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Perturbation theory for two-dimensional hydrodynamic plasmons
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Perturbation theory is an indispensable tool in quantum mechanics and electrodynamics that handles weak
effects on particle motion or fields. However, its extension to plasmons involving complex motion of both
particles and fields remained challenging. We show that this challenge can be mastered if electron motion obeys
the laws of hydrodynamics, as recently confirmed in experiments with ultraclean heterostructures. We present a
unified approach to evaluate corrections to plasmon spectra induced by carrier drift, magnetic field, scattering,
viscosity, and Berry curvature. The developed theory enables us to resolve the long-standing stability problem for
direct current in confined two-dimensional electron systems against self-excitation of plasmons. We show that
arbitrarily weak current in the absence of dissipation is unstable provided the structure lacks mirror symmetry.
On the contrary, we find that in extended periodic systems—plasmonic crystals—weak carrier drift is always
stable. Instead, this drift induces anomalous Doppler shift, which can be both below and higher than its value in
uniform systems.
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I. INTRODUCTION AND OUTLINE

In quantum mechanics, there are a limited number of
potential landscapes that allow exact solutions for energy
spectra and wave functions. Fortunately, weak potentials of ar-
bitrary form can be handled with perturbation theory (PT) [1].
Several decades after the success in quantum mechanics,
PT was formulated for classical electrodynamics [2,3]. Cur-
rently, electrodynamic PT represents an indispensable tool
for analysis of nonuniform laser cavities and inhomogeneous
waveguides [4].

The simplicity of perturbation theory in electrodynamics
stems from the fact that the state of the field is characterized
by two vectors, E and H. Waves propagating near conductive
surfaces—plasmons—involve not only field oscillations but
charge carrier oscillations as well. The state of carriers is
characterized by the distribution function generally having
an infinite number of harmonics in momentum space. For
this reason, the state of plasmon is more complex, and the
formulation of plasmonic PT represents a challenging task.
Its solution promises a unified approach for the treatment
of various perturbations on plasma resonances in metal and
semiconductor nanostructures, including magnetic fields,
electric currents, electron scattering, and others. Previous
attempts to construct PT for plasmonic structures required the
synthesis of auxiliary equations of motion for polarization
and velocity fields in materials that provide a necessary form
of dielectric function [5].

In this paper, we show that formulation of a simple PT
for plasmon eigenfrequencies and field distributions is pos-
sible when charge carriers in conductors obey the laws of
hydrodynamics. While being a common approximation for
analysis of carrier motion for nearly a century [6], the true
hydrodynamic phenomena in solids were demonstrated only
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recently with the advent of high-mobility two-dimensional
(2D) heterostructures [7–10]. The reason is that the prereq-
uisite of hydrodynamics is the dominance of carrier-carrier
momentum-conserving collisions over all other collisions
(electron-impurity and electron-phonon) [11]. Under these
conditions, only three harmonics of the distribution function
survive, and the state of charge carriers is characterized only
by three variables: density, velocity, and temperature.

Having constructed the PT, we apply it to resolve the
stability problem for confined hydrodynamic electron flows
against excitation of plasma waves. From a fundamental view-
point, the emergence of unstable modes under direct currents
signifies a transition to a turbulent flow [12], an intriguing and
weakly explored transport regime in solids [13,14]. From an
applied point of view, excitation of plasmons by direct current
with their subsequent radiative decay can form the basis for
new voltage-tunable terahertz sources [15]. Previously, the
problem of flow stability was attacked with numerical simula-
tors [16,17], mainly focusing on incompressible flows [18],
where the propagation of plasma waves is impossible. An
analytical approach to the problem dates back to Dyakonov
and Shur [19], where electron flow in 2DES with a grounded
source and open-circuited drain was shown to be unstable
with respect to plasmon excitation. Later, several other 2DES-
based confined structures were shown to support plasma insta-
bility [20–23], but a general criterion of instability remained
unknown.

The developed perturbation theory enables a transparent
formulation of bulk plasmon (in)stability conditions in arbi-
trary confined 2DES. The key to the problem lies in treating
convective, scattering, and viscous terms in hydrodynamic
equations as small perturbations, and finding the corrections
to plasmon eigenfrequencies (though the developed theory
can handle other perturbations, as we show in Appendix A).
We indicate that structural asymmetry of confined 2DES is a
necessary and (in the absence of dissipation) sufficient condi-
tion for self-excitation of plasmons in a one-dimensional flow
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(Sec. III). This finding resolves the long-standing experimen-
tal puzzle about the relation between structural asymmetry
and the strength of plasmon-assisted terahertz emission from
FETs [24–26].

In Sec. IV, we elucidate the effect of carrier drift on
plasmon modes in periodic two-dimensional electron systems,
i.e., plasmonic crystals. Electron drift in this case does not
lead to instabilities, which follows from the Hermiticity of
a “drift operator.” However, the wave eigenfrequencies are
shifted by direct current, and the value of the shift can be both
above and below that given by Doppler relations.

II. PERTURBATION THEORY FOR
ELECTRON HYDRODYNAMICS

The confinement of a 2DES to a characteristic length
L leads to the emergence of collective modes (plasma
modes) with frequencies ωp ∼ [n0e2/mεL]1/2, where e > 0
is the elementary charge, n0 is the electron density, m
is the effective mass, and ε is the background dielectric
constant. These modes have been extensively studied since
the pioneering works of Stern [27] and Chaplik [28] and host
a variety of phenomena when exposed to external influence,
e.g., magnetic field [29] or carrier drift [30]. Interestingly,
many of these effects can be incorporated inside a single
theoretical shell of plasmonic perturbation theory (PT), which
we develop in this section.

The formulation of plasmonic PT is possible if oscillating
charge carriers obey the laws of hydrodynamics. The hydro-
dynamic approach grants a straightforward formulation of op-
erator eigenvalue problem on 2D plasmon eigenfrequencies,
allowing the isolation of drift, magnetic field, viscosity, and
pressure operators—which is unachievable in other transport
regimes. This property enables us to construct an analogy of
quantum-mechanical perturbation theory with respect to these
operators; such treatment is possible when the corrections to
the eigenfrequency are small as compared to the frequency
itself. In this regard, electric charge of electron fluid plays the
central role in our theory. It leads to the existence of plasma
modes setting the largest frequency scale in the problem
(compared, e.g., to the plasmon decay time). As a result, the
unperturbed dynamic matrix is Hermitian, which simplifies
the formulation of PT. Such simplicity is lacking in PT for
neutral incompressible fluids, the motion of which is strongly
affected by viscous dissipation [31,32].

Formally, the inequalities for the perturbative treatment
to be possible are {u0/L, ωc, τ

−1
p , ν/L2} � ωp, where ν is

the kinematic viscosity and ωc = eB/m is the cyclotron fre-
quency (B denotes the magnetic inductance). Taking the real-
istic parameters u0 � 105 m/s, L � 1 μm, τp � 10−11 s−1,
B = 0.1 T, and estimating the viscosity as ν � v2

0τee/4 �
250 cm2/s [10], we see that the inequalities are fulfilled for
ωp/2π � 1 THz.

After these preliminary remarks, we are ready to construct
the theory. The set of HD equations for a two-dimensional
motion of a charged fluid has the form

∂tN + ∂iJi = 0, (1)

∂t Ji + ∂ jPi j = Fi/m − Ji/τp, (2)

(a)

(b)

FIG. 1. Schematics of 2DES realizations. (a) Bounded 2DES,
namely partly gated field-effect transistor [22]. (b) Plasmonic crystal.

where t denotes time, N is the electron density, Ji = NUi is
the current, Ui is the drift velocity, Fi is the Lorentz force, and
Pi j is the stress tensor of the electron fluid (we neglect the bulk
viscosity and pressure terms, which can be easily restored if
needed):

F = eN∇ϕ + ωc[ẑ,U ], (3)

Pi j = NUiU j − η

m
(∂ jUi + ∂iU j − δi j∂kUk ), (4)

where ẑ is the unitary vector in the direction perpendicular to
2DEG (see Fig. 1), η denotes dynamic viscosity, and δi j is the
Kronecker delta, {i, j, k} = 1, 2. The set (1)–(4) is completed
by the expression for the electric potential ϕ determined by the
2DEG surroundings (consider Fig. 1) through the electrostatic
Green function G(r, r′):

ϕ(r) = ϕext(r) − eG[N ], (5)

where G[ f ] = ∫
d2r′G(r, r′) f (r′) is the self-consistent field,

the r-vector lies in the 2DEG plane, the contribution ϕext(r) is
fixed at the contacts by the voltage source, and the integration
is performed over the whole 2DEG.

The following analysis is based on linearization
N (r, t ) = n0(r) + n(r)e−i�t , U (r, t ) = u0(r) + u(r)e−i�t ,
and reformulation of (1)–(5) as an operator eigenvalue
problem:

(�̂ + V̂drift + V̂sc + V̂visc + V̂mag)� = ��. (6)

Above, we have introduced the “three-component wave func-
tion” � = {n, u}T describing density and velocity variations
in plasma modes. The unperturbed motion is described by the
“hydrodynamic” operator:

�̂ = −i

(
0 ∇[n0(r)·]

e2

m ∇G[·] 0

)
, (7)
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and we consider the steady carrier drift, magnetic field,
scattering, and viscosity as small perturbations given by the
operators

V̂drift = −i

(
(∇, u0·) 0

0 (·,∇)u0 + (u0,∇)·
)

, (8)

V̂visc = i

mn0

(
0 0
0 (∇, η(∇ · +(∇·)T − (∇, ·)δi j ))

)
, (9)

V̂sc = −iτ−1
p

(
0 0
0 δi j

)
, V̂mag = −iωc

(
0 0
0 ei j

)
, (10)

where δi j and ei j are the Kronecker delta and the two-
dimensional absolutely antisymmetric tensor, respectively;
i, j = 1, 2.

At this stage, one might be willing to apply a standard
Schrödinger perturbation theory for correction to the eigenfre-
quency δ�λ = 〈
λ|V̂ |
λ〉, where λ enumerates the plasmon
modes. However, this step is premature until the inner product
is specified. Apparently, a standard definition 〈
λ|
λ′ 〉 =∫

dx[n∗
λnλ′ + u∗

λuλ′] fails: it does not ensure that matrix �̂ is
Hermitian. We resolve this issue by reformulating the initial
problem: we apply the Hamilton operator Ĥ of a charged fluid
to Eq. (6) and obtain a generalized eigenvalue problem:

Ĥ (�̂ + V̂drift + V̂sc + V̂visc + V̂mag)� = �Ĥ�, (11)

Ĥ =
(

e2/m G[·] 0
0 Î2n0(r)

)
. (12)

Here, the dynamic matrix Ĥ�̂ is Hermitian (i.e.,
〈
1| Ĥ�̂ |
2〉 = 〈
2| Ĥ�̂ |
1〉) as well as the Hamiltonian
Ĥ ; this fact can be shown explicitly by evaluating the cor-
responding matrix elements. Hence, we are now able to apply
the standard perturbative expansion that leads to the following
expression for the first correction to the eigenfrequency:

δ�λ = −i
〈
λ| Ĥ (V̂drift + V̂sc + V̂visc + V̂mag) |
λ〉

〈
λ| Ĥ |
λ〉
. (13)

We stress that the whole procedure does not require any
additional boundary conditions (BCs) apart from the two
natural ones: (i) the Green function vanishes at the electrodes
and (ii) J⊥ = 0 at the 2DES edges (no carrier leakage). In such
a way, our analysis holds for 2DES with arbitrary BCs, which
are hardly known in real experimental setups.

The constructed perturbation theory is a powerful tool that
can be used to uncover the underlying principles of many
plasmonic phenomena in 2DES. We apply its formalism to
examine the drift-originated plasmonic effects in bounded
systems (Sec. III) and plasmonic crystals (Sec. IV). An illus-
trative example of handling boundary condition perturbations
is presented in Appendix A.

III. CURRENT-DRIVEN INSTABILITIES
IN BOUNDED SYSTEMS

Direct current passing in confined 2DES can supply energy
to plasmon modes and lead to their self-excitation (plasma
instability). One of the first examples of such instabilities in
confined 2DES was demonstrated by Dyakonov and Shur;
such instability occurred in 2DES with the grounded source,

and drain held at a fixed current [19]. Later, other geometries
and boundary conditions were analyzed, including loaded
drain [23], partly gated FETs [21,22], and Corbino disks [20].
This search for instabilities had been excursive and there was
no general understanding of whether a given FET structure
supports an instability or not. At the same time, both existing
models [20,21] and experimental data [24–26] hinted that
structural asymmetry somehow promotes an instability.

The developed perturbation theory enables us to formu-
late the instability criteria in a very general form. From the
prospective of wave mechanics, the operator of electron drift
V̂dr in bounded 2DES is generally non-Hermitian. There-
fore, the eigenfrequencies of drifting plasmons are complex,
which implies plasmon amplitude growth/decay with time.
The eigenfrequencies may remain real only under specific
symmetry constraints, which we will obtain below.

We restrict our consideration to one-dimensional oscilla-
tions of 2D electrons assuming the transverse modes to be
inactive. This assumption is justified at least when the channel
width is below the plasmon wavelength. Evaluating the matrix
elements in Eq. (13), we find the correction to the plasmon
frequency in confined 2DES induced by a combined action of
direct current, scattering, and viscosity:

δ�λ = i
j0[Kλ(0) − Kλ(L)] − Qloss

|�λ| , (14)

where K (x) = m|uλ(x)|2/2 is the local kinetic energy in a
plasmon mode,

� = e2
∫ L

0
dx dx′n∗

λ(x)G(x, x′)nλ(x′) (15)

is the potential energy of interacting charge density fluctua-
tions in a 2DES of length L, and

Qloss = 1

2

∫ L

0
dx{Re σ |Eλ|2 + η|∂xuλ|2} + ηu∗

λ∂xuλ

4

∣∣∣∣
L

0

(16)

is the energy loss due to viscous friction and scattering-
induced dissipation, where σ = ie2n0/m(� + i/τp) is the
Drude conductivity. The last “viscous-boundary” term is also
dissipative in systems with time-reversal symmetry; if the
latter is broken, shear viscosity will contribute to frequency
shift as well.

From Eq. (14), we readily observe that the plasmon growth
rate Im δ�λ originates from the excess of kinetic energy
entering the mode at the source over the energy drawn out at
the drain. The Dyakonov-Shur instability growth rate appears
as a particular case of Eq. (14), where K (0) − K (L) is nonzero
due to inequivalent source and drain contacts.

Apart from the energy interpretation, Eq. (14) immediately
indicates that only zero-order plasma modes without definite
parity can be excited by a weak external drift. Indeed, the
even/odd mode profiles satisfy u2(L) = u2(0), which forces
the gain term in Eq. (14) to vanish. Therefore, FETs with
mirror symmetry do not support unstable modes, but asym-
metric structures generally do (in the absence of dissipation).
The origin of asymmetry can be arbitrary; this can be either
asymmetric placement of gates, asymmetric loading of source
and drain, nonuniform carrier density in the channel, or all of
them.
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FIG. 2. Calculated instability growth rates for the first plasmon
mode in a partly gated FET (shown in the inset) with different gate
lengths and carrier densities. The carrier density distribution is taken
to be n(x) = n1 + (n2 − n1)[1 + e(x−x0 )/l j ]−1. The growth rates are
normalized by u0/L, where u0 is the drift velocity at the drain (same
for all curves), and the density at the drain n0 is also fixed. The
instability benefits if the drift is directed from the low- into the
high-density region and is especially pronounced if the low-density
region is short and ungated.

We can go beyond the symmetry constraints and specify
the requirements on 2DES aiming to maximize the plasmon
instability growth rate. This is equivalent to maximization of
u2(0) − u2(L). The velocity is proportional to the electric field
and inverse carrier density. Thus, a 2DES with a high field and
small carrier density at the source and a low field and high
density at the drain would be most suitable for “plasmonic
turbulence.” The simplest realization of this scheme is a
partly gated field-effect transistor (FET) with a short ungated
depleted region at the source, and a long gated and enriched
region at the drain (see the inset in Fig. 2).

To prove this hypothesis, we develop a model for plasmon
modes in a partly gated FET. The contacts of such a structure
are connected to voltage sources, which is a typical experi-
mental situation, and variation of the gate-source bias allows
us to form a carrier density step in the channel (n+ − n junc-
tion). We numerically solve the governing equations in the
absence of scattering (Appendix B), and we plot in Fig. 2 the
drift-induced corrections to plasmon eigenfrequencies for a
set of structures with varying junction location x0 and density
modulation factor. In accordance with our expectations, the
highest growth rate (point 1) is achieved for a structure with a
short, depleted, ungated source region. If we swap the contacts
and thus change the sign of the drift velocity, the magnitude
of a new maximum (point 2) will be predictably lower due to
the gate screening. In addition, Fig. 2 shows that the source
regions should not be too short, or else the structure would
approach the symmetric limits of open (x0 < 0) or fully gated
(x0 > 1) FETs with uniform density that are not subject to
instabilities.

Experimental data support our findings. Thus, the first
terahertz sources exploiting the excitation of plasmons by

direct current [24] were symmetric and provided broadband
radiation only at 4 K. Further implication of asymmetric
partly gated FETs [26] enabled the observation of resonant
room-temperature emission due to efficient plasmon-to-drift
coupling. Moreover, it was demonstrated in [26] that the
threshold current for THz emission is significantly reduced
with depletion of the near-source region, which is in agree-
ment with our analysis.

However, this depletion should be kept in proper bounds.
Indeed, a sharp density step not only increases the source
field, but also causes highly nonuniform distribution of plasma
wave velocity in the channel. This nonuniformity promotes
viscous losses, which are proportional to the velocity gradient,
and at some degree of asymmetry the viscosity takes over
gain.

IV. DRIFT-INDUCED PHENOMENA
IN PLASMONIC CRYSTALS

It turns out that drift-induced phenomena in periodic
systems—plasmonic crystals (PCs)—are completely different
from those in bounded 2DES. The reason is that in periodic
systems the drift operator is Hermitian due to translational in-
variance and thus conserves energy. Still, plasmon instabilities
in PCs can emerge—but only at high drift velocities, at least
in the depleted regions [33–35]. In that way, moderate carrier
drift in PCs does not affect the stability of plasma modes;
instead, it changes their spectrum.

To determine these spectrum modifications, we apply the
constructed perturbation theory accounting for the periodicity
of the structure. Namely, we exploit the Bloch decomposition
for the drift velocity carrier density variations and arrive at
the expression for modified frequency (13) with a generalized
derivative operator ∂x → ∂x + iqB, where qB is the Bloch
vector. The Green’s function in the periodic system is defined
according to

G(x, x′) =
n=+∞∑
n=−∞

G0(x, x′ + nL)eiqB (x′−x)eiqBnL, (17)

where x and x′ lie within a unit cell of length L, and G0 is the
true Green’s function of the periodic system. The unknowns
n, u, ϕ should now be understood as periodic parts of the
corresponding Bloch functions.

These remarks allow us to apply Eq. (13) to drift-induced
effects in PCs. We arrive at

δ�λ

�λ

= j0

∫ L
0 dx Im(muλDxu∗

λ)∫ L
0 dx Re(−enλϕ

∗
λ )

. (18)

As expected, the correction is real and corresponds to the zero-
mode Doppler shift.

Significant shifts can be useful in resonant photodetection
exploiting the plasmonic drag effect [36]. Indeed, in a typical
PC a normally incident light excites plasma wave packets
around qB = 0, where the group velocity distribution is sym-
metrical in the absence of drift. For a sufficient detection,
however, one needs a substantial asymmetry in this distri-
bution, which can be introduced via carrier drift. The latter
breaks the dispersion curve symmetry, and the greater the
Doppler shift is, the greater is the group velocity difference.
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FIG. 3. Left and lower right panels: Normalized Doppler shift
for the third and fourth modes in fully gated PCs with a density step
inside a unit cell. Upper right panel: �(u0 ) dependencies for a PC
with L2 = 0.7L1 and n2 = 0.7n1. Their character coincides with the
predictions of degenerate perturbation theory, Eq. (19). Inset: scheme
of a fully gated PC.

A detailed inspection of Eq. (18) shows, however, that the
linear Doppler shift turns to zero in the standing-wave limit
(qB = 0). Indeed, the velocity eigenfunctions uλ(x) can be
chosen to be real in this case, which turns the numerator to
zero. At the same time, the value of the Doppler shift can be
readily predicted using the degenerate perturbation theory that
is applicable when two interacting modes (labeled by 1 and 2)
are well separated in frequency from the others. In this case,
the drift-modified plasmon frequencies are given by

�± = 1
2 {�1 + �2 ±

√
(�1 − �2)2 + 4|V12|2}, (19)

where V12 is the normalized matrix element of the drift
operator,

V12 = 〈
1| ĤV̂dr |
2〉√
〈
1| Ĥ |
1〉 〈
2| Ĥ |
2〉

. (20)

Figure 3 illustrates our findings. In the left panel we plot
the calculated Doppler shifts for third and fourth modes that
exist in a range of fully gated PCs (see the inset in the upper
right panel) with a density step inside the unit cell. The shifts
are normalized by the expected shift value

�

2πsN/L
= ū0/N = j0

L1/n1 + L2/n2

NL
, (21)

where s is the plasma wave velocity under the first gate, L1 and
L2 are the gate lengths, L1 + L2 = L, n2 and n1 denote carrier
densities, and N enumerates the pairs of modes; in our case,
N = 2. The upper right panel shows �(u0) dependencies for
the first four modes in a PC with L2 = 0.7L1 and n2 = 0.7n1.
In full accordance with Eq. (19), we observe the parabolic
spectrum at very low velocities that transforms into the lin-
ear spectrum when the perturbation magnitude exceeds the
degeneracy contribution. Hence, the slope of the linear part
is determined by the nondiagonal matrix element, and in a
certain parameter range it leads to higher than the Doppler
shift.

The linear Doppler shift would reappear in plasmonic
structures where the velocity and density profiles cannot be
chosen real so that Im(muλDxu∗

λ) �= 0. As an example, the
magnetic field, being included in the �̂ operator, efficiently

entangles the real and imaginary parts of the zero-order wave
functions. Thus, the plasma modes become coupled to drift
in the first order (their stability is not affected as V̂mag is
Hermitian). A more detailed discussion of this influence will
be given elsewhere.

V. DISCUSSION AND CONCLUSION

The developed plasmonic perturbation theory has the same
functionality as its elder brother in quantum mechanics: given
the exact solution of an unperturbed problem, we can accu-
rately find corrections to the eigenfrequency under small per-
turbations. Unfortunately, exact solutions in 2D plasmonics
are unique among nontrivial cases such as the edge modes
[37] and plasma oscillations in gated 2DES with infinite
conductive walls [38]. Fortunately, however, the unperturbed
problem of plasma oscillations due to a self-consistent electric
field is readily solved with commercial electromagnetic sim-
ulators, and the resulting field profiles can be supplied to the
developed perturbation theory.

The assumption of hydrodynamic transport used in the
derivation limits the frequencies ω below the inverse electron-
electron scattering time τ−1

ee . This may seem restrictive as τ−1
ee

is an order of 1 THz at room temperature [39] and scales as
T 2. Most experimental observations of plasmons correspond
to the opposite ballistic limit ωτee 
 1 [29,40]. However,
the difference between predictions of hydrodynamic and bal-
listic approaches is important only when treating thermal
corrections to plasmon velocity and Landau damping [41].
Therefore, we can speculate that the developed PT would be
applicable in the ballistic limit as well.

Another assumption of the developed PT is the neglect
of retardation effects or, formally, setting the velocity of
light c to infinity. This assumption is justified for typical 2D
plasmons once their frequency ω0 lies below the light cone
ω = cq ∼ c/L [42]. Renouncing this assumption immediately
leads to radiative plasmon damping and non-Hermiticity of
the unperturbed problem. Formulation of PT in this case is
also possible [43] but requires dealing with diverging fields
far away from 2DES.

The presented examples were related to first-order or de-
generate perturbation theory. Higher-order corrections can
also be derived and are important when first-order effects are
absent due to symmetry (such as the Doppler shift in the center
of the plasmon Brillouin zone). Another nontrivial application
of higher-order corrections is the analysis of weak steady-state
plasma turbulence for direct current slightly exceeding the
threshold [32,44]. So far, the solution of such problems in
2DES was achieved with numerical simulations [18] or it was
limited to model systems [45]. The general analysis is possible
with the developed PT, and it will be reported elsewhere.

In conclusion, we have developed the perturbation theory
for two-dimensional hydrodynamic plasmons and demon-
strated its utility by revealing the instability conditions of
direct current against excitation of plasmons. We have derived
a constitutive relation between the current-induced growth
rate of plasmon and its steady-state field distribution. This
relation clarifies the crucial role of structural asymmetry for
efficient excitation of plasmons by direct current. In periodic
systems—plasmonic crystals—the current does not lead to
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instabilities in the first order, but it does induce a Doppler shift
that can be both above and below the conventional value.
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APPENDIX A: CHIRAL BERRY PLASMONS

Apart from treating the perturbations that directly enter the
equations of motion (1)–(5), our theory also accounts for the
boundary condition perturbations. In particular, this property
can be useful for the description of chiral Berry plasmons
(CBPs)—a new type of edge plasmonic states in 2D materials
with nonzero Berry flux [46]. CBPs arise as follows. Nonzero
Berry flux provides an “anomalous” contribution Ja to the
total particle current Jtot = J + Ja, where J = NU is the usual
current density. The anomalous current does not affect the
governing HD equations (due to ∇Ja = 0), but it changes the
boundary condition on the 2DEG edge from the usual J⊥ = 0
to Jtot,⊥ = 0. Song and Rudner [47], and later Zhang and
Vignale [48], found this BC change to split the frequencies
of right- and left-propagating plasmons, which were therefore
named chiral Berry plasmons. However, they did that in
a restrictive quasilocal electrostatic approximation [49] that
does not, in particular, reproduce the logarithmic divergence
of edge magnetoplasmon group velocity at short wave vectors
in strong magnetic fields [37]. This divergence stems from
the 2D Coulomb potential divergence, which is violated in
the quasilocal approximation. We demonstrate below how the
perturbation theory, given precise electrostatics, reproduces
the CBP frequency gap for small Berry flux and corresponding
anomalous current.

We consider a semi-infinite 2DEG with nonzero Berry
flux F confined to an {x > 0, y} half-plane and require the
potential and electric field continuity at the x = 0 boundary
along with Jtot,x|x=+0 = 0. The latter BC is the only dif-
ference that distinguishes the CBP problem from the edge
plasmon problem solved by Volkov and Mikhailov [37], who
obtained the edge plasmon frequency �0 = ω2D/

√
1.217,

ω2D =
√

2πe2n0|q|/m, where q is the wave vector in the y
direction. Replacing J in Eqs. (1) and (2) with Jtot and using
∇Ja = 0, we arrive at the following problem:

(�̂ + V̂a)
 = �
, (A1)

where

V̂a = �0
eF
h̄n0

(
0 0

−e∇aGq[·] 0

)
(A2)

is the “anomalous” perturbation operator induced by the
(dimensionless) Berry flux F , ∇a = x̂iq − ŷ∂x, Gq[ f ] =

2
∫ ∞

0 dx′K0(q|x − x′|) f (x′), K0(x) is the modified Bessel
function of the second kind.

Thus, we transformed the BC perturbation into a more
convenient form. Now the formulation of the zero-order
problem (A1) coincides with the formulation of the edge
plasmon problem [37]. Taking Volkov-Mikhailov mode
profiles, we evaluate the Berry-flux-induced correction
〈
| ĤV̂a |
〉 / 〈
| Ĥ |
〉 and calculate the gap between two
branches of CBP:

h̄��(q) = 3.65Fe2|q| (A3)

versus the Song-Rudner result

h̄��SR(q) = 8
√

2π/9Fe2|q| ≈ 3.95Fe2|q|. (A4)

Thus, our calculations qualitatively approve the approxi-
mate Song-Rudner solution and downshift the gap width by
10%. This change is a minor one and grants all the nonrecip-
rocal implementations of CBPs discussed in [47].

APPENDIX B: NUMERICAL METHOD

To obtain the results shown in Fig. 2, we apply a standard
spectral numerical method to the system of hydrodynamic
equations (1)–(5) with Chebyshev polynomials of the first
kind Ti taken as the basis functions. To be more concrete,
after writing the linearized Eqs. (1) and (2) in dimensionless
units [ξ = 2x/L − 1, ñ = n/n0(0), ũ = u/s(0), ω = �L/s(0),
where s(0)2 = e2n0(0)L/m] we substitute the Chebyshev ex-
pansions in the form

{ñ, ũ} =
N∑

i=0

C{n,u}
i Ti(ξ ) (B1)

and project the system on each of the polynomials Ti(ξ ), i =
0, . . . , N . After these manipulations, we arrive at the matrix
equation: (

M̂ (1) M̂ (2)

M̂ (3) M̂ (4)

)(
Cn

i
Cu

i

)
= iω

(
Cn

i
Cv

i

)
, (B2)

where

M̂ (1)
i j = M̂ (4)

i j = ti j 〈Tj | w(ξ )∂ξ |u0Ti〉 ,

M̂ (2)
i j = ti j 〈Tj | w(ξ )∂ξ |n0Ti〉 ,

M̂ (3)
i j = ti j 〈Tj | w(ξ )∂ξ

∣∣∣∣
∫ 1

−1
dξ ′G(ξ, ξ ′)Ti(ξ

′)
〉
,

ti j =
{

1/π, i = 0,

2/π otherwise,

and w(ξ ) = (1 − ξ 2)−1/2 is the weight function; {i, j} =
0, . . . , N for all the matrices.

Implying boundary conditions of fixed charge density at
the contacts ñ(−1) = ñ(1) = 0, we obtain

Cn
N = −

N/2−1∑
i=0

Cn
2i, (B3)

Cn
N−1 = −

N/2−1∑
i=0

Cn
2i+1, (B4)
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where N is supposed to be even. We use these expressions to
eliminate Cn

N and Cn
N−1 from the system (B2) and, in order to

keep the matrix dimensions, truncate the first three matrices.
One may face computational difficulties while evaluating

matrix elements M̂ (3)
i j as the Green function is singular on the

diagonal ξ = ξ ′. To overcome this, we decompose the Green
function into singular (Gs) and regular (Gr) parts:

G = (G − Gs) + Gs ≡ Gr + Gs, (B5)

where

Gs = ln
(ξ − ξ ′)2

(ξ + ξ ′ − 2)2(ξ + ξ ′ + 2)2
(B6)

accounts for the singularity provided by the charge itself as
well as by the two nearest mirror images in the electrodes.
The regular integral is then calculated numerically while the

singular one can be significantly simplified via transition to
the complex plane.

The Green function of a partly gated structure is given by

GPG(ξ, ξ ′) = ln

[
(α − α′)2 + (β + β ′)2

(α − α′)2 + (β − β ′)2

]
, (B7)

where α′ + iβ ′ = z′,

z′ = cos ψ

√
tanh2 π (d + iξ ′)

2 L
+ tan2 ψ, (B8)

and ψ = πLg/2L.
The values of the first correction obtained by the described

procedure and by the perturbation theory [Eq. (14)] fully
coincide at small drift velocities.
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