] , (43)

1

α
eff/coup
Q

= 1 − SQmαeff
m SmQαeff

Q k2
0/(2ε0)

αeff
Q

[
1 + SQmαeff

m

] , (44)

1

α
eff/coup
M

= 1 − SM pα
eff
p SpMαeff

M k2
0/(2ε0)

αeff
M

[
1 − SM pαeff

p /(ε0εS )
] . (45)

The presentations (42)–(45) of the polarizabilities allow for
analysis of the roles of coupling effects in nanoparticle arrays.

2. Conditions of lattice resonances and polarizability suppression
due to cross-multipole coupling

General expressions (42)–(45) demonstrate that, due to the
cross-multipole coupling, the ED and MQ lattice resonances
are excited at the conditions[

1

αeff
p αeff

M

− SM pSpMk2
0

2ε0

]
→ 0. (46)

The similar conditions of the MD and EQ lattice resonances
can be written out from (43) and (44), respectively.

Let us analyze the condition when the effective MQ po-
larizability of the nanoparticle in the periodic lattice vanishes
and the nanoparticles do not have considerable MQ response.
From Eq. (45), one can see that α

eff/coup
M = 0 occurs at the

condition 1/αeff
p − SM p/(ε0εS ) = 0, which means

Re

[
1

αeff
p

]
= Re

[
SM p

ε0εS

]
and Im

[
1

αeff
p

]
= Im

[
SM p

ε0εS

]
.

(47)
This condition is similar to the condition for conventional
lattice resonances in the array of identical multipoles, e.g.,
from Eqs. (41), electric dipoles with Re[1/αp] = Re[Spp]/ε0

or electric quadrupoles Re[1/αQ] = Re[SQQ]/(2ε0) [10,37].
As we show below, the condition for imaginary parts in
(47) can be satisfied approximately. The imaginary part of
the lattice sum can only affect the radiative losses in the
system. In contrast, the imaginary part of the inverse multi-
pole polarizability contains, in general, two contributions that
correspond to absorptive and radiative losses. Discussion of
this issue with respect to the dipole systems can be found, for
example, in Ref. [50]. Surprisingly, the spectral position of
α

eff/coup
M = 0 does not depend on the α

eff/coup
M values and is

defined solely by the values in Eq. (47), which are αp and
lattice parameters.
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One can also derive from Eq. (42) that under the condition
of Eq. (47),

1

α
eff/coup
p

= 1

αeff
p

, (48)

which means that the excitation of MQ moments is suppressed
in the array with the parameters satisfying the condition (47)
because of the dipole-quadrupole coupling.

Similar to the case of MQ, one can derive a condition
of vanishing ED because of cross-multipole coupling in the
periodic lattice. From Eq. (42), one can see that α

eff/coup
p = 0

occurs at the condition 1 − SpMαeff
M k2

S/2 = 0, which effec-
tively means

1

α
eff/coup
M

= 1

αeff
M

= SpMk2
S

2
. (49)

Again the condition (49) can be satisfied only approximately
for the imaginary part. Similar to Eqs. (47)–(49), the analysis
can be done for MD and EQ polarizabilities.

3. Reflection and transmission coefficients

After calculations of the effective polarizabilities of the
nanoparticles in an array, using Eqs. (42)–(45), the reflection
and transmission coefficients can be obtained if we consider
the total electric field in the far-field region for z < 0 and
z > 0:

E = E0 + Ep + Em + EQ + EM . (50)

The total electric field is a superposition of the incident field
E0 and the fields generated by the nanoparticle multipole
moments. For x-polarization of the incident wave, the electric
fields generated by ED, MD, EQ, and MQ of nanoparticles are

Ep = k2
0

ε0
Exα

eff/coup
p

(
Gr

xx, 0, 0
)
, (51)

Em = − ik0

cε0
Hyα

eff/coup
m

(
gr

z, 0, 0
)
, (52)

EQ = k2
0

ε0

ikSEx

2
α

eff/coup
Q

(
GQ,r

x , 0, 0
)
, (53)

EM = − ik0

2cε0

ikSHy

2
α

eff/coup
M

(
GM,r

x , 0, 0
)
, (54)

respectively. Here, Ex and Hy = √
ε0εS/μ0Ex are the electric-

and magnetic-field amplitudes of the incident wave. Finally,
from (50) the nonzero total electric-field component E f

x in the
far-field approximation is

E f
x = Ex

[
eikSz + k2

0

ε0
αeff/coup

p Gr
xx − ikSα

eff/coup
m gr

z

+k2
0

ε0
α

eff/coup
Q

ikS

2
GQ,r

x + k2
S

4
α

eff/coup
M GM,r

x

]
, (55)

where the far-field approximation of the Green’s tensor
components, taking into account the lattice and that the

wavelengths are larger than the array periods, is

Gr
xx =

∞∑
j=1

[
1 + 1

k2
S

∂2

∂x2

]
�(r, r j ) ≈ i

2SLkS
e∓ikSz, (56)

gr
z =

∞∑
j=1

∂

∂z
�(r, r j ) ≈ ± 1

2SL
e∓ikSz (57)

for ED and MD terms, respectively, and

GQ,r
x =

∞∑
j=1

[
−1

6

∂

∂z
− 1

3k2
S

∂3

∂x2∂z

]
�(r, r j ) ≈ ∓e∓ikSz

12SL
,

(58)

GM,r
x =

∞∑
j=1

[
∂2

∂y2
− ∂2

∂z2

]
�(r, r j ) ≈ ikS

2SL
e∓ikSz (59)

for EQ and MQ terms, respectively. Here

�(r, r j ) = eikS |r−r j |

4π |r − r j | (60)

is the scalar Green’s function of homogeneous medium with
εS , SL is the area of the lattice unit cell, and the upper sign
corresponds to z < 0 and the lower sign for the case when
z > 0. Calculations of the sums in (56)–(59) are carried out
by the method shown in Ref. [10] and account for all particles
in the array.

In this approach, the reflection and transmission coeffi-
cients, both with respect to electric field, are (compare with
[10])

r0 = ikS

2SL

[
1

ε0εS
αeff/coup

p − αeff/coup
m − k2

0

12ε0
α

eff/coup
Q

+ k2
S

4
α

eff/coup
M

]
, (61)

t0 = 1 + ikS

2SL

[
1

ε0εS
αeff/coup

p + αeff/coup
m + k2

0

12ε0
α

eff/coup
Q

+ k2
S

4
α

eff/coup
M

]
. (62)

Note that the expressions of (61) and (62) can be obtained
from the formulas of the reflection and transmission coef-
ficients presented in [51], for x-polarization, if one writes
the multipole moments of spherical nanoparticles through the
corresponding polarizabilities.

The intensity reflection R0 and transmission T0 coefficients
are

R0 = |r0|2, T0 = |t0|2.
Note that the expressions (61) and (62) are obtained for

the case when the wavelength of the incident light is larger
than the periods of the array. However, these expressions can
also be applied to calculate the transmission and reflection
coefficients of zero diffraction order in nanoparticle arrays
with an arbitrary relation between the wavelength of the
incident light and array periods.
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FIG. 2. Analytical (denoted “with coup.”) and numerical calcula-
tions (denoted “numeric”) of the intensity reflection and transmission
coefficients for the infinite periodic array of silicon spheres. The
lattice periods are Dx = Dy = 300 nm, and the silicon particles have
radius R = 125 nm.

IV. APPLICATIONS

To demonstrate the applicability of the developed ap-
proach, in this section we perform analytical calculations fol-
lowing the equations derived above and numerical simulations
using the frequency-domain solver in CST Microwave Studio.
Crystalline silicon spheres with R = 125 nm are considered,
ensuring that strong dipole and quadrupole resonances are
excited in the visible and near-infrared spectral range. Crys-
talline silicon permittivity is taken from the experimental data
[52] and illustrated elsewhere [10]. In our simulations, the
surrounding material has dielectric permittivity εS = 1 and
the normally incident light is polarized along the x-axis (see
Fig. 1).

To start with, we perform analytical calculations of reflec-
tion and transmission for a square array with periods Dx =
Dy = 300 nm using Eqs. (61) and (62). The comparison of
these calculations with the results of numerical simulations
are shown in Fig. 2. There is a good agreement confirming that
the multipole model derived above can be successfully applied
to predict optical properties of high-density arrays. Moreover,
the polarizability presentations (61) and (62) allow us to study
the coupling effects in detail.

A. Multipole coupling

Let us analyze the influence of a nanoparticle lattice on
multipole effective polarizabilities. As is expected, the pro-
nounced effect is realized at the resonant conditions. Figure 3
shows the spectral behavior of ED and MQ polarizabilities
[panel (a)] and MD and EQ polarizabilities [panel (b)] for
three cases under consideration. The first case is a single
sphere, and calculations are performed with Eqs. (30) and
(31) (solid lines in Fig. 3). The second case is a sphere in the
lattice without cross-multipole coupling. Effectively, this case
corresponds to the lattice of the same multipoles, and calcu-
lations are performed with Eqs. (41) (dashed lines in Fig. 3).

FIG. 3. Multipole resonances in the individual sphere and its pe-
riodic array. The lattice periods are Dx = Dy = 300 nm, and silicon
particles have R = 125 nm. Absolute values of (a) ED and MQ and
(b) MD and EQ multipole effective polarizabilities. The effective
polarizabilities are calculated with Eqs. (30) and (31) for the single
sphere, Eqs. (41) for the sphere in the array without cross-multipole
coupling, and Eqs. (42)–(45) taking into account coupling. Effective
polarizabilities of MQ and EQ are normalized to k2

0/4 and k2
0/12,

respectively, following the coefficients in Eqs. (61) and (62), and all
electric dipole and quadrupole polarizabilities are divided on ε0.

Finally, the third case is a sphere in the lattice, and coupling
of all the multipoles is taken into account with Eqs. (42)–(45)
(dotted lines in Fig. 3). While the polarizabilities of the single
sphere differ from the polarizabilities of the spheres in the
array, calculations taking and not taking into account cross-
multipole coupling are very similar in a wide range of the
spectrum. However, in proximity to resonances, the coupling
is strong and significantly changes the effective polarizability
of the particle. In particular, the value of |αeff,coup

M k2
0/4| is

significantly suppressed at the resonant region due to energy
exchange between MQ and ED [λ ≈ 680 nm, Fig. 3(a)].
Moreover, due to the coupling, the resonances of ED and
MQ polarizabilities demonstrate Fano-type profiles, where the
maximum of the MQ term coincides with the minimum of
the ED term and vice versa [λ ≈ 680 nm, Fig. 3(a)]. Similar
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FIG. 4. Effective polarizabilities of (a),(c) ED and (b),(d) MQ. Panels (a) and (b) were calculated without accounting for cross-multipole
coupling between ED and MQ, and panels (c) and (d) were calculated with the cross-multipole coupling. The lattice periods are Dx = Dy, and
silicon particles have R = 125 nm. The results are shown in a logarithmic scale. Note that the plotted quantity is log10 of the absolute value of
the effective multipole polarizability and takes into account k2

0/4 for MQ. The dotted lines labeled RA mark the position of Rayleigh anomaly.
Here all electric dipole and quadrupole polarizabilities are divided on ε0.

behavior can be observed for another MD-EQ multipole pair:
the MD term |αeff,coup

m | experiences a decrease at the same
wavelength that the EQ term |αeff

Q k2
0/12| has a peak (λ ≈ 575

nm), and the EQ term |αeff,coup
Q k2

0/12| has a near-zero value in
proximity to the MD term |αeff

m | peak [λ ≈ 825 nm, Fig. 3(b)].
Thus, the cross-multipole coupling in the arrays may cause
significant changes (especially at the resonant conditions)

and needs to be taken into account in the array multipole
approximations.

To demonstrate the role of the array periodicity in the
cross-multipole coupling effects, we calculated the ED and
MQ polarizabilities without and with the cross-multipole
coupling term as a function of the array period and incident
light wavelength. Results are shown in Fig. 4. Without cross-
multipole coupling, panels (a) and (b) include only the ED

FIG. 5. Intensity reflection coefficient from the array of particles with the lattice periods Dx = Dy and silicon particles R = 125 nm.
(a) Calculations are performed using only single-particle polarizability Eqs. (31), without taking into account the interaction of particles in the
lattice. (b) Calculations are performed with polarizabilities defined through Eqs. (41) and accounting only for the interactions of multipoles
of the same kind in the lattice. (c) Calculations with cross-multipole coupling of the multipoles defined by Eqs. (42)–(45). Panels (a) and
(b) include regions with unphysical results with the reflection coefficient values greater than 1. The dotted lines labeled RA mark the position
of the Rayleigh anomaly.
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and MQ resonances, respectively, which are affected only by
the Rayleigh anomaly (RA lines in Fig. 4). In contrast, in the
case of the cross-multipole coupling, panels (c) and (d) also
demonstrate the antiresonant regions, where ED polarizability
is suppressed in proximity to MQ resonances [panel (c)] and
vice versa [panel (d)]. Note that, at a period of 300 nm,
both ED and MQ polarizabilities are suppressed due to the
cross-multipole coupling effect.

In experimental investigations, it is not possible to ob-
tain direct information about nanoparticle polarizability in
the arrays. Therefore, it is important to understand how the
cross-multipole coupling effects can appear in reflection and
transmission. So we calculate the reflection from the array
in all the cases under consideration: (i) polarizability of the
single particle (without account of the array), (ii) coupling
of the multipoles of the same kind in the lattice, and (iii)
cross-multipole coupling (Fig. 5). Without multipole cou-
pling, the reflection coefficient is significantly overestimated
in the resonant regions and has unphysical values larger than
unit [panels (a) and (b)]. In contrast to the case without
cross-multipole coupling, the reflection coefficient calculated
with the cross-multipole coupling polarizabilities [Fig. 5(c)]
does not contradict the physical requirement that R0 + T0 � 1,
which results from energy conservation for passive systems.

B. Demonstration of polarizability suppression

As has been shown above, the effective polarizability of ED
and MQ can be significantly reduced down to near-zero value
if the conditions (47)–(49) are satisfied, which can be typically
achieved in proximity to the resonances. Here we verify these
conditions. Figure 6(a) shows that upon overlap of ED and
MQ resonances in the dense lattice with Dx = Dy = 270 nm,
the ED and MQ polarizabilities experience a minimum.

We compare the corresponding cross-multipole coupling
sum SpM and SM p with inverse ED and MQ polarizabilities
1/αeff

p and 1/αeff
M shown in Figs. 6(b) and 6(c). The results

confirm that the polarizability minimum in Fig. 6(a) happens
at the spectral point where conditions defined by Eqs. (47)
and (49) are exactly satisfied for the real parts of the sum and
inverse polarizabilities,

Re(SM p/ε0εS )

Re
(
1/αeff

p

) = 1 or
Re

(
SpMk2

S/2
)

Re
(
1/αeff

M

) = 1.

In turn, the conditions for imaginary parts are satisfied only
approximately. In the case shown in Figs. 6(b) and 6(c), it is

Im(SM p/ε0εS )

Im
(
1/αeff

p

) ≈ 0.90 or
Im

(
SpMk2

S/2
)

Im
(
1/αeff

M

) ≈ 0.86.

The near-zero EQ polarizability in the cross-multipole
coupling model at the wavelength 825 nm in Fig. 3(b) also
occurs due to the cross-multipole coupling between EQ and
MD moments.

C. Lattice anapole effect

Recent work has shown [51] that light can be transmitted
almost unperturbed by the lattices (metasurfaces) composed
of dielectric nanoparticles supporting resonant optical re-
sponse. This lattice invisibility effect is realized due to light

FIG. 6. Cross-multipole coupling of ED and MQ in the lattice.
The lattice periods are Dx = Dy = 270 nm, and silicon particles
have R = 125 nm. (a) Absolute values of ED and MQ effective
polarizabilities without and with cross-multipole coupling. Effective
polarizability of MQ is normalized to k2

0/4 following the coefficients
in Eqs. (61) and (62). Blue and light blue circles correspond to
the minimum of effective MQ and ED polarizability accounting for
cross-multipole coupling, respectively. Blue and light blue squares
correspond to the same spectral point as circles and indicate |αeff

p | =
|αeff,coup

p | and |αeff
M | = |αeff,coup

M |, respectively. (b) Inverse MQ polar-
izability and cross-multipole coupling sum. (c) Inverse ED polariz-
ability and cross-multipole coupling sum. In (b) and (c), blue and
light blue circles correspond to the same spectral points as the circles
in (a). Here all electric dipole and quadrupole polarizabilities are
divided on ε0.
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FIG. 7. Multipole resonances and reflection and transmission through the periodic array of spheres. The lattice periods are Dx = 530 nm
and Dy = 410 nm, and silicon particles have R = 125 nm. (a) Absolute values of each separate multipole term in the brackets of Eqs. (61) and
(62) for the reflection and transmission coefficients (the MQ and EQ effective polarizabilities are normalized to k2

0/4 and k2
0/12, respectively,

and ED and EQ polarizabilities are divided on ε0). (b) Corresponding phases of the multipole terms in Eqs. (61) and (62). (c) Intensity reflection
and transmission coefficients. (d) Phase of field reflection and transmission coefficients (61) and (62). At the wavelength 610–630 nm, the
contributions of multipole moments in the reflection and transmission coefficients have comparable values; the phases of ED and EQ terms are
almost equal to each other, and the same holds for MD and MQ. At this wavelength range, reflection is near zero, transmission is close to 1
and its phase does not change, indicating a lattice anapole state.

excitation of a certain multipole combination in the nanoparti-
cles of the metasurface. This multipole combination provides
simultaneous strong minimization of forward and backward
scattering of light resulting in its propagation almost without
amplitude or phase change. Note that such behavior can be
called the “lattice anapole effect” because of its similarity to
the light scattering by particles in anapole states [53]. In these
states, nanoparticles do not scatter light, providing the unper-
turbed incident wave. Here we show that the lattice anapole
effect can be realized in an array of spherical silicon nanopar-
ticles due to interference of the fields generated by ED, MD,
EQ, and MQ moments excited in the array’s nanoparticles. For
this, we perform calculations for a periodic array of silicon
spheres with periods Dx = 530 nm and Dy = 410 nm (Fig. 7).
The spectral region of interest is the wavelength internal 610–
630 nm indicated by a blue circle in Fig. 7(a). There, all four
multipole terms in the brackets of expressions (61) and (62)
have comparable values. At the same time in this spectral
region, the phases of the ED and EQ terms are almost equal
to zero, and the phases of the MD and MQ terms are close
to π [Fig. 7(b)]. Using the information about the amplitudes
and phases of the polarizability terms in the field reflection
and transmission coefficients, we obtain from (61) and (62)
that r0 ≈ 0 and t0 ≈ 1 in the considered wavelength range

610–630 nm. Direct numerical and analytical calculations of
the intensity reflection and transmission coefficients shown in
Fig. 7(c) confirm this result: The reflection from the array
is near zero, and the transmission is close to 1. Moreover,
the phase change of the transmitted wave is almost equal to
zero [the red curve in Fig. 7(d) for wavelengths from 610 to
630 nm]. Calculations of the field distribution at λ = 629 nm,
where transmission is close to unit and the phase change is
zero, confirm that the wave propagates through the array un-
perturbed [Figs. 8(a) and 8(b)]. Contrarily, for the wavelength
λ = 580 nm, the phase of the transmission field changes, and
one can see a significant reflection from the array and a phase
shift of the transmitted wave compared with the free-space
case [Figs. 8(c) and 8(d)]. Note that from a comparison of the
analytical and numerical curves presented in Fig. 7(c), one
can see that the analytical model taking into account only
ED, MD, EQ, and MQ multipole terms can describe well
the optical properties of the arrays under consideration. Thus,
we have designed the array of spherical silicon nanoparticles
where the propagating light excites moderate resonances (off-
set from resonance peaks) but is not reflected, and the light
transmits almost with the same amplitude as the incident light
and without phase changes. As a result, this behavior can be
associated with a lattice anapole state.
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FIG. 8. Total Ex field distribution (incident and scattered waves)
in numerical simulations of (a),(c) an empty domain and (b),(d) a
domain with a sphere in the array with Dx = 530 nm and Dy = 410
nm. Simulations are performed at the wavelength (a),(b) λ = 629 nm
(which corresponds to the transmission phase φ = 0 and the lattice
anapole state) and (c),(d) λ = 580 nm. Light incidence is from the
left side. A cross section is taken in the xz plane.

V. CONCLUSION

A general case of nanoparticles and their array with the
electric and magnetic dipole and quadrupole moments has
been theoretically considered. Equations that include the con-
tribution of the MQ moment and the MQ Green’s tensor for
the description of electromagnetic fields generated by the

MQ moment in all wave zones are derived. We have devel-
oped an analytical model based on coupled dipole-quadrupole
equations for the investigation of the optical responses of
nanoparticle arrays supporting dipole and quadrupole (includ-
ing the MQ term) resonances. Further, the developed model
has been applied for the study of optical properties of infinite
periodic arrays of identical silicon spheres. An analytical
expression of the effective particle polarizabilities, taking into
account multipole coupling, has been obtained. Performing
calculations with the developed analytical model, we demon-
strated the importance of the coupling effects between ED
and MQ moments in the infinite arrays. It has been shown
that excitation of all dipole and quadrupole moments in the
silicon nanosphere arrays can lead to the realization of a lattice
anapole state. This state corresponds to a condition when
particle resonances are excited, but neither the amplitude
nor the phase of the transmitted wave changes. Thus, we
believe that the presented analytical model can be used for
the development and investigation of nanoparticle structures
with different functional optical properties.
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