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Topological band structure of surface acoustic waves on a periodically corrugated surface
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Surface acoustic waves (SAWs) are elastic waves localized on a surface of an elastic body. We theoretically
study topological edge modes of SAWs for a corrugated surface. We introduce a corrugation forming a triangular
lattice on the surface of an elastic body. We treat the corrugation as a perturbation, and construct eigenmodes
on a corrugated surface by superposing those for the flat surface at wave vectors which are mutually different
by reciprocal-lattice vectors. We thereby show emergence of Dirac cones at the K and K ′ points analytically.
Moreover, by breaking the time-reversal symmetry, we show that the Dirac cones open a gap, and that the Chern
number for the lowest band has a nonzero value. This indicates the existence of topological chiral edge modes
of SAWs in the gap.
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I. INTRODUCTION

Various topological phases in electronic systems have been
studied since the quantum Hall effect (QHE) was discovered
in 1980 [1]. In the QHE, topologically protected chiral edge
modes are formed while the bulk is an insulator in two-
dimensional systems. This is attributed to a nontrivial topol-
ogy of the band structure characterized by the Berry curvature.
Effects of the Berry curvature appear in various Hall effects.
Hall effects for other particles and quasiparticles have been
studied following the studies in electron systems. Among
them is the phonon Hall effect [2–4] where a transverse
heat current is induced by temperature gradient. Moreover,
in recent years, topologically protected phonon systems are
studied theoretically and experimentally [5–13], which are
analogous to the QHE in the electronic systems.

In this paper we theoretically study topological chiral edge
modes in the surface acoustic waves (SAWs). The SAWs
are a special type of elastic waves localized on a surface
of an elastic body and they decay exponentially into its
bulk [14]. The SAWs are drawing attention both for scientific
interests and for applicational purposes [15–22]. We focus
on the SAWs, because their band structures can be designed
by controlling surface corrugations. Dispersion relations of
the SAWs for a periodically corrugated surface have already
been studied [23–28]. For a surface with one-dimensional
corrugation, it was shown that a gap opens at the boundary of
the Brillouin zone [23]. However, no analytical studies have
been conducted to combine topological phenomena like QHE
and the SAWs for the corrugated surface in the continuum
theory of elasticity. There have been a number of studies on
topological phenomena in spring-mass systems and various
mechanical systems [29–50]. Among them, there are only a
few previous works on topological phenomena on SAWs. For
example, quantum valley Hall effect is proposed in Ref. [47]
and a “phononic graphene” has been realized experimentally
in Ref. [46]. From an analogy with topological semimetals, a
Weyl phononic crystal was fabricated [50]. Its novel topolog-
ical surface modes, analogous to Fermi-arc surface states in

a Weyl semimetal, were observed and its negative refraction
was measured [50]. It can be regarded as topological surface
modes of SAWs in Weyl phononic crystals.

In this paper, we study SAWs flowing along a surface with
a two-dimensional corrugation forming a triangular lattice and
their topological bands. From the viewpoint of symmetry,
Dirac cones are expected to appear at the K and K ′ points,
which are the vertices of the Brillouin zone, as seen in similar
hexagonal systems [46,51–54]. First, we analytically show
emergence of the Dirac cones for the SAWs. Furthermore, the
bands of the SAWs are expected to be topological when the
Dirac cones open a gap, in analogy with those in electronic
systems. Indeed, we show emergence of topological chiral
edge modes within the gap, analogous to those in the QHE,
by introducing a term which breaks time-reversal symmetry.
This phase has chiral edge modes on the surface of an elastic
body. In other words, we can create a one-dimensional elastic
wave that is topologically protected along the edge of the
two-dimensional surface.

Throughout this paper, the corrugation is treated as a small
perturbation. This enables us to study the eigenmodes, disper-
sions, and Berry curvatures in an analytic way. The analytic
results help us to obtain physical insights into the physics of
topological modes of the SAWs. We note that even when the
corrugation becomes larger the topological nature persists as
long as the band gap remains open.

This paper is organized as follows. Section II is devoted
to showing the emergence of the Dirac cones at the K and
K ′ points on the corrugated surface. In Sec. III, we show the
topological nature of the band structure for SAWs by breaking
the time-reversal symmetry, and we conclude this paper in
Sec. IV.

II. EMERGENT DIRAC CONES OF SAWs AROUND K AND
K ′ POINTS ON THE CORRUGATED SURFACE

In this section, we show that Dirac cones appear at K and
K ′ points in the Brillouin zone for SAWs on a corrugated
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surface forming a triangular lattice. For this purpose, first, we
calculate eigenfrequencies and eigenmodes at the K and K ′
points. After that, we show that the Dirac cones appear around
the K and K ′ points by the k · p perturbation theory using the
eigenmodes at the K and K ′ points.

A. Preliminaries: Acoustic waves in the bulk and
on the flat surface

In this section, we review acoustic waves in the bulk
and on the flat surface of a microscopically isotropic elastic
body following Ref. [14], while systems with microscopic
anisotropy would be of interest as a future work. We begin
with the classical equation of motion for the elastic body:
ρüi = ∑

j ∂σi j/∂x j . Here ρ is the density of the elastic body,
ui is the ith component of the displacement vector u, σi j

represents the stress tensor, and x j represents the coordinates
(x1, x2, x3) = (x, y, z). Force balance implies that this stress
tensor σi j is given in terms of the strain tensor ui j as σi j =
ρ(c2

l − c2
t )
∑

l ullδi j + 2ρc2
t (ui j − ∑

l ullδi j/3) [14], where cl

and ct represent the velocities of the longitudinal and trans-
verse waves, respectively, and ui j = (dui/dx j + du j/dxi )/2
is the strain tensor. Therefore, the equation of motion can be
written only in terms of the displacement vector:

ü = c2
t ∇2u + (

c2
l − c2

t

)∇(∇ · u). (1)

Then we obtain wave equations of the longitudinal wave,
∂2ul/∂t2 = c2

l ∇2ul , and the transverse wave, ∂2ut/∂t2 =
c2

t ∇2ut , with ∇ × ul = 0 and ∇ · ut = 0 from Eq. (1). To
calculate dispersions of the SAWs for a surface of the elastic
body occupying the region z < 0, we combine solutions of the
transverse and longitudinal waves localized near the surface
z = 0 as follows:

ux = kx

k
(Ale

αl z + At e
αt z )ei(k·r−ωt ), (2)

uy = ky

k
(Ale

αl z + At e
αt z )ei(k·r−ωt ), (3)

uz =
(

−αl

k
Ale

αl z − k

αt
At e

αt z

)
iei(k·r−ωt ), (4)

where αl ≡
√

k2 − ω2/c2
l , αt ≡

√
k2 − ω2/c2

t , r = (x, y),

k = (kx, ky) is the wave vector along the surface z = 0, and ω

is the frequency. Al and At are amplitudes of the longitudinal
and transverse waves, respectively. To obtain dispersions of
SAWs, we impose boundary conditions so that the surface is
stress free. In terms of the stress tensor σi j and the unit vector
e = (e1, e2, e3) that is normal to the surface, the boundary
conditions are written as

∑
j σi je j |z=0 = 0 (i = 1, 2, 3). By

writing σi j in terms of the displacement vector (ux, uy, uz )
given by Eqs. (2)–(4) and by putting e = (0, 0, 1), we obtain
dispersions of the SAWs ω = ctξk and the ratio of the
coefficients At = (−1 + ξ 2/2)Al , where ξ is a solution of the
equation ξ 6 − 8ξ 4 + 8ξ 2(3 − 2c2

t /c2
l ) − 16(1 − c2

t /c2
l ) = 0

in the range of ξ < 1 [14]. This surface wave is called the
Rayleigh wave, and its velocity is given by cR ≡ ctξ . We
show the dispersion of the SAW in Fig. 1 for ct = 1 and
cl = 1.2 as an example.

FIG. 1. Dispersion relations of SAWs for the flat surface. The
black line represents the bulk transverse wave mode ω = ct k and the
dashed black line represents the bulk longitudinal wave mode ω =
cl k. The red line represents the dispersion relation of the SAWs ω =
cRk. Here, we set ct = 1 and cl = 1.2.

B. Dispersion relations of SAWs at the K point

In this paper, we consider a microscopically isotropic
elastic body the surface of which is corrugated periodically,
forming a triangular lattice. We set the profile of the surface
corrugation along the xy plane as

z = ζ (x, y)

≡ d{cos[(b1 + b2) · r] + cos(b1 · r) + cos(b2 · r)} (5)

instead of z = 0 [Fig. 2(a)]. The elastic body exists
in the region z � ζ (x, y), and the region z > ζ (x, y) is
a vacuum. Here, we set b1 = (2π/a)(1/

√
3, 1), b2 =

(2π/a)(1/
√

3,−1), and d and a are positive constants. This
surface corrugation forms a triangular lattice with a lattice
constant a and primitive reciprocal-lattice vectors b1 and b2.
This system has sixfold rotation and time-reversal symme-
tries. The reason for choosing the triangular lattice, instead
of the honeycomb lattice adopted often in previous works
on topological bands [6,36,41,55], is because in the present
continuum model the number of Fourier components to re-
alize surface corrugation is smaller for the triangular lattice
[see Eq. (5)], making the theory simpler. In the following
we assume d � a so that the corrugation ζ can be treated
perturbatively.

One can construct solutions for eigenmodes of SAWs on
the corrugated surface perturbatively from those on the flat
surface. Because the calculation is lengthy, we describe its
outline here, with its details given in Appendix A. First,
we point out that the corrugation hybridizes the plane-wave
solutions on the flat surface with various wave vectors which
are different from each other by the reciprocal-lattice vectors
of the surface. This method is similar to that applied to a
one-dimensional plasmonic crystal for surface plasmons [56].
Then we obtain solutions of Eq. (1) in the region z � ζ [see
Eqs. (A1)–(A3) in Appendix A]. To determine dispersions and
the coefficients of plane-wave solutions, we impose the stress-
free boundary conditions. Here, the equations of boundary
conditions can be regarded as infinite-dimensional matrix
equations because an infinite number of plane waves are
involved in the equations. In order to solve them analytically,
we focus on the K point in the Brillouin zone. In the lowest
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FIG. 2. Corrugated surface with a triangular lattice, and calculation of its band structure. (a) Profile of the surface corrugation of the elastic
body described by Eq. (5). The figure shows z = ζ (x, y) with the values of the parameters d = 0.1 and a = 4π/

√
3. (b) Brillouin zone of

the model. We call the six corners K j and K ′
j ( j = 1, 2, 3). As reciprocal-lattice vectors, the three points K j are equivalent, meaning that

their differences are reciprocal-lattice vectors, and are called K point in the standard notation for special wave vectors in the Brillouin zone.
Likewise, the three points K ′

j are equivalent and are called K ′ point, but K and K ′ are not equivalent. The � point denotes the origin k = (0, 0).
(c) Schematic picture of the dispersion relation of SAWs when the surface is flat. It is shown in the first Brillouin zone for the triangular lattice.
The dispersion relation of SAWs for the flat surface has a conical structure the apex of which is at the � point denoting the center of the first
Brillouin zone. In the calculation of the dispersion of SAWs around K1 for the corrugated surface, we consider only hybridization of the waves
near the three K points K1, K2, and K3.

order in the perturbation theory at the K point, we only
have to consider the terms from K1 = 4π/(3a)(0, 1), K2 =
4π/(3a)(−√

3/2,−1/2), and K3 = 4π/(3a)(
√

3/2,−1/2),
and we can ignore contribution from other k points (Fig. 2).
In addition, we approximate the ratio of the longitudinal
amplitude to the transverse amplitude to be the value at the
zeroth order of the perturbation because ζ is small [23]. In
other words, we approximate the ratio to be equal to that for a
flat surface. By using the above approximations for boundary
conditions, we can obtain the eigenvectors

A(1)
l = (1, 1, 1), (6)

A(2)
l = (1, η, η2), (7)

A(3)
l = (1, η2, η), (8)

where η = e2π i/3 and the ith components of A(n)
l , A(n)

l,i (i =
1, 2, 3) correspond to the K i points and the superscripts
(n) (n = 1, 2, 3) are labels for the eigenmodes. The corre-
sponding eigenvalues are obtained as

ω
(1)
K =

√
ξ 4 + 2dβ(ββλ − ν2)K

ξ 2 − 2dβ(ββλ + ν)K
ct K, (9)

ω
(2)
K = ω

(3)
K =

√
ξ 4 − dβ(ββλ − ν2)K

ξ 2 + dβ(ββλ + ν)K
ct K (10)

at the K point, where K = 4π/(3a), β =
√

1 − ξ 2, βλ =√
1 − ξ 2λ2, ν = −1 + ξ 2/2, and λ = ct/cl (the details are in

Appendix A). Since the eigenmodes with n = 2 and 3 are
degenerate and form a doublet, we write ω

(D)
K ≡ ω

(2)
K = ω

(3)
K .

Thus, the triply degenerate modes at the K point on the flat
surface are lifted to a singlet (ω(1)

K ) and a doublet (ω(2)
K and

ω
(3)
K ).

C. Solutions away from the K point

In Sec. II B we obtained the eigenmodes at the K point.
In this section, using these eigenmodes at the K point, we
construct eigenmodes away from the K point by the k · p
perturbation theory. Before applying the k · p perturbation
theory we note that, according to Eq. (1), the equation of
motion is non-Hermitian:

ωψ = H̃ψ, H̃ =
(

0 iI3

−ih′
3 0

)
, (11)

where ψ = (u, v)T , with v = u̇ representing the velocity. In
the matrix H̃ , h′

3 is a 3 × 3 matrix with its (i, j) component
given by (h′

3)i j = −c2
t δi j∇2 − (c2

l − c2
t )∇i∇ j , and I3 is the

3 × 3 identity matrix. This non-Hermitian form of the matrix
H̃ is inconvenient for formulating the Berry curvature in
this setup. Hence, we transform the non-Hermitian eigen-
value problem (11) into a generalized Hermitian eigenvalue
problem; this guarantees fundamental properties of the Berry
curvature, such as gauge invariance, which in turn leads to
appearance of the Berry curvature in various physical phe-
nomena.

In order to make the problem Hermitian, we introduce a
new Hermitian matrix γ , so that the eigenvalue equation is
rewritten as γ H̃ψ = ωγψ with γ H̃ being Hermitian. It is not
trivial whether such a Hermitian matrix γ exists, which makes
γ H̃ also Hermitian. In the present case, to deduce the form
of the Hermitian matrix γ , we focus on a conserved quan-
tity in this equation. Using the equation expressed in terms
of the time derivative Hψ = iγ ∂ψ/∂t with H ≡ γ H̃ being
Hermitian, we find that ψ†Hψ is the conserved quantity, i.e.,
d (
∫

dV ψ†Hψ )/dt = 0. Therefore, we identify ψ†Hψ with
the energy density of the elastic body:

ψ†Hψ ∝ E, E = 1

2
ρu̇2 + 1

2

∑
i j

σi jui j . (12)

Since the stress tensor σi j and the strain tensor ui j can be
expressed in terms of the displacement vector u, the energy
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density E can be rewritten in terms of ψ . By ignoring surface
terms, we can rewrite the expression of E :

E = 1

4
ρψ†

(
h′

3 0
0 I3

)
ψ. (13)

Therefore, using the equation of motion h′
3u = −ü, we obtain

Hψ = ωγψ, (14)

H = γ H̃ =
(

h′
3 0

0 I3

)
, γ =

(
0 iI3

−iI3 0

)
(15)

as a new Hermitian form of the equation of motion. It is a
generalized Hermitian eigenvalue equation. The norm of the
wave function is defined as N = ∫

unit cell dV ψ†γψ . Here we
adopt the eigenmodes given by Eqs. (6)–(8) and their norms
are calculated as

N = 9
√

3

4π
a3ω

(
β2 + 1

2β
+ β2

λ + 1

2β3
λ

ν2 + 2ν

β + βλ

)
, (16)

where ω denotes ω
(1)
K or ω

(D)
K (= ω

(2)
K = ω

(3)
K ) depending on

the eigenmodes used in calculating the norm.
We note that in Ref. [38] a similar transformation from a

non-Hermitian eigenvalue problem for phonons in a spring-
mass model to a generalized Hermitian eigenvalue problem is
developed. The formalism in Ref. [38] is basically limited to
models with a discrete degree of freedom within the unit cell,
such as spring-mass models. In contrast, our formalism here
gives a recipe for general phononic systems, including even
continuum systems, and it includes the formalism in Ref. [38]
as a special case. We note that this extension to continuum
systems is nontrivial, because of the infinite number of vari-
ables within the unit cell. Namely, in applying the method in
Ref. [38] to the present case, we need to calculate the square
root of the operator h′

3, and it is technically difficult. Thus, for
continuum systems, only our method is applicable for making
the eigenvalue problem Hermitian.

Thus far, we have obtained the Hermitian eigenvalue equa-
tion (14). Using the eigenmodes at the K point obtained in
Sec. II B, we construct eigenmodes at the points away from
the K point by the k · p perturbation theory. For that purpose,
we express the displacement vector in the Bloch form: u =
Uei(k·r−ωt ). Accordingly, the wave function ψ = (u, vvv)T is
rewritten as ψ = �ei(k·r−ωt ). From

(h′
3u)i =

∑
j

[ − (
c2

l − c2
t

)
(∇i + iki )(∇ j + ik j )

− c2
t (∇ + ik)2δi j

]
Uje

i(k·r−ωt ), (17)

we rewrite Eq. (14) as

H0 |�〉 = ωγ |�〉 , H0 =
(

h3(k) 0
0 I3

)
(18)

where (h3(k))i j = −(c2
l − c2

t )(∇i + iki )(∇ j + ik j ) − c2
t (∇ +

ik)2δi j . Here, we have introduced the bra-ket notation for
�, and the norm of � is given by N = 〈�n(k)|γ |�n(k)〉 ≡∫

unitcell dV �n(k)†γ�n(k). First we set k = K1, and we write
Eq. (18) in the case of k = K1 as

H0

∣∣� (i)
K

〉 = ω
(i)
K γ

∣∣� (i)
K

〉
(i = 1, 2, 3), (19)

H0(K1) =
(

h3(K1) 0
0 I3

)
, (20)

where |� (i)
K 〉 = (U (i),V (i) )T with i = 1, 2, 3 corresponding to

A(i)
l . Physically, V (i) corresponds to the velocity. Equation (19)

has already been solved in Sec. II B.
Here we calculate the dispersion relation slightly away

from the K1 point, by setting k = K1 + δk in the k · p
perturbation theory. When k is away from the K point,
the Hamiltonian deviates from H0, and this deviation is
written as

δH =
(

δh3 0
0 0

)
, (21)

(δh3)i j = −(
c2

l − c2
t

)
i[δki(∇ j + iK1, j ) + δk j (∇i + iK1,i )]

− 2ic2
t δi jδk · (∇ + iK1) (22)

by a straightforward calculation. Here, we study how the
double degeneracy ω

(D)
K ≡ ω

(2)
K = ω

(3)
K at the K point is lifted

away from the K point. Since the unperturbed eigenmodes
|� (2)

K 〉 and |� (3)
K 〉 are degenerated at the K point, we express

the wave function as a linear combination |�(k)〉 = a |� (2)
K 〉 +

b |� (3)
K 〉 with coefficients a and b, and we should solve

(〈
�

(2)
K

∣∣δH
∣∣� (2)

K

〉 〈
�

(2)
K

∣∣δH
∣∣� (3)

K

〉
〈
�

(3)
K

∣∣δH
∣∣� (2)

K

〉 〈
�

(3)
K

∣∣δH
∣∣� (3)

K

〉
)(

a
b

)

= δω(D)(k)N

(
a
b

)
, (23)

where δω(D) is a deviation of the eigenfrequency from
ω

(D)
K . By a direct calculation we obtain 〈� (2)

K |δH |� (2)
K 〉 =

〈� (3)
K |δH |� (3)

K 〉 = 0, 〈� (2)
K |δH |� (3)

K 〉 = (〈� (3)
K |δH |� (2)

K 〉)∗ =
vN (−iδkx + δky) and

δω(D)(k) = ±v|δk|, (24)

where

v = 3
√

3

4N
a2

[
c2

l + β2c2
t

β
+ β2

λc2
l + c2

t

β3
λ

ν2 +
[
(3 − β2)βλ + (

1 + β2
λ

)
β
]
c2

l + [(
3 − β2

λ

)
β + (1 + β2)βλ

]
c2

t

βλ(β + βλ)
ν

]
, (25)

N is given by Eq. (16) and ω in Eq. (16) denotes ω
(D)
K in

Eq. (10). This result shows that the degeneracy at the K point
is lifted when the wave vector is away from the K point, and
has a linear dispersion around the K point. In other words,
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FIG. 3. Schematic pictures of the band structures near the K
point, (a) when the time-reversal symmetry is preserved and (b) when
the time-reversal symmetry is broken. In (b) the Dirac cone splits and
has a gap 2|δω(D)| at the K point.

we have showed emergence of a Dirac cone at the K point
[Fig. 3(a)]. We can apply a similar method to show emergence
of the Dirac cone also at the K ′ point, which is naturally
expected from sixfold rotational symmetry. We note that
in Ref. [46] a surface phononic graphene is experimentally
realized, and Dirac cones are observed at K and K ′ points.
From the symmetry viewpoint, the emergence of the Dirac
cone in our system is the same as the one in the surface
phononic graphene, stemming from the threefold rotation
and time-reversal symmetry, while the lattice structures are
different.

III. TOPOLOGICAL BANDS OF SAWs BY BREAKING
TIME-REVERSAL SYMMETRY

We have seen that there appears double degeneracy at K
and K ′ points. This degeneracy comes from time-reversal
and threefold rotational symmetries. Therefore, when time-
reversal symmetry is broken, this degeneracy can be lifted
and the Dirac cones open a gap. When Dirac cones split by
adding some perturbations and open a gap, appearance of
topological bands and topological edge modes within the gap
is expected. This scenario has been seen in various systems
in electronics [55], photonics [57], phononics [6,9,36,37,41],
and so on.

To show this possibility of realizing topological bands in
the present system of SAWs, we introduce a term that breaks
time-reversal symmetry into the equation of motion Eq. (1),
and investigate behaviors of the Dirac cones at the K and K ′
points. Finally, we calculate the Chern number for each band
to show the topological nature of the bands and topological
edge modes [58].

In Appendices C–E, we explain the details of basic topo-
logical properties of the Chern number used in this section.
We emphasize that these topological properties apply not only
to discrete systems but also to continuum systems like the
present case.

A. Time-reversal symmetry breaking due to the Coriolis force

In order to break time-reversal symmetry, we rotate the
elastic body at a constant angular frequency � around the z

x

y
z

corrugated 
surface

edge mode
topological

FIG. 4. Schematic picture of the setup. The corrugated surface
is within the xy plane, and the system is rotated around the z axis
with the angular velocity �. As a result of breaking of time-reversal
symmetry, the Dirac cones at K and K ′ points will open a gap, and
there will be topological edge modes going around the system in
the counterclockwise way when the lowest bulk band has the Chern
number C− = −1.

axis in the fixed inertial frame (see Fig. 4) [41]. Here, we
assume that � is sufficiently small, and that the centrifugal
force can be neglected, since the centrifugal force has a
quadratic dependence on the angular frequency. Therefore,
in the reference frame rotating together with the elastic body
about the z axis, we add only a term of the Coriolis force to
Eq. (1) and get

ü = c2
t ∇2u + (

c2
l − c2

t

)∇(∇ · u) + 2u̇ × �. (26)

We note that the idea of breaking time-reversal symmetry by
the Coriolis force has been adopted in Ref. [41]. In Sec. II C,
we chose the normalization using the total energy. For that
reason, if the system is changed, we need to redo the normal-
ization. Eventually, we can use the same formula for the norm
N = 〈�n(k)|γ |�n(k)〉 with the same matrix γ as in Sec. II C,
because the Coriolis force does not exert work on the system,
like the Lorenz force in electronic systems. Therefore, we use

(H0 + δV )
∣∣� (i)

K

〉 = (
ω

(i)
K + δω(i)

)
γ
∣∣� (i)

K

〉
, (27)

δV =
(

2iω�3 0
0 0

)
, �3 =

⎛
⎝ 0 � 0

−� 0 0
0 0 0

⎞
⎠, (28)

instead of Eq. (19). Here, δV represents the term breaking
time-reversal symmetry, and δω(i) denotes a corresponding
deviation of the eigenfrequency from ω

(i)
K . We investigate

what happens to the degeneracy at the K point by introducing
the perturbation δV . Therefore, we consider the cases with
i = 2 and 3 and develop degenerate perturbation theory for
the two eigenmodes. Calculations similar to Eq. (23) lead us
to dispersion relations. By straightforward calculations in the
lowest order in ζ , we get

δω(D) = ±ωG, (29)

where

ωG = 9
√

3a2d

N
ω

(D)
K � (30)

represents the gap due to breaking of the time-reversal sym-
metry. The details of derivation of Eq. (30) are in Appendix B.
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Thus, we have showed that the Dirac cones split by introduc-
ing the Coriolis force which breaks time-reversal symmetry
[Fig. 3(b)]. There might also be other means to break the time-
reversal symmetry, for example, by coupling with gyroscopes,
which are spinning tops pinned to the lattice sites. It breaks the
time-reversal symmetry by an inertial force [34,36].

B. Chern number of the bands of SAWs

When the Dirac cones split by breaking the time-reversal
symmetry, topological edge modes are expected to appear. In
order to find out whether they appear, we calculate the Chern
number. For this purpose, we find that in the present case
the Berry connection An(k) and Berry curvature [59] Bn(k)
should be defined as

An(k) ≡ i 〈�n(k)|γ∇k|�n(k)〉 , (31)

Bn(k) ≡ ∇k × An(k), (32)

from the Bloch wave function |�n(k)〉, where n denotes a band
index. Here the wave function �n(k) should be normalized
as 〈�n(k)|γ |�n(k)〉 = 1. Because our system is described
by the generalized eigenvalue problem, the definition of the
Berry connection and Berry curvature is different from that in
ordinary eigenvalue problems, and it contains an extra factor
γ . With this factor, the Berry curvature possesses important
properties such as gauge invariance, similarly to the Berry
curvature in an ordinary eigenvalue problem. It is explained in
detail in Appendix C, where we see that the gauge invariance
comes from the Hermiticity of the problem, i.e., the Hermitic-
ity of the matrices H and γ in Eq. (14).

In two-dimensional systems, the Berry curvature has only
the z component Bn,z(k) ≡ ∂

∂kx
An,y(k) − ∂

∂ky
An,x(k). Then the

Chern number for the nth band is defined as an integral over
the Brillouin zone:

Cn =
∫

BZ

dk
2π

Bn,z(k). (33)

The Chern number is quantized to be an integer, when-
ever the nth band is separated from other bands by a
gap. This quantization for generalized eigenvalue problems
is shown in Appendix D, where we see that the Her-
miticity of the problem plays an essential role. Neverthe-
less, so far we only know the wave functions near the K
point, which seems to be insufficient for calculations of
Eq. (33). Nonetheless, as we see in the following, we can
calculate the Chern number when the gap ωG is nonzero.
For the calculation we note that when the time-reversal
symmetry is preserved the Berry curvature is zero everywhere,
because time-reversal symmetry gives Bn,z(k) = −Bn,z(−k)
and twofold rotational symmetry gives Bn,z(k) = Bn,z(−k).
When the time-reversal symmetry is slightly broken, the gap
ωG is small, and the Berry curvature is sharply concentrated
around the K and K ′ points, as we see in the following.
Therefore, the integral Eq. (33) is well approximated by
contributions around these points.

In order to calculate the Berry curvature, we need to
calculate the eigenvectors away from the K point without
time-reversal symmetry. We develop degenerate perturbation
theory with two perturbation terms, δV and δH : We express
the wave function �(k) at the wave vector away from K as

|�(k)〉 = a |� (2)
K 〉 + b |� (3)

K 〉, and we get( −ωG v(−iδkx + δky)
v(iδkx + δky) ωG

)(
a
b

)
= δω(D)

(
a
b

)
,

(34)

since the eigenvalues of this equation are

δω(D) = ±
√

(v|δk|)2 + ω2
G, (35)

which have a gap 2|ωG| (Fig. 3), in agreement with the results
of the previous sections. The matrix in this equation has the
same form as the massive Dirac Hamiltonian, and hence we
get the Berry curvature

B±,z(δk) = ± v2ωG

2
[
(v|δk|)2 + ω2

G

]3/2 . (36)

Here, B+,z and B−,z represent the z components of the Berry
curvatures of the upper band and the lower band, respec-
tively. By using this we can calculate the Chern number. An
integral of B±,z over a region near the K point is equal to
C±(K ) � ±(1/2)sgn(ωG). The contribution from the K ′ point
is identical with that from the K point because of the sixfold
rotational symmetry. Because the Berry curvature is sharply
concentrated around the K and K ′ points, the resulting Chern
number is

C± = C±(K ) + C±(K ′) � ±sgn(ωG). (37)

While this is an approximated result by evaluating the integral
only near the K and K ′ points, it is in fact exactly equal
to ±sgn(ωG) because C± is quantized to be an integer. We
explain more details of this calculation and related discussion
in Appendix D.

Suppose ωG is positive. Then, with the term breaking time-
reversal symmetry, the lowest band has the Chern number
equal to −1, which means that there appears one branch
of chiral edge modes within the gap, going along the edge
in a counterclockwise way. This results from the bulk-edge
correspondence. The bulk-edge correspondence is well estab-
lished for Hermitian eigenvalue problems, and is shown for
generalized Hermitian eigenvalue problems in Appendix E.
In Fig. 4 we show a schematic picture of the topological edge
modes. These topological edge modes appear along the edge
of the corrugated surface. Irrespective of the detailed shape of
this surface, the edge modes go along the edge of the system.

We have ignored the centrifugal force in our theory. The
centrifugal force gives rise to an expansion of the system in
the radial direction. It gives rise to a spatial variation of mass
density, leading to a spatial variation of the frequency at the
Dirac point. Therefore, if this spatial variation is smaller than
the gap size ωG, the gap is open for the whole system, and
one can safely ignore the centrifugal force. This condition is
discussed in detail in Appendix F, and is obtained as

� � 27
√

3a2dc2
l

NR2
. (38)

As an example, we take R = 1 cm, a = 1 mm, and d =
10 μm. We set the velocities of the acoustic waves as
cl = 4.078 × 104 m/s, ct = 2.180 × 104 m/s from those of
the material Ni [46]. Then this leads to a condition
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to safely neglect the centrifugal force as � � 0.894 ×
104 Hz. Thus if we set � = 102 Hz, the gap size is
ωG = 0.114 × 102 Hz and the frequency of the Dirac point
is ω

(D)
K = 8.48 × 106 Hz.

IV. SUMMARY AND DISCUSSION

In this paper we considered surface acoustic waves on a
corrugated surface of an elastic body, forming a triangular
lattice. First, we calculated eigenmodes at the K and K ′ points
by superposing eigenmodes for a flat surface at wave vectors
which are mutually different by the reciprocal-lattice vectors,
and then calculated those around the K and K ′ points by the
k · p perturbation theory. In the calculation, we rewrote the
non-Hermitian eigenvalue equation into a generalized Her-
mitian eigenvalue equation by noting that the total energy is
conserved. Eventually we showed emergence of Dirac cones
at K and K ′ points. Then in order to open a gap we finally
introduced a term which breaks time-reversal symmetry. Then
the Dirac cones open a gap and the Chern number for the
lowest band takes a nonzero value. Therefore, we showed that
the elastic waves localized on the surface of an elastic body
have topologically protected chiral edge modes. As a result,
one-dimensional chiral elastic waves are realized along the
edge of a surface of a three-dimensional elastic body (Fig. 4).

These proposals can be tested in simulations or in experi-
ments. The important point of the present theory is wide ap-
plicability, with no strict restrictions on materials, frequencies,
and sizes of the unit cell. Moreover, in the present paper we in-
troduced the Coriolis force to break the time-reversal symme-
try, but there might be other means to break the time-reversal
symmetry, for example, by coupling with gyroscopes [34,36].
We emphasize that the significance of the present paper lies

not only in the resulting physical phenomena but also in its
theoretical framework itself. We have established a theory of
Berry curvature and topological bands for general acoustic
waves including continuum systems, with an example of
SAWs on a periodically corrugated surface. In this theory, the
essential step is to transform the non-Hermitian eigenvalue
problem into a generalized Hermitian eigenvalue problem,
and this transformation can be performed by focusing on a
conserved quantity, i.e., the energy. Furthermore, by treating
the corrugation as a perturbation, we can analytically calcu-
late the eigenmodes on the corrugated surface. This shows
for a microscopic mechanism how the band structure for
the periodic system (i.e., SAWs on a corrugated surface) is
determined from that for a free space (i.e., SAWs on a flat
surface). Thus our theory can be applied to any mechanical
systems, including both discrete and continuum systems, and
can serve as a building block for various kinds of topological
band theory for acoustic waves.
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APPENDIX A: CALCULATIONS OF THE EIGENVECTORS
AND EIGENVALUES OF SAWs ON THE PERIODICALLY

CORRUGATED SURFACE

In this Appendix, we show the details of the calculations
for eigenvectors and eigenvalues at the K point in Sec. II B.

As stated in Sec. II B, solutions of Eq. (1) in the region
z � ζ are written as

ux =
∑
n1,n2

kn1n2,x

kn1n2

(
Al,n1n2 eαl,n1n2 z + At,n1n2 eαt,n1n2 z

)
ei(kn1n2 ·r−ωt ), (A1)

uy =
∑
n1,n2

kn1n2,y

kn1n2

(
Al,n1n2 eαl,n1n2 z + At,n1n2 eαt,n1n2 z

)
ei(kn1n2 ·r−ωt ), (A2)

uz =
∑
n1,n2

(
−αl,n1n2

kn1n2

Al,n1n2 eαl,n1n2 z − kn1n2

αt,n1n2

At,n1n2 eαt,n1n2 z

)
iei(kn1n2 ·r−ωt ), (A3)

by hybridizing the plane-wave solutions on the flat sur-
face with various wave vectors which are different from
each other by the reciprocal-lattice vectors of the surface,
where kn1n2 = |kn1n2 |, kn1n2 = k + Gn1n2 , Gn1n2 = n1b1 +
n2b2 is a reciprocal-lattice vector, αl,n1n2 =

√
k2

n1n2
− ω2/c2

l ,

and αt,n1n2 =
√

k2
n1n2

− ω2/c2
t . In the summation, n1 and n2 run

over integers. Al,n1n2 and At,n1n2 are constants which will be
determined later. Henceforth, we write n1 and n2 together as n
for simplicity.

To determine dispersions and the coefficients Al,n

and At,n, we impose the stress-free boundary conditions∑
j σi je j |z=ζ = 0 (i = 1, 2, 3). We can write e as e =

(−ζx,−ζy, 1)[(ζx )2 + (ζy)2 + 1]−1/2, where ζx = ∂ζ/∂x and

ζy = ∂ζ/∂y. Hence, the boundary conditions are written as

[−ζxσxx − ζyσxy + σxz]z=ζ = 0, (A4)

[−ζxσyx − ζyσyy + σyz]z=ζ = 0, (A5)

[−ζxσzx − ζyσzy + σzz]z=ζ = 0. (A6)

By writing σi j in terms of the displacement vector u given
by Eqs. (A1)–(A3), we obtain the dispersion relation in the
following. In the calculation, we use Fourier expansion in the
xy plane with r = (x, y),

eαnζ =
∑

m

CGm (αn)eiGm·r, (A7)

CGm (αn) = 1

S

∫
unit cell

d2r eαnζ e−iGm·r, (A8)
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and its derivatives with respect to x and y:

ζxeαnζ =
∑

m

i
Gm,x

αn
CGm eiGm·r, (A9)

ζyeαnζ =
∑

m

i
Gm,y

αn
CGm eiGm·r. (A10)

Here, Gm = m1b1 + m2b2 and m = (m1, m2), the integration
in Eq. (A8) is performed in the surface unit cell, S denotes an
area of the surface unit cell, and αn denotes αl,n or αt,n. Next
we define integers pi = ni + mi (i = 1, 2), and replace

∑
m

with
∑

p. Then, Eqs. (A4)–(A6) are rewritten as

0 =
∑

n

1

kn

(
1

αl,n

{
ω2(kp,x − kn,x ) + 2c2

t

[
α2

l,nkp,x + kn,y(kn × kp)z
]}

CGp−n (αl,n)Al,n

+ kn,x

αt,n

[ − ω2 + 2c2
t kn · kp

]
CGp−n (αt,n)At,n

)
, (A11)

0 =
∑

n

1

kn

(
1

αl,n

{
ω2(kp,y − kn,y) + 2c2

t

[
α2

l,nkp,y + kn,x(−kn × kp)z
]}

CGp−n (αl,n)Al,n

+ kn,y

αt,n

[ − ω2 + 2c2
t kn · kp

]
CGp−n (αt,n)At,n

)
, (A12)

0 =
∑

n

1

kn

{[
ω2 − 2c2

t kn · kp
]
CGp−n (αl,n)Al,n + 1

α2
t,n

[
k2

nω
2 − c2

t kn · kp
(
α2

t,n + k2
n

)]
CGp−n (αt,n)At,n

}
, (A13)

which are to be satisfied for all integers p j = 0,±1,±2, . . . .

Equations (A11)–(A13) can be regarded as infinite-
dimensional matrix equations. In order to solve them ana-
lytically, we focus on the K point in the Brillouin zone. At
the K point, when we perturbatively switch on the surface
corrugation, the plane wave at K1 = 4π/(3a)(0, 1) mixes
with those at other K points K2 = 4π/(3a)(−√

3/2,−1/2)
and K3 = 4π/(3a)(

√
3/2,−1/2) (Fig. 2). In the lowest order

in the perturbation theory, we have to consider the terms only
from K1, K2, and K3, and we can ignore contribution from
other k points in the summations in Eqs. (A11)–(A13). In ad-
dition, we approximate the ratio of the longitudinal amplitude
to the transverse amplitude to be the value at the zeroth order
of the perturbation because ζ is small [23]. In other words,
we approximate the ratio to be equal to that for a flat surface.
This approximation indicates that At,n � (−1 + ξ 2/2)Al,n ≡
νAl,n. Furthermore, because the corrugation is treated as a
perturbation, we can approximate Eq. (A8) as

CGm (αn) = δm,0 + αn

S

∫
d2r ζ (r)e−iGm·r. (A14)

Here, we can safely set C0 = 1, because the second term of
Eq. (A14) represents the average of the height of the surface,
and it can be set to zero since physics is not affected by
it. Moreover from Eq. (A14) we obtain Cb1 (α) = Cb2 (α) =
αd/2. By using these approximations for Eq. (A13), we can
obtain the eigenvectors

A(1)
l = (1, 1, 1), (A15)

A(2)
l = (1, η, η2), (A16)

A(3)
l = (1, η2, η), (A17)

where η = e2π i/3, and the eigenvalues

ω
(1)
K =

√
ξ 4 + 2dβ(ββλ − ν2)K

ξ 2 − 2dβ(ββλ + ν)K
ct K, (A18)

ω
(2)
K = ω

(3)
K =

√
ξ 4 − dβ(ββλ − ν2)K

ξ 2 + dβ(ββλ + ν)K
ct K (A19)

at the K point, where K = 4π/(3a), β =
√

1 − ξ 2, βλ =√
1 − ξ 2λ2, ν = −1 + ξ 2/2, and λ = ct/cl . The components

of A(n)
l , A(n)

l,i (i = 1, 2, 3), correspond to the Ki points and the
superscripts (n) (n = 1, 2, 3) are labels for the eigenmodes.
Since the eigenmodes with n = 2 and 3 are degenerate and
form a doublet, we write ω

(D)
K ≡ ω

(2)
K = ω

(3)
K . Thus, the triply

degenerate modes at the K point on the flat surface are lifted
to a singlet (ω(1)

K ) and a doublet (ω(2)
K and ω

(3)
K ).

APPENDIX B: CALCULATIONS OF THE BAND GAP BY
THE CORIOLIS FORCE

In this Appendix, we calculate the gap by the Coriolis
force, in the lowest order in the rotation frequency � and in
the corrugation d . The eigenvalue equation with the Coriolis
force is given by

(H0 + δV )
∣∣� (i)

K

〉 = (
ω

(i)
K + δω(i)

)
γ
∣∣� (i)

K

〉
, (B1)

δV =
(

2iω�3 0
0 0

)
, �3 =

⎛
⎝ 0 � 0

−� 0 0
0 0 0

⎞
⎠. (B2)

Here, δV represents the term breaking time-reversal sym-
metry, and δω(i) denotes a corresponding deviation of the
eigenfrequency from ω

(i)
K . We investigate what happens to the

degeneracy at the K point by introducing the perturbation
δV . Therefore, we consider the cases with i = 2 and 3 and
develop degenerate perturbation theory for the two eigen-
modes. Calculations similar to Eq. (23) lead us to dispersion
relations. To get the band gap ωG in Eq. (30), we calcu-

late 〈� (i)
K |δV |� ( j)

K 〉 = ∫
unit cell dV (� (i)

K )
†
δV �

( j)
K (i, j = 2, 3).

Here, the integral in the unit cell is given by
∫

unit cell dV =∫
dS

∫ ζ (r)
−∞ dz, where

∫
dS denotes the integration over the

unit cell in the xy plane. In the calculation, we first note
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that in the zeroth order in the corrugation d this inte-

gral vanishes:
∫

dS
∫ 0
−∞ dz(� (i)

K )
†
δV �

( j)
K = 0 for all values

of i and j. In the first order in d , the upper end of
the integral over z becomes ζ (r), leading to a nonzero
result. Then, we get 〈� (3)

K |δV |� (3)
K 〉 = − 〈� (2)

K |δV |� (2)
K 〉 =

ωGN , 〈� (2)
K |δV |� (3)

K 〉 = 〈� (3)
K |δV |� (2)

K 〉 = 0, and

ωG = 9
√

3a2d

N
ω

(D)
K �, (B3)

which is identical with Eq. (30). Thus the gap appears in the
order d1�1.

APPENDIX C: BERRY CURVATURE FOR GENERALIZED
HERMITIAN EIGENVALUE PROBLEMS

In the main text, we transformed the non-Hermitian eigen-
value problem H̃ψ = ωψ into the generalized Hermitian
eigenvalue problem (14), i.e., Hψ = ωγψ . In the Bloch form
it is rewritten as Eq. (18), i.e.,

H0� = ωγ�. (C1)

Here H0 and γ are both Hermitian. One of the purposes of
this transformation into a generalized Hermitian eigenvalue
problem is that it is convenient for formulating the Berry cur-
vature. In order to define the Berry curvature in non-Hermitian
eigenvalue problems, one needs to introduce two types of
eigenvectors, i.e., left and right eigenvectors as was done in
Ref. [3], whereas in Hermitian eigenvalue problems there is
no need to distinguish between left and right eigenvectors.

Nonetheless, the other and more important purpose of this
transformation from a non-Hermitian eigenvalue problem into
a generalized Hermitian eigenvalue problem is to ensure that
the Berry curvature is well defined, and that it possesses
important necessary properties as Berry curvature, vital for
physical phenomena as we explain in the following.

One of the important properties of the Berry curvature is
gauge invariance, which guarantees that the Berry curvature is
an observable. Because the wave functions are normalized as
N = 〈�n(k)|γ |�n(k)〉, the eigenvector for Eq. (C1) can have
a gauge degree of freedom �n(k) → � ′

n(k) ≡ eiθ (k)�n(k),
where θ (k) is an arbitrary real function of the wave vector
k. Then one can easily show that the Berry connection and the
Berry curvature are transformed as

A′
n = i 〈� ′

n(k)|γ∇k|� ′
n(k)〉

= i 〈� ′
n(k)|γ∇k|� ′

n(k)〉 − ∇θ (k)

= An − ∇kθ, (C2)

and B′
n,z(k) = Bn,z(k), Thus the Berry curvature is invariant

under gauge transformation; it qualifies the Berry curvature to
be an observable.

It is known that the Berry curvature affects dynamics of
a wave packet through the semiclassical equation of mo-
tion [60,61]

ṙ = −k̇ × Bn(k) + ∂ωn

∂k
. (C3)

In the present case of two-dimensional systems, Bn(k) =
(0, 0, Bn,z(k)). This semiclassical equation of motion has been

formulated and widely used for Hermitian eigenvalue prob-
lems [60]. In Ref. [61], this equation of motion is shown to be
applicable also to generalized Hermitian eigenvalue problems.
In its proof, conservation of the norm N = 〈�n(k)|γ |�n(k)〉
coming from the Hermiticity of the problem is essential [61].
Physically, the Hermiticity guarantees that in time evolution
the wave packet never disappears and it is meaningful to
consider its equation of motion.

In addition, in showing the existence of topological edge
modes in systems with a nonzero Chern number as explained
in Appendix E, the Hermiticity of the problem is essential.
Thus, in various physical phenomena governed by the Berry
curvature, the Hermiticity of the eigenvalue problem is re-
quired.

APPENDIX D: QUANTIZATION OF THE CHERN NUMBER
FOR GENERALIZED HERMITIAN EIGENVALUE

PROBLEMS

As discussed in the main text, when the nth band is
separated from other bands with a nonzero gap, the Chern
number for the nth band

Cn ≡
∫

BZ

dk
2π

Bn,z(k) (D1)

is quantized as an integer [58,62], and it represents the number
of branches of chiral edge modes along the edge of the system
in a clockwise way [63], as explained in detail in Appendix E.
This quantization has been well studied in the context of
integer quantum Hall systems of electrons, where the gov-
erning equation is the Schrödinger equation, i.e., a Hermitian
eigenvalue equation. In this paper, we are considering the
generalized Hermitian eigenvalue problem (C1), not a simple
Hermitian eigenvalue problem. Therefore, in this Appendix,
we show the quantization of the Chern number for generalized
Hermitian eigenvalue problems, which is a generalization of
the proof for usual Hermitian eigenvalue problems. In fact it
was shown in the context of optics [57], and here we show this
quantization in generalized eigenvalue problems described by
Eq. (C1), which can also apply to optics.

Here we show the quantization of the Chern number. First,
if we can take a gauge which covers the entire Brillouin zone,
i.e., if we can choose a wave function �n(k) which is smooth
over the entire Brillouin zone, we can use the Stokes theorem
to show that

Cn ≡
∫

BZ

dk
2π

Bn,z(k) =
∮

∂ (BZ)

dk
2π

· An(k). (D2)

Here BZ denotes the two-dimensional Brillouin zone, and
∂ (BZ) denotes its one-dimensional boundary. The above for-
mula is a contour integral along the boundary of the Brillouin
zone [see Fig. 5(a)]. Thanks to the Brillouin-zone periodicity,
this vanishes. On the other hand, in some systems, one cannot
choose a single gauge which covers the whole Brillouin zone
preserving the Brillouin-zone periodicity. Then the Brillouin
zone should be divided into regions I and II, in each of which
the gauge is defined smoothly [see Fig. 5(b)]. Let uI

n(k) and
uII

n (k) denote the wave functions in regions I and II, respec-
tively, and let AI(k) and AII(k) denote the corresponding Berry
connection. Then, the Stokes theorem leads to the following
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II

I

C

kx

ky

BZ

kx

ky(a) (b)

FIG. 5. Calculation of the Chern number as an integral over the
Brillouin zone. (a) When a single gauge is chosen for the entire
Brillouin zone, the integral of the Berry curvature is rewritten as a
contour integral along the boundary of the Brillouin zone, leading to
Cn = 0. (b) In some systems, one should divide the Brillouin zone
into two regions I and II, in each of which the gauge is defined
smoothly.

result:

Cn ≡
∫

BZ

dk
2π

Bn,z(k) =
∑
i=I,II

∫
i

dk
2π

Bn,z(k)

=
∮

C

dk
2π

· [AII
n (k) − AI

n(k)
]
, (D3)

where C is the loop forming the boundary between the two
regions I and II. On the loop C, the wave functions �I

n(k) and
�II

n (k) are different by a phase, �I
n(k) = eiθn (k)�II

n (k), where
θn(k) is real. Then it yields AII

n (k) − AI
n(k) = ∂θn

∂k , and

Cn =
∮

C

dk
2π

· ∂θn

∂k
= 1

2π
[θn]C, (D4)

where [θn]C represents a change of θn in going around the loop
C. Because of the single-valuedness of �i

n (i = I, II) in the
respective regions, this change of θn is an integer multiple of
2π . Thus we conclude that the Chern number is quantized as
an integer for generalized Hermitian eigenvalue problems. We
note that the Hermiticity guarantees the gauge invariance of
the Berry curvature, which in turn means gauge invariance of
the Chern number.

Next we introduce a parameter m into the Hamiltonian
H (k), and suppose we change m continuously. We focus on
the Chern number Cn of the nth band, and consider a change
of the value of Cn as we change the parameter m. We assume
that the nth band is separated from other bands by a gap; then
the quantization of the Chern number means that the Chern
number cannot change continuously, and we conclude that
the Chern number remains constant. This is a fundamental
property of the Chern number as a topological number.

This property of the Chern number upon a change of the
parameter m helps us to calculate the Chern number analyti-
cally in some cases, without evaluating the Chern number as
an integral over the Brillouin zone. In the present system of
SAWs, we regard the frequency ωG, representing the breaking
of time-reversal symmetry, as the external parameter m. Then
as long as ωG remains positive, the gap is open, and the Chern
number for the lowest band remains constant. Therefore, to
evaluate the Chern number for any positive values of ωG,
we can set ωG to be a very small positive value to evaluate

the Chern number. In that case, the distribution of the Berry
curvature (36) is concentrated within the small region |δk| <

|ωG|/v around the K and K ′ points, and the integral of the
Berry curvature is well approximated by the integral around
the K and K ′ points. As ωG becomes smaller, the distribution
of the Berry curvature (36) becomes sharper and its peak
becomes larger, while its integral remains constant. Because
the Berry curvature for ωG = 0 is zero everywhere because of
the sixfold rotation and time-reversal symmetries, the result
for the Chern number (37) asymptotically becomes exact
when ωG approaches positive infinitesimal. Thus, when ωG

is small the Chern number for the lowest band is −1, and it
means that the Chern number remains −1 even when ωG takes
any positive value.

APPENDIX E: BULK-EDGE CORRESPONDENCE FOR
GENERALIZED HERMITIAN EIGENVALUE PROBLEMS

It is well established that the Chern number represents a
number of branches of chiral edge modes along the edge of
the system in a clockwise way [63]. This is a seminal result
known as bulk-edge correspondence, in the context of the
integer quantum Hall effect in electronic systems, and can be
explained in various ways. This result is not limited to elec-
tronic systems but it holds also for any systems described by
Hermitian eigenvalue equations, as has been applied for sys-
tems with various particles and quasiparticles [3,57,64–66].

To be precise, when the band structure has a gap, the
sum ν of the Chern numbers of the bands below the gap is
equal to the number of branches of edge modes inside the
gap, which goes around the system in a clockwise way [see
Fig. 6(e)]. Supposing we consider a band structure in Fig. 6(a)
and focus on the band gap between the N th and (N + 1)th
bands, ν is given by ν = ∑N

n=1 Cn. If ν is a negative integer,
|ν| = −ν represents the number of branches of edge modes
in a counterclockwise way. Because the Chern number is
determined by the bulk wave functions, this correspondence is
called bulk-edge correspondence, as can be shown by Laugh-
lin’s gedanken experiment [63]. It is originally shown in the
context of integer quantum Hall effect in electronic systems.
Nonetheless, it is not limited to electronic systems, but is
common for various particle systems described by Hermitian
eigenvalue equations.

Following the idea of Laughlin’s gedanken experiment,
here we show bulk-edge correspondence for generalized Her-
mitian eigenvalue problems, including SAWs in this paper.
Consider a two-dimensional system along the xy plane, de-
scribed by the generalized Hermitian eigenvalue problem
Eq. (C1). Along the x direction, we set an open boundary
condition, and along the y direction we set a boundary con-
dition with a eiφ (φ: constant) phase change when we go
across the boundary in the +y direction. In particular, φ = 0
represents a periodic boundary condition. Thus the system can
be thought of as an open cylinder [Fig. 6(b)], where wave
functions change by a phase eiφ across the broken line. In
this setup, we consider a change in the position of the particle
upon an adiabatic change of the phase φ from zero to 2π .
In electronic systems, it can be conveniently described in
terms of a polarization, using the so-called modern theory of
polarization [67–69].
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FIG. 6. Setup of Laughlin’s gedanken experiment. (a) Bulk band
structure. (b) Schematic picture representing the boundary condition
imposed in the system. (c-1–c-3) Flows of the modes under the
change of the phase twist φ in the boundary conditions. The panels
represent the cases (c-1) in the absence of modes in the gap, (c-2)
in the presence of a branch with positive dispersion, and (c-3) in
the presence of a branch with negative dispersion. In (c-1)–(c-3),
the red dots represent the modes allowed by the boundary condition
below ωF , and we put one particle per eigenmode below ωF , i.e.,
per red dot. By changing φ the allowed modes flow along the bands
towards the directions specified by red arrows. After one cycle of
φ from zero to 2π , the set of the red dots returns to the original
one, except for (c-2) where the number of allowed modes decreases
by one, and for (c-3) where it increases by one. (d) Edge modes
in the cylinder geometry, the existence of which is shown from the
Laughlin gedanken experiment. (e) Edge mode in the open geometry.

Similarly to electronic systems [67–69], when we consider
this system as a one-dimensional system, one can construct
a Wannier orbital which is localized around x = R in the x
direction, where R is a lattice translation vector. From the
Wannier orbital, one can calculate an expectation value of the
center of the particle distribution as

xn = ax

2π

∫ 2π/ax

0
dkx

〈
�n,kx

∣∣iγ ∂

∂kx

∣∣�n,kx

〉
, (E1)

where ax is the unit-cell size along the x direction. We here
note that in the present system of SAWs the center of the dis-
tribution is defined with respect to the energy density, which
leads to the extra factor γ in Eq. (E1). The normalization is
taken as 〈�n,kx |γ |�n,kx 〉 = 1.

Suppose we consider band structure with a gap, and let N
denote the number of bands below the gap considered. We
fix one arbitrary value of a frequency ωF inside the gap as a
reference frequency, and then put one particle per each mode
below this reference frequency ωF . For fermions it is naturally
realized by setting the Fermi energy inside the gap and setting
the temperature to be zero. For bosons such as phonons, it is an

artificial procedure only for a proof of existence of topological
edge modes. Then, the sum of the positions of the particles
divided by the volume is

Px =
N∑

n=1

1

2π

∫ 2π

0
dkx

〈
�n,kx

∣∣iγ ∂

∂kx

∣∣�n,kx

〉
. (E2)

Note that for fermions it is equal to the polarization divided
by the electronic charge.

Let us change the phase φ describing the boundary condi-
tion. Then the perturbation theory tells us how the “polariza-
tion” Px changes. Due to the translational symmetry along ky,
the Bloch wave functions �n,kx are labeled also by the wave
number along ky, and are written as |�n,k〉 with k = (kx, ky).
Let Ly denote the size of the system along the y direction. At
φ = 0, ky is quantized as ky = 2π j/Ly ( j: integer). Then the
phase twist φ shifts the quantized values of ky to

ky = 2π j − φ

Ly
( j : integer). (E3)

Then the change of the polarization Px upon the change of φ

is given by

δPx = iδφ
N∑

n=1

∫ 2π/ax

0

dkx

2π

∑
j

[〈
∂�n,k

∂φ

∣∣∣∣γ
∣∣∣∣∂�n,k

∂kx

〉
−
〈
∂�n,k

∂kx

∣∣∣∣γ
∣∣∣∣∂�n,k

∂φ

〉]
(E4)

where ky is given by Eq. (E3). By integrating with respect to
φ, we get a net change of the polarization

ν ≡ �Px = i
N∑

n=1

∫
BZ

dk
2π[〈

∂�n,k

∂ky

∣∣∣∣γ
∣∣∣∣∂�n,k

∂kx

〉
−
〈
∂�n,k

∂kx

∣∣∣∣γ
∣∣∣∣∂�n,k

∂ky

〉]

=
N∑

n=1

∫
BZ

dk
2π

Bn,z(k) =
N∑

n=1

Cn, (E5)

where BZ denotes the two-dimensional Brillouin zone. It is
an integer because the Chern number is an integer. Namely,
in this change of φ, ν particles are transferred along the x
direction.

Let us consider a case with ν being a nonzero integer.
It means that the number of particles transferred along the
x direction is equal to ν, and particle distribution in real
space is changed. Now if we assume the spectrum is gapped
over the system on the cylinder, as shown in Fig. 6(c-1), the
change of the boundary condition cannot change the particle
distribution, because the shift of the allowed values of ky

gives the particle distribution back to the original one [see
Fig. 6(c-1)]. Therefore, the band structure for the cylinder
system should have modes inside the gap. Suppose there is a
branch with a positive dispersion in the gap [see Fig. 6(c-2)];
then the number of particles changes by −1 by the change of
φ. Instead, if there is a branch with a negative dispersion in
the gap [see Fig. 6(c-3)], the number of particles changes by
+1. Note that such branches in the gap should be localized
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FIG. 7. Haldane model and its band structures. (a) Honeycomb
lattice. The unit cell consists of two sublattice sites, A and B,
represented by solid and open circles, respectively. (b, c) Band
structures with zigzag-edge ribbon geometry for (b) t1 = 1, t2 =
0.1, M = 0.0166, ϕ = 1.57 and (c) t1 = 1, t2 = 0.1, M = 0.7, ϕ =
1.57. The Chern number for the lower band is (b) ν = 1 and (c) ν =
0. (d) Schematic picture of edge modes in (b). The edge modes shown
in blue and red lines correspond to those in (b) with the same colors.

at edges of the cylinder, because the bulk band is assumed
to have a gap. Thus, to realize the nonzero change of Px

(i.e., �Px = ν �= 0), the left end of the cylinder should have ν

edge modes with positive velocity ( ∂ω
∂ky

> 0) and the right end
should have ν branches of edge modes with negative velocity
( ∂ω
∂ky

< 0), as illustrated in Fig. 6(d). This physically means
that for a two-dimensional system in an open geometry there
should be chiral edge modes, going along the system edge in a
clockwise way, and the number of branches of edge modes is
ν [see Fig. 6(e)]. When ν is negative, it means that the number
of counterclockwise branches of edge modes is |ν| = −ν.

We emphasize that the discussions in Appendices C–E can
be applied both to discrete systems and to continuum systems
including our system in the main text. In the discussions in
Appendices C–E, we did not assume the system to be discrete.

One can numerically demonstrate this bulk-edge corre-
spondence in various models. As an example, we show it for
the Haldane model [55] on the honeycomb lattice, one of the
well-known models for the quantum Hall systems. Here, we
show existence of the topological chiral edge modes when the
Chern number is nonzero. It is a tight-binding model on the
honeycomb lattice (see Fig. 7), with the Hamiltonian

HHaldane = t1
∑
〈i, j〉

c†
i c j + t2

∑
〈〈i, j〉〉

e−iμi jφc†
i c j + M

∑
i

ξic
†
i ci,

(E6)

where ci and c†
i are annihilation and creation operators of

particles at the site i, respectively. In the summations, 〈i, j〉
represents any nearest-neighbor pairs of sites i and j, and
〈〈i, j〉〉 represents any next-nearest-neighbor pairs of sites i
and j. Particles can be fermions or bosons, and the following
results are the same for both cases. For simplicity in explana-
tion, fermions are assumed here. In Eq. (E6), t1, t2, M, and φ

are real, and μi j = sgn(d̂1 × d̂2)z = ±1, where d̂1 and d̂2 are
unit vectors along the two nearest-neighbor bonds connecting
between next-nearest-neighbor pairs i and j. Thus the next-
nearest-neighbor hopping t2e±iφ is complex, with its phase
being eiφ (e−iφ) for a clockwise (counterclockwise) hopping
in the hexagonal plaquette. ξi represents a staggered on-site
potential, and takes values ±1 depending on the ith sites being
in the A or B sublattices, respectively.

In this model, phases with ν = 1, 0, and −1 are realized
by changing the parameters, when the Fermi energy is set
to be EF = 0. In Figs. 7(b) and 7(c) we show our numerical
results of band-structure calculation for a ribbon geometry;
namely, the system is infinitely long in the x direction and
has a finite width in the y direction, and the edges are
zigzag edges. In (b) and (c) the parameter values are (b)
t1 = 1, t2=0.1, M = 0.0166, ϕ = 1.57 and (c) t1 = 1, t2 =
0.1, M = 0.7, ϕ = 1.57, which yields the Chern number to
be (b) ν = 1 and (c) ν = 0. While the bulk bands have a gap
around EF = 0 in both cases, there are two branches inside
the gap in (b), while there is no branch in the gap in (c). By
analyzing the distribution of these in-gap branches, one can
verify that one branch is localized at the lower edge while
the other is at the upper edge, and they constitute clockwise
edge modes; they are nothing but the topological edge modes
expected from the Chern number ν = 1, as schematically
shown in Fig. 7(d).

APPENDIX F: EFFECT OF THE CENTRIFUGAL FORCE

In the main text, we neglected the effect of the centrifugal
force. In this Appendix we evaluate the condition to safely
neglect it. The equation of motion with the centrifugal force
term is written as

ü = c2
t ∇2u + (

c2
l − c2

t

)∇(∇ · u) + 2u̇ × �

−� × (� × r). (F1)

Here we assume the system is a disk in the xy plane with ra-
dius R, and the thickness along z is sufficiently larger than the
penetration depth of the SAW. Let the system rotate around the
z axis, and we take � = (0, 0,�), r = (x, y, z), ρ = (x, y, 0),
and ρ = |ρ| =

√
x2 + y2. Then, due to the centrifugal force,

the system is stretched along the radial direction, parallel to ρ.
Thus, even in the absence of acoustic waves, the displacement
u becomes nonzero and is written as

u = u(ρ)ρ̂ (F2)

where ρ̂ = ρ/ρ is a unit vector along ρ, and u(ρ) is a function
of ρ the form of which is to be determined. This displacement
u(r) is a static solution of Eq. (F1), leading to

0 = c2
l

d2u

dρ2
+ �2ρ (F3)
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with boundary conditions u(ρ = 0) = 0 and du
dρ

(ρ = R) = 0,
meaning that the system has no stress at the boundary. Its
solution is

u = �2

6c2
l

(3R2ρ − ρ3) (0 � ρ � R). (F4)

It is the static displacement in the radial direction, and it is
positive as expected. This leads to the expansion of the volume
element with a ratio

χ (ρ) ≡ u

ρ
+ du

dρ
= �2

3c2
l

(3R2 − 2ρ2) (0 � ρ � R), (F5)

because the volume element increases from dV ≡ ρdρdθdz
to dV ′ ≡ (ρ + u)d (ρ + u)dθdz ∼ (1 + u

ρ
+ du

dρ
)dV . It has a

maximum value χ (0) = �2R2

c2
l

at ρ = 0 and a minimum value

χ (R) = �2R2

3c2
l

at ρ = R. This expansion gives rise to a decrease

of the mass density of the medium by a ratio (1 + χ )−1, and

the velocities of the acoustic waves will increase by a ratio

(1 + χ )1/2 ∼ 1 + 1

2
χ. (F6)

Therefore, the frequency of the Dirac point becomes (1 +
χ (ρ)/2)ω(D)

K , and it depends on ρ. When this spatial variation
of the frequency is much smaller than the size of the gap by
the Coriolis force, ωG, one can safely ignore the centrifugal
force. Therefore its condition is given by

1

2
[χ (0) − χ (R)]ω(D)

K = �2R2

3c2
l

ω
(D)
K � ωG. (F7)

If we substitute the formula for ωG in Eq. (30), we get

�2R2

3c2
l

ω
(D)
K � 9

√
3a2d

N
ω

(D)
K � (F8)

⇒ � � 27
√

3a2dc2
l

NR2
. (F9)
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