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Second-layer crystalline phase of helium films on graphite
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We investigate theoretically the existence at low temperature of a commensurate (4/7) crystalline phase of a
layer of either He isotope on top of a 4He layer adsorbed on graphite. We make use of a recently developed,
systematically improvable variational approach which allows us to treat both isotopes on an equal footing. We
confirm that no commensurate crystalline second layer of 4He forms, in agreement with all recent calculations.
Interestingly and more significantly, we find that even for 3He there is no evidence of such a phase, as the system
freezes into an incommensurate crystal at a coverage lower than that (4/7) at which a commensurate one has
been predicted and for which experimental claims have been made. Implications for the interpretation of recent
experiments with helium on graphite are discussed.
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I. INTRODUCTION

The low-temperature phase diagram of helium on graphite
continues to intrigue both experimenters and theorists alike.
Although the subject is now a few decades old [1–10] and de-
spite a considerable amount of investigation, some intriguing
aspects have not yet been fully elucidated and remain highly
debated. A chief example is the existence of a commensurate
crystalline phase (henceforth referred to as 4/7) in the second
layer of 4He, with a

√
7 × √

7 partial registry with respect to
the first layer. Such a phase, occurring at coverages interme-
diate between the low-density superfluid and the high-density
incommensurate crystal, was first proposed by Greywall and
Busch [9,10] based on heat capacity measurements. Crowell
and Reppy [11,12] in turn suggested that a “supersolid”
phase [13], simultaneously displaying crystalline order and
dissipationless flow of 4He atoms, may exist at or near such
a registered phase.

To our knowledge, no direct, unambiguous experimental
confirmation of the 4/7 phase of 4He on graphite has yet
been provided. Furthermore, the most recent and reliable the-
oretical studies, namely, first-principles computer simulations
based on state-of-the-art quantum Monte Carlo (QMC) meth-
ods and realistic microscopic atom-atom and atom-surface
potentials [14,15], have failed to confirm its existence, show-
ing instead that the system remains in the superfluid phase at
low temperature, at commensurate coverage. Nonetheless, the
presence of such a phase still constitutes a working assump-
tion in recent experimental studies of helium films adsorbed
on graphite, where the contention of possible “supersolid”
behavior, defined as the coexistence of two different types
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of order in a single homogeneous phase, has been reiterated
[16,17].

Assuming a two-dimensional (2D) first-layer density be-

tween 0.118 and 0.122 Å
−2

[8,16], one ends up with a 2D

density for the 4/7 upper layer close to 0.07 Å
−2

, i.e., very
close to the estimated freezing density of 4He in two dimen-
sions [18]. However, the fluid phase of an adsorbed layer
can be stable at significantly higher density than in strictly
two dimensions, as atomic motion in the transverse direction
(mostly quantum mechanical in character at low temperature)
acts to soften effectively the repulsive core of the interatomic
potential, ultimately responsible for solidification (see, for
instance, Ref. [19]). Indeed, first-principles simulations yield

evidence of second-layer freezing at a density of ∼0.076 Å
−2

in the low-temperature (i.e., T → 0) limit [14]. In any case,
clearly, caution should be exercised, as the physical proximity
of all these putative phases means that the resolution of small
energy differences is likely required in order to map out the
phase diagram correctly.

No controversy exists as to whether the second layer is
crystalline at 4/7 commensurate coverage if it is made of
atoms of the lighter (3He) isotope (the first layer is still
4He atoms); indeed, in this case the experimental evidence is
fairly robust (see, for instance, Ref. [20]). This is not entirely
surprising, however, as 3He is well known to freeze at lower
density than 4He, in spite of its lighter mass; in particular,
theoretical studies [21] and experimental evidence [22] concur

in assigning a 2D freezing density to 3He of ∼0.06 Å
−2

. In
this case as well, one may expect an adsorbed layer to freeze
at higher density, and interesting questions arise, namely,
(a) whether an intermediate, registered phase can intervene
between the fluid and the incommensurate crystal and (b) how
one can unambiguously identify a commensurate phase if it
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occurs inside a range of coverage in which an incommensurate
one is thermodynamically stable.

Clearly, a cogent test of a reliable theoretical approach
to the investigation of this system consists of reproducing
the observed behavior of a second layer of either helium
isotope, offering useful insight into why they might display
different physics. The application of QMC techniques to a
Fermi system is, of course, hampered by the well-known
sign problem; however, given the crucial role likely played
by quantum statistics [23], it is necessary that its effect be
included as accurately as possible.

In this paper, we describe results of a theoretical study
of the thermodynamic stability of a commensurate 4/7 crys-
talline phase of the second layer of helium on graphite at tem-
perature T = 0. We assume a first layer of 4He, whereas for
the second layer we consider both helium isotopes. We used
the accepted, standard model of a helium film adsorbed on
graphite based on realistic microscopic potentials to describe
the interaction among helium atoms, as well as between the
helium atoms and the graphite substrate.

Our calculations make use of a recently developed vari-
ational approach [24] based on an iterative backflow renor-
malization, which has been shown to yield quantitatively very
accurate ground-state estimates for superfluid 4He (virtually
exact in this case) and for 3He of quality at least comparable
to that afforded by the most sophisticated fixed-node diffu-
sion Monte Carlo (DMC) calculations. The advantage of this
methodology is that it allows us to treat both helium isotopes
on equal footing, as a variational calculation (which we carry
out by means of standard Metropolis Monte Carlo) is not
affected by a sign problem, and therefore, no ad hoc remedy is
required to circumvent it (e.g., the well-known fixed-node ap-
proximation), which inevitably degrades the relative accuracy
of the fermion calculation with respect to the boson one. And
although a variational calculation is intrinsically approximate,
the iterative scheme adopted here allows us (a) to improve
significantly over a standard trial wave function, in practice
removing most of the variational bias, and (b) to gain impor-
tant information on the physical effects that are missing in the
initial ansatz. As a check of the physical predictions obtained
using the variational approach, we also carried out selected,
targeted DMC calculations, which consistently confirmed the
Variational Monte Carlo (VMC) results.

Our results show that no 4/7 commensurate crystalline
phase of 4He exists, in agreement with previous calculations.
Indeed, the ground state arising from the variational optimiza-
tion shows no evidence of ordered atomic localization. On
the contrary, 3He forms a triangular crystal, consistent with
experimental observation; however, we find no evidence of
“pinning” of 3He atoms at specific adsorption sites; that is, the
crystalline ground state is found to be actually incommensu-
rate with the underlying 4He layer. In other words, the physics
of this layer is essentially that of the purely 2D system; that
is, it is not significantly affected by the underlying graphite
substrate or the 4He layer.

The remainder of this paper is organized as follows: in
Sec. II we describe the model Hamiltonian; in Sec. III we offer
a brief description of the methodology adopted in this work,
and we illustrate our results in Sec. IV.

II. MODEL

The system is modeled as an ensemble of N pointlike
particles, N3 of which are 3He atoms (half of either value of
the spin projection) and N4 are 4He atoms. Both species obey
the appropriate quantum statistics, namely, Fermi (Bose) for
3He (4He). When two layers of 4He are considered, N3 = 0
and N4 = N , while for the case of a 3He layer on top of a 4He
one, it is N3 = 4N4/7. The numerical results presented here
are obtained with a number of particles N = 132, with the
first layer consisting of a triangular solid of 84 4He atoms with

areal density ρ1 = 0.1195 Å
−2

. Correspondingly, the density

of the top layer is ρ2 = 0.0683 Å
−2

.
The system is enclosed in a simulation cell shaped as a

cuboid, with periodic boundary conditions in all directions
(but the length of the cell in the z direction can be considered
infinite for all practical purposes). The graphite substrate
occupies the z < 0 region.

The quantum-mechanical many-body Hamiltonian reads as
follows:

Ĥ = −
∑

iα

λα∇2
iα +

∑

i< j

v(ri j ) +
∑

iα

U (riα ). (1)

The first and third sums run over all particles of either species,

with α = 3, 4, λ3 (λ4) = 8.0417 (6.0596) K Å
2
, and U is the

potential describing the interaction of a helium atom (of either
species) with the graphite substrate, to which we come back
below. The second sum runs over all pairs of particles, ri j ≡
|ri − r j |, and v(r) is the accepted Aziz pair potential [25],
which describes the interaction between two helium atoms
of either species. Such a potential has been shown to afford
a rather accurate description of the energetic and superfluid
properties of 4He.

For the He-graphite interaction we consider two versions of
the Carlos-Cole potential: the smooth, laterally averaged one
[26] and the corrugated anisotropic 6-12 potential [27]. The
latter is tabulated for planar coordinates within the (x, y) unit
cell of graphite as a function of the distance from the surface,
using 12 layers of carbon atoms within an in-plane cutoff of
55 Å (43 416 atoms). In the simulation the potential is calcu-
lated by cubic interpolation of the tabulated values. We ignore
corrections for further C atoms. Even though they could be
added perturbatively, they are very weakly dependent on z
and virtually identical in the liquid and crystalline phases. As
mentioned above, the system is periodic in x and y, with simu-
lation cell sides Lx = 28.4304489 Å and Ly = 24.6214914 Å.
The cell (Fig. 1) accommodates 268 sites of a slightly strained
hexagonal lattice for graphite (the areal density of graphite
is maintained at its unstrained value corresponding to lattice
parameters a = 2.461 Å and c = 6.708 Å). The anisotropic
6-12 potential includes this strain.

Because we are also interested in the equation of state of
an incommensurate crystalline top layer, we have also utilized
in this study a simplified version of (1), in which only the
N ′ atoms in the top layer are explicitly included; they are
assumed to move on a flat substrate in the presence of a single-
particle one-dimensional potential veff (z) which effectively
accounts for both the graphite substrate and the first 4He
adlayer. We determine veff (z) as that whose ground-state wave
function is

√
ρ(z), with ρ(z) being the density profile of He
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FIG. 1. The simulation cell. The solid circles are the A-and the
B-stacked layers of graphite. The smaller open circles are the first-
layer lattice sites, and the larger open circles are the second-layer
lattice sites (with different colors for up and down spins for 3He).
The configuration of the lowest classical energy has the second layer
shifted by (1.26,0.45) Å.

atoms in the second layer, computed using the full Hamilto-
nian (1) with the corrugated potential. It has been shown [28]
that the structural properties of 3He on a smooth substrate,
computed with such an effective potential, are quantitatively
very similar to those on a corrugated substrate constituted by a
solid layer of 4He, in turn adsorbed on (smooth or corrugated)
graphite. The advantage of this description, besides the com-
putational speedup arising from the reduction of the number
of atoms that are explicitly modeled, is that on the effective
smooth substrate the density of a crystalline top layer can be
varied continuously, in contrast to the case of an explicit solid
4He layer with fixed density, where the density is restricted
by the condition that the simulation cell accommodate both
crystals.

III. METHODOLOGY

In this section we offer a description of the variational cal-
culation, mostly focusing on the different wave functions uti-
lized to describe the two phases of interest, namely, crystalline
and fluid. For a more thorough illustration of the approach,
including technical details of its numerical implementation,
we refer the reader to Ref. [24]. We have utilized different
trial wave functions for the system with liquid/solid 4He/3He
in the second layer, �L4, �S4, �L3, and �S3, featuring a
varying number of backflow iterations, until the result of
interest (the stability of a given phase in our case) was deemed
robust against further iteration. All wave functions contain a
common factor (optimized independently for each case)

�0(R) =
∏

i< j

e−uαβ (ri j )
∏

i

e− fα (zi )
∏

i∈I

e−nI (|r⊥
i −s(I )

i |)

×
∏

i∈I, j

e−m(|r⊥
i −h j |)

∏

i< j∈II

n−1∏

k=0

e−wk (q(k)
i j ), (2)

where {ri} = R are the coordinates of the He atoms; r⊥
i are

the (xi, yi ) components of ri; α and β take the value I for
the first layer and II for the second layer; s(α)

i are the in-
plane components of the lattice sites of layer α; hi are the
in-plane components of the centers of the hexagons on the
graphite surface; q(k)

i are the coordinates of the kth iteration of
backflow, given by q(k)

i = q(k−1)
i + ∑

j 
=i ηk (q(k−1)
i j )(q(k−1)

i −
q(k−1)

j ), with q(−1)
i = ri; the radial functions uαβ , fα, m, wk ,

and ηk are suitable combinations of McMillan-like pseu-
dopotentials and/or locally piecewise-quintic Hermite inter-
polating functions [29], while the Nosanow factors e−nα are
Gaussian functions; and the function m(r⊥) is nonzero only
for the corrugated graphite potential. The wave function �L4

has an extra pair pseudopotential to include a dependence on
the nth iteration of backflow coordinates q(n)

i , i.e.,

�L4(R) = �0(R)
∏

i< j∈II

e−wn(q(n)
i j ). (3)

On the other hand, �S4 has an extra Nosanow term in the in-
plane components of q(2)

i to describe a solid second layer, i.e.,

�S4(R) = �0(R)
∏

i∈II

e−nII (|q(n)⊥
i −s(II )

i |). (4)

The wave function �L3 for the fluid phase of 3He has an extra
Slater determinant of plane waves in the in-plane components
of q(n)

i (with twisted boundary conditions), namely,

�L3(R) = �0(R) det
i j

ei(k j+θ )·q(n)⊥
i , (5)

whereas the crystalline wave function �S3 has an extra Slater
determinant of Gaussian orbitals in the in-plane components
of q(n)

i , centered at the lattice sites of the second layer, i.e.,

�L3(R) = �0(R) det
i j

e−nII (|q(n)⊥
i −s(II )

j |). (6)

Note that backflow coordinates are used only for atoms in the
second layer.

The calculation of the ground-state expectation values
with the optimized wave function (corresponding to the nth
backflow iteration) is carried out using a standard Metropolis
Monte Carlo procedure, which, of course, does not suffer from
any fermion “sign” instability.

We now briefly discuss the correction of the energy esti-
mates that we have implemented in order to account for the
finite size of the simulated system. We assume that the finite-
size effect on the kinetic energy is present only for a fermion
liquid (not for a Bose liquid or a solid of either statistics) due
to the discreteness of the k-space shells which enter the Slater
determinant of plane waves. This is eliminated (actually,
strongly reduced) using twist-averaged boundary conditions
[30]. The finite-size effect on the potential energy is estimated
on a small subset of configurations along the simulation as the
difference between the potential calculated with the minimum
image convention and the potential calculated with a large
number of images. The finite-size correction turns out to be
nearly identical for the liquid and solid phases of either He
isotope.
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TABLE I. Energy per He atom (in K) with either the corrugated
or the smooth He-graphite potential calculated in VMC and DMC
using wave functions (WF) for liquid (L)/solid (S) 4He/3He in the
second layer.

WF VMC DMC

Corrugated
4He, L −85.289 ± 0.004 −86.756 ± 0.005
4He, S −85.244 ± 0.004 −86.688 ± 0.006
3He, L −83.232 ± 0.003 −84.723 ± 0.005
3He, S −83.323 ± 0.003 −84.769 ± 0.005

Smooth
4He, L −85.037 ± 0.002 −85.684 ± 0.004
4He, S −84.992 ± 0.002 −85.613 ± 0.003
3He, L −82.980 ± 0.002 −83.630 ± 0.003
3He, S −83.076 ± 0.002 −83.707 ± 0.004

IV. RESULTS

A. Stable phases at 4/7 coverage

Table I shows the energy per He atom E/N , where E
is the total energy of the system, yielded by the different
variational wave functions for the two phases, namely, liquid
(L) and solid (S). The last column reports results obtained
by means of DMC simulations, carried out by projecting out
of the corresponding trial wave functions; the fixed-node ap-
proximation was used for those involving 3He. These results
were obtained using the full Hamiltonian (1), with either the
corrugated anisotropic He-graphite potential or the laterally
averaged, smooth one.

The first observation is that the quality of the wave function
is significantly better for the laterally averaged He-graphite
potential, for which the difference between VMC and DMC
results is ∼0.65 K, than for the corrugated potential, where
the difference is ∼1.5 K, which amounts to roughly 1.8%
of the total energy. This may stem from the inadequacy of
the part of the wave function describing correlations between
first-layer atoms and graphite hexagons, which is expressed
through the two-dimensional, in-plane correlation function
m(r⊥). Possibly, a more accurate ansatz would be based on
a fully three-dimensional function m(r). On the other hand,
the comparison between VMC and DMC estimates shows the
same trend in both calculations; specifically, in no case is the
prediction of relative strength of one phase with respect to the
other made at the VMC level reversed or even significantly
quantitatively altered by DMC. Indeed, as shown in Table II
the quantity δ ≡ (EL − ES )/N ′, namely, the energy difference
per second-layer atom between the liquid and solid phases, is
virtually unchanged (within statistical uncertainties) if either
model of He-graphite interaction is used for both isotopes
and within either VMC or DMC. Moreover, δ is consistently
negative for 4He and positive for 3He. This remains true even
if the calculation is based on the simplified version of model
(1) described above, making use of the effective potential
veff (z).

All of this allows one to make a rather robust statement
regarding the physical character of the ground state of the
system in the case of an upper layer of either helium isotope.
Specifically, the ground state of the second layer at coverage

TABLE II. Energy difference δ (see text) per second-layer atom
(in K) between the liquid and solid phases of 4He/3He in the second
layer calculated in VMC and DMC using the full Hamiltonian (1)
with either the corrugated or the smooth He-graphite potential, as
well as with the effective potential veff (z) described in the text.

VMC DMC

Corrugated
4He −0.122 ± 0.024 −0.188 ± 0.031
3He 0.251 ± 0.017 0.128 ± 0.026

Smooth
4He −0.123 ± 0.011 −0.197 ± 0.026
3He 0.264 ± 0.011 0.148 ± 0.019

Effective
4He −0.154 ± 0.002 −0.179 ± 0.003
3He 0.233 ± 0.002 0.096 ± 0.002

ρ2 is a (translationally invariant) superfluid in the case of
4He and a crystal for 3He. As noted above, the value of the
energy difference is essentially independent of the corrugation
of the He-graphite potential, a fact that, while not particularly
surprising for the case of 4He, for which the thermodynamic
equilibrium phase is a superfluid, is quite significant for the
case of 3He, as it points to the equilibrium crystalline phase
being incommensurate and thus scarcely affected by substrate
corrugation.

Now, the fact that the energy per particle obtained using
the wave function describing one phase (A) is lower than
that for another phase (B), at a particular density ρ, is by
itself no definitive proof that A is the true equilibrium phase
at that density, for it is, in principle, possible in the case of
a first-order phase transition that ρ fall within the region of
coexistence of phases A and B. As we show below, this is not
the case for the second-layer density ρ2, which corresponds to
4/7 commensurate coverage; indeed, ρ2 does not fall within
the liquid-crystal coexistence region for a second layer of
either helium isotope, as the calculations of the equation of
state of the second layer show.

B. Equation of state of the second layer

We now discuss in detail the equation of state (EOS) for
both a 3He and a 4He upper layer. We compute the EOS by
making use of the effective potential veff described above,
representing both the graphite substrate and the first 4He
adlayer. As explained above, the advantage of this approach
is that the density of the crystalline top layer can be varied
continuously, in contrast to the case of an explicit solid 4He
layer with fixed density, where the density is restricted by the
condition that the simulation cell accommodate both crystals.
We first present the results and then discuss the expected
accuracy of the approach.

1. 3He upper layer

The EOSs of a liquid and solid 3He upper layer, computed
by VMC, are shown in Fig. 2, together with the double tangent
(DT) curve, a + b/ρ. The parameters a and b of the DT
are determined by the condition that the difference with the
DT vanish quadratically for both the liquid and the solid
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FIG. 2. EOSs of a liquid and solid 3He layer adsorbed on a
graphite substrate preplated with 4He, computed using the effective
potential veff described in the text. The points are VMC energies, and
the curves are cubic fits; the DT is also shown. The data pertain to
simulations of 48 particles with periodic boundary conditions.

EOSs, as shown in Fig. 3. The region of coexistence of fluid
and crystal, computed by VMC, is given by the range of

values of area per particle, 15.99–16.38 Å
2
, or, equivalently,

0.061–0.062 Å
−2

in density. In order to assess the quantitative
accuracy of the VMC prediction, we performed fixed-node
DMC simulations based on the optimized wave functions
for both phases; as shown in Fig. 3, the coexistence region

is shifted to the area per particle interval 15.33–15.63 Å
2
,

corresponding to the 0.064–0.065 Å
−2

density range. Thus,
our best estimate of the value of the melting density ρ
 is

∼0.065 Å
−2

, still significantly lower than ρ2, i.e., the density

of the registered phase, equal to 0.0683 Å
−2

. Altogether, the
agreement between VMC and DMC results is quantitatively
excellent.

The uncertainty of the melting density ρ∗ can be esti-
mated through the energy difference between liquid and solid
(Fig. 4), together with the typical size of the statistical error
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FIG. 3. Detail of Fig. 2 near coexistence, with the DT subtracted
and the corresponding curves obtained with DMC energies.
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FIG. 4. Energy per particle for 3He on the smooth substrate
relative to that of the solid. The vertical bar shows the typical
statistical error of the data of Fig. 2.

of the data of Fig. 2. The statistical uncertainty of the melting

density is less than 0.001 Å
−2

, which is significantly smaller
than the difference between the density of the 4/7 registered
phase and ρ∗. Figure 3 also shows that the liquid-solid energy
difference spans a range �10 mK across the coexistence
region, much smaller than the liquid-solid differences of
∼200 mK listed in Table II. Therefore, the lower-energy phase
at ρ2 is definitely outside the coexistence region.

The results yielded by the model based on the effective
potential suggest that freezing occurs for an incommensurate
solid. Obviously, we need to assess the extent to which the
description based on veff is quantitatively representative of
the model (1), which explicitly includes the 4He atoms of the
first layer. As mentioned above, the use of such an effective
potential has been shown in previous work to be quantitatively
reliable and is not expected to alter significantly the predic-
tions at which we have arrived using the effective potential.
Specifically, one should note that the liquid-solid energy
difference computed with the effective potential at density
ρ2 is slightly smaller in magnitude (by ∼35 mK) than that
computed with the explicit inclusion of the underlying 4He
adlayer atoms, which has the effect of strengthening (albeit by
a relatively small amount) the crystalline phase (no significant
difference arises from the use of either the corrugated or the
smooth helium-graphite interaction). Consequently, we may
expect the melting density to be shifted to a slightly lower
value if the full Hamiltonian (1) is used, a fortiori validating
our physical conclusion that the commensurate coverage ρ2

falls well within the region of stability of the incommensurate
crystal. It is worth noting that our estimated freezing density
is quantitatively consistent with the highest density for which
Bauerle et al. were able to measure the spin susceptibility of a
submonolayer liquid 3He film adsorbed on a graphite substrate
preplated by a monolayer of 4He [22].

We conclude by discussing the possibility that the crys-
talline phase of the 3He layer of density ρ2 may still be regis-
tered with the underlying 4He layer, even though the density
ρ2 is inside the region in which the incommensurate crystal
is energetically favored, at least according to our calculations
based on the effective potential. This would be reflected by the
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FIG. 5. Same as Fig. 3, but for a 4He upper layer.

“pinning” of the 3He atoms at specific lattice locations, with
a significant energy cost associated with, e.g., rigid relative
translations or rotations of the upper layer with respect to the
underlying one.

In order to obtain a quantitative estimate of such a pin-
ning energy, we first considered two parallel, commensurate
triangular lattices (first and second layers) spaced 3 Å apart in
the z direction and computed the change in classical energy
per He atom associated with a rigid relative translation in the
(x, y) plane of one of the two lattices. The maximum energy
change is in the range of a few millikelvins. We then carried
out a DMC simulation of solid 3He over solid 4He and found
the change in the energy per particle between the highest- and
the lowest-energy classical configurations of the lattices to be
reduced to a few tens of millikelvins, which is approximately
ten times less than the typical statistical uncertainty of this
calculation. Such small values of the pinning energy do not, in
our view, lend any quantitative support to the contention of an
equilibrium crystalline phase of the upper 3He layer registered
with the underlying 4He layer.

2. 4He upper layer

The same calculation has been carried out for a 4He second
layer; Fig. 5 shows results analogous to those of Fig. 3. In this
case, the coexistence region yielded by VMC is the density

interval 0.076–0.079 Å
−2

, which, as shown in Fig. 4, is only
slightly modified by subsequent DMC simulations, specifi-

cally shrinking to 0.076–0.078 Å
−2

. The freezing density is
well above ρ2 and is in excellent agreement with the estimate
yielded by the finite-temperature simulations of Ref. [14],
explicitly including the 4He atoms of the first adlayer. This
result gives us additional confidence in the use of the effective
potential, as well as in the predictive power of the VMC
methodology utilized here; it also supports the conclusion that

no 4/7 crystalline phase exists, in agreement with the near
totality of all numerical studies.

V. CONCLUSIONS

We have carried out a theoretical investigation of the possi-
ble existence of a 4/7 commensurate crystalline phase of the
second layer of helium adsorbed on graphite. We considered
both the case in which the upper layer comprises the same type
of atoms as the first layer, namely, 4He, and that in which the
upper layer is formed by atoms of the lighter 3He isotope. We
made use of a technique recently developed, aimed at studying
the ground state of either Fermi or Bose systems by means of a
variational (Monte Carlo) approach that affords high accuracy
by iterative improvement of the wave function and allows one
to treat both isotopes on equal footing.

The results obtained in this work constitute an additional
piece of theoretical evidence against the existence of a com-
mensurate crystalline phase in the second layer of 4He ad-
sorbed on graphite. This is in agreement with the findings of
essentially all the most recent theoretical calculations based
on first-principles numerical simulations. It is worth restating
that no direct experimental evidence of any registered crys-
talline phase of the second layer of 4He exists; rather, its
presence has been proposed as a way to account for observed
specific heat anomalies, for which, however, a different inter-
pretation might have to be sought. Alternatively, the accepted
microscopic theoretical model of 4He on graphite, which
successfully accounts for most of the phenomenology, may
have to be considerably revised (in ways that are not clear
to us), should new and conclusive experimental evidence of
a commensurate (4/7 or otherwise) phase arise. It has been
suggested, however, that a 4/7 commensurate phase may also
occur as a result of the first 4He layer forming a commen-
surate, rather than incommensurate, crystalline phase, as is
commonly assumed [15].

Our study also shows that no commensurate phase exists
if the second layer is formed by atoms of the lighter 3He
isotope, a fermion, which undergoes crystallization into an
incommensurate phase at coverages significantly lower than
that of the putative 4/7 phase. The more general conclusion
of this work is that the physics of the second layer of helium
on graphite, of either isotope, is largely independent of both
the underlying 4He layer and the graphite substrate; rather, it
provides a close realization of the physics of 3He and 4He in
two dimensions.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC). M.B.
wishes to acknowledge the hospitality of the International
Centre for Theoretical Physics in Trieste, Italy, where this
research was carried out.

[1] M. Bretz, J. G. Dash, D. C. Hickernell, E. O.
McLean, and O. E. Vilches, Phys. Rev. A 8, 1589
(1973).

[2] S. V. Hering, S. W. Van Sciver, and O. E. Vilches, J. Low Temp.
Phys. 25, 793 (1976).

[3] S. E. Polanco and M. Bretz, Phys. Rev. B 17, 151 (1978).

195441-6

https://doi.org/10.1103/PhysRevA.8.1589
https://doi.org/10.1103/PhysRevA.8.1589
https://doi.org/10.1103/PhysRevA.8.1589
https://doi.org/10.1103/PhysRevA.8.1589
https://doi.org/10.1007/BF00657299
https://doi.org/10.1007/BF00657299
https://doi.org/10.1007/BF00657299
https://doi.org/10.1007/BF00657299
https://doi.org/10.1103/PhysRevB.17.151
https://doi.org/10.1103/PhysRevB.17.151
https://doi.org/10.1103/PhysRevB.17.151
https://doi.org/10.1103/PhysRevB.17.151


SECOND-LAYER CRYSTALLINE PHASE OF HELIUM … PHYSICAL REVIEW B 99, 195441 (2019)

[4] K. Carneiro, L. Passell, W. Thomlinson, and H. Taub, Phys.
Rev. B 24, 1170 (1981).

[5] R. E. Ecke and J. G. Dash, Phys. Rev. B 28, 3738 (1983).
[6] H. J. Lauter, H. P. Schildberg, H. Godfrin, H. Wiechert, and

R. Haensel, Can. J. Phys. 65, 1435 (1987).
[7] H. Freimuth, H. Wiechert, H. P. Schildberg, and H. J. Lauter,

Phys. Rev. B 42, 587 (1990).
[8] J. Lauter, H. Godfrin, V. L. P. Frank, and P. Leiderer, in Phase

Transitions in Surface Films 2, edited by E. Taub, G. Torzo, H. J.
Lauter, and S. C. Fain (Plenum, New York, 1991).

[9] D. S. Greywall and P. A. Busch, Phys. Rev. Lett. 67, 3535
(1991).

[10] D. S. Greywall, Phys. Rev. B 47, 309 (1993).
[11] P. A. Crowell and J. D. Reppy, Phys. Rev. Lett. 70, 3291 (1993).
[12] P. A. Crowell and J. D. Reppy, Phys. Rev. B 53, 2701 (1996).
[13] We use quotation marks because the denomination supersolid

is, strictly speaking, not applicable to a system of this type. See
M. Boninsegni and N. V. Prokof’ev, Rev. Mod. Phys. 84, 759
(2012).

[14] P. Corboz, M. Boninsegni, L. Pollet, and M. Troyer, Phys. Rev.
B 78, 245414 (2008).

[15] J. Ahn, H. Lee, and Y. Kwon, Phys. Rev. B 93, 064511 (2016).
[16] S. Nakamura, K. Matsui, T. Matsui, and H. Fukuyama, Phys.

Rev. B 94, 180501(R) (2016).
[17] J. Nyeki, A. Phillips, A. Ho, D. Lee, P. Coleman, J. Parpia,

B. Cowan, and J. Saunders, Nat. Phys. 13, 455 (2017).

[18] M.-C. Gordillo and D. M. Ceperley, Phys. Rev. B 58, 6447
(1998).

[19] M. Boninsegni, M. W. Cole, and F. Toigo, Phys. Rev. Lett. 83,
2002 (1999).

[20] H. Fukuyama, J. Phys. Soc. Jpn. 77, 111013 (2008).
[21] M. Nava, A. Motta, D. E. Galli, E. Vitali, and S. Moroni, Phys.

Rev. B 85, 184401 (2012).
[22] C. Bauerle, Y. M. Bunkov, A. S. Chen, S. N. Fisher, and H.

Godfrin, J. Low Temp. 110, 333 (1998).
[23] This is entirely due to quantum statistics, which strengthens the

fluid phase against crystallization in Bose systems, but has the
opposite effect in Fermi systems. See M. Boninsegni, L. Pollet,
N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 109, 025302
(2012).

[24] M. Ruggeri, S. Moroni, and M. Holzmann, Phys. Rev. Lett. 120,
205302 (2018).

[25] R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T.
McConville, J. Chem. Phys. 70, 4330 (1979).

[26] W. E. Carlos and M. W. Cole, Phys. Rev. Lett. 43, 697 (1979).
[27] W. E. Carlos and M. W. Cole, Surf. Sci. 91, 339 (1980).
[28] M. Ruggeri, E. Vitali, D. E. Galli, M. Boninsegni, and S.

Moroni, Phys. Rev. B 93, 104102 (2016).
[29] V. Natoli and D. M. Ceperley, J. Comput. Phys. 117, 171

(1995).
[30] C. Lin, F.-H. Zong, and D. M. Ceperley, Phys. Rev. E 64,

016702 (2001).

195441-7

https://doi.org/10.1103/PhysRevB.24.1170
https://doi.org/10.1103/PhysRevB.24.1170
https://doi.org/10.1103/PhysRevB.24.1170
https://doi.org/10.1103/PhysRevB.24.1170
https://doi.org/10.1103/PhysRevB.28.3738
https://doi.org/10.1103/PhysRevB.28.3738
https://doi.org/10.1103/PhysRevB.28.3738
https://doi.org/10.1103/PhysRevB.28.3738
https://doi.org/10.1139/p87-226
https://doi.org/10.1139/p87-226
https://doi.org/10.1139/p87-226
https://doi.org/10.1139/p87-226
https://doi.org/10.1103/PhysRevB.42.587
https://doi.org/10.1103/PhysRevB.42.587
https://doi.org/10.1103/PhysRevB.42.587
https://doi.org/10.1103/PhysRevB.42.587
https://doi.org/10.1103/PhysRevLett.67.3535
https://doi.org/10.1103/PhysRevLett.67.3535
https://doi.org/10.1103/PhysRevLett.67.3535
https://doi.org/10.1103/PhysRevLett.67.3535
https://doi.org/10.1103/PhysRevB.47.309
https://doi.org/10.1103/PhysRevB.47.309
https://doi.org/10.1103/PhysRevB.47.309
https://doi.org/10.1103/PhysRevB.47.309
https://doi.org/10.1103/PhysRevLett.70.3291
https://doi.org/10.1103/PhysRevLett.70.3291
https://doi.org/10.1103/PhysRevLett.70.3291
https://doi.org/10.1103/PhysRevLett.70.3291
https://doi.org/10.1103/PhysRevB.53.2701
https://doi.org/10.1103/PhysRevB.53.2701
https://doi.org/10.1103/PhysRevB.53.2701
https://doi.org/10.1103/PhysRevB.53.2701
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/PhysRevB.78.245414
https://doi.org/10.1103/PhysRevB.78.245414
https://doi.org/10.1103/PhysRevB.78.245414
https://doi.org/10.1103/PhysRevB.78.245414
https://doi.org/10.1103/PhysRevB.93.064511
https://doi.org/10.1103/PhysRevB.93.064511
https://doi.org/10.1103/PhysRevB.93.064511
https://doi.org/10.1103/PhysRevB.93.064511
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1038/nphys4023
https://doi.org/10.1038/nphys4023
https://doi.org/10.1038/nphys4023
https://doi.org/10.1038/nphys4023
https://doi.org/10.1103/PhysRevB.58.6447
https://doi.org/10.1103/PhysRevB.58.6447
https://doi.org/10.1103/PhysRevB.58.6447
https://doi.org/10.1103/PhysRevB.58.6447
https://doi.org/10.1103/PhysRevLett.83.2002
https://doi.org/10.1103/PhysRevLett.83.2002
https://doi.org/10.1103/PhysRevLett.83.2002
https://doi.org/10.1103/PhysRevLett.83.2002
https://doi.org/10.1143/JPSJ.77.111013
https://doi.org/10.1143/JPSJ.77.111013
https://doi.org/10.1143/JPSJ.77.111013
https://doi.org/10.1143/JPSJ.77.111013
https://doi.org/10.1103/PhysRevB.85.184401
https://doi.org/10.1103/PhysRevB.85.184401
https://doi.org/10.1103/PhysRevB.85.184401
https://doi.org/10.1103/PhysRevB.85.184401
https://doi.org/10.1023/A:1022540901706
https://doi.org/10.1023/A:1022540901706
https://doi.org/10.1023/A:1022540901706
https://doi.org/10.1023/A:1022540901706
https://doi.org/10.1103/PhysRevLett.109.025302
https://doi.org/10.1103/PhysRevLett.109.025302
https://doi.org/10.1103/PhysRevLett.109.025302
https://doi.org/10.1103/PhysRevLett.109.025302
https://doi.org/10.1103/PhysRevLett.120.205302
https://doi.org/10.1103/PhysRevLett.120.205302
https://doi.org/10.1103/PhysRevLett.120.205302
https://doi.org/10.1103/PhysRevLett.120.205302
https://doi.org/10.1063/1.438007
https://doi.org/10.1063/1.438007
https://doi.org/10.1063/1.438007
https://doi.org/10.1063/1.438007
https://doi.org/10.1103/PhysRevLett.43.697
https://doi.org/10.1103/PhysRevLett.43.697
https://doi.org/10.1103/PhysRevLett.43.697
https://doi.org/10.1103/PhysRevLett.43.697
https://doi.org/10.1016/0039-6028(80)90090-4
https://doi.org/10.1016/0039-6028(80)90090-4
https://doi.org/10.1016/0039-6028(80)90090-4
https://doi.org/10.1016/0039-6028(80)90090-4
https://doi.org/10.1103/PhysRevB.93.104102
https://doi.org/10.1103/PhysRevB.93.104102
https://doi.org/10.1103/PhysRevB.93.104102
https://doi.org/10.1103/PhysRevB.93.104102
https://doi.org/10.1006/jcph.1995.1054
https://doi.org/10.1006/jcph.1995.1054
https://doi.org/10.1006/jcph.1995.1054
https://doi.org/10.1006/jcph.1995.1054
https://doi.org/10.1103/PhysRevE.64.016702
https://doi.org/10.1103/PhysRevE.64.016702
https://doi.org/10.1103/PhysRevE.64.016702
https://doi.org/10.1103/PhysRevE.64.016702

