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Anisotropic thermal expansion and thermodynamic properties of monolayer β-Te

Gang Liu,1,*,† Zhibin Gao,2,3,* and Jie Ren2,‡

1School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special

Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
3Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore

(Received 29 December 2018; revised manuscript received 22 April 2019; published 20 May 2019)

Recently, β-Te [atomically two-dimensional (2D) tellurium] with rectangular crystal structure has been
synthesized successfully on highly oriented pyrolytic graphite substrates by using molecular beam epitaxy
[Z. Zhu et al., Phys. Rev. Lett. 119, 106101 (2017); Chen et al., Nanoscale 9, 15945 (2017)]. It has been
found to possess remarkable properties such as ultralow lattice thermal conductivity and high thermoelectric
efficiency. Based on first-principles calculations, we study the thermal expansion and thermodynamic properties
of the experimental phase monolayer β-Te, using the quasiharmonic approach. It is found that β-Te shows large
positive thermal expansion at elevated temperature, while the linear thermal expansion coefficient is negative
along the a direction at very low temperature. The linear thermal expansion coefficient along the b direction is
4.9 × 10−5 K−1 at 500 K, which is considerably large in 2D materials. β-Te exhibits strong in-plane anisotropy,
including thermal expansion, 2D elastic moduli, and Poisson’s ratios. However, the elastic moduli, Poisson’s
ratios and the in-plane anisotropy are weakened with increasing temperature, and the variations are dominated
by the generalized mode Grüneisen parameters.
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I. INTRODUCTION

Two-dimensional (2D) materials have been investigated
extensively in recent years since the exfoliation of graphene
[1–3]. Due to their intriguing properties and the prospects
for various device applications, the family of 2D materials
has undergone rapid expansion, including transition metal
dichalcogenides [4–11], transition metal carbides and car-
bonitrides (MXenes) [12], and group-III, -IV, and -V mono-
layers [13–20]. However, there are few investigations about
2D group-VI materials so far. In 2017, 2D selenium of Group-
VI was synthesized controllably [21]. Very recently, Zhu
et al. [22] predicted three phases of tellurene (Te monolayer),
named α-, β-, and γ -Te. Only β-Te has been synthesized suc-
cessfully on highly oriented pyrolytic graphite substrates by
using molecular beam epitaxy [22,23]. It was found that both
the α- and β-Te phases possess electron and hole mobilities
much higher than 2H-MoS2. This work is highlighted in an
exclusive report for its potential implication [24]. Further-
more, tellurene field-effect transistors have been fabricated,
showing air-stable and extraordinary high performance [25].
It was also found theoretically that both the α- and β-Te
possess excellent thermoelectric performance and ultralow
lattice thermal conductivity [26–28].

Electronic devices usually work at finite temperatures.
For instance, the thermoelectric efficiency of tellurene has
a much larger value at high temperature than room temper-
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ature [26,27]. Thus, thermal expansion and thermodynamic
properties show significant importance in applications for
materials. For instance, the materials will expand or contract
significantly when working at high temperature, and the ac-
cumulated thermal strain and stress may affect the perfor-
mance of devices greatly, or even destroy them. Thus, a more
comprehensive knowledge of thermal expansion and thermo-
dynamic properties are urgently needed and could accelerate
the progress of practical applications of materials. In this
work, the thermal expansion and thermodynamic properties
of experimental phase β-Te are investigated by quasiharmonic
approximation (QHA) based on first-principles calculations,
including phonon spectra, Grüneisen parameters, thermal ex-
pansion, and temperature-dependent stiffness. It is found the
linear thermal expansion coefficients (LTECs) of β-Te show
significantly positive values at most temperature ranges stud-
ied, especially that of 4.9 × 10−5 K−1 along the b direction at
500 K. However, the LTEC along the a direction is negative
at low temperature, and the in-plane thermal expansion is
significantly anisotropic, as are the 2D elastic moduli and
Poisson’s ratios. At high temperature, these elastic moduli are
softened, while the in-plane anisotropy becomes weaker. The
variations of elastic moduli and in-plane anisotropy are also
dominated by the generalized Grüneisen parameters.

II. COMPUTATIONAL AND THEORETICAL METHODS

All first-principles calculations, including the structure,
electronic structure, and energy are performed using the
Vienna ab initio Simulation Package (VASP) [29–32] based
on density functional theory (DFT). The exchange-correlation
functional used is the Perdew-Burke-Ernzerhof of the
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generalized gradient approximation [33,34], and the cutoff
energy of the plane-wave basis is set to 500 eV. The crystal
structure is relaxed with the total energy convergence criterion
of 10−8 eV, while the force convergence criterion is set to
10−4 eV/Å. The effects of spin-orbit coupling is also taken
into consideration, in order to obtain an accurate electron
structure and other properties. During the structure optimiza-
tion, the correction of long-range van der Waals forces is taken
into consideration by means of the DFT-D2 method [35]. A
Monkhorst-Pack [36] k mesh of 9 × 12 × 1 is used to sample
the Brillouin zone. The phonon distributions are obtained
by using the PHONOPY script [37] based on the supercell
approach with the finite displacement method. A 4 × 5 × 1
supercell and 150 × 200 × 1 q mesh are adopted to ensure
the convergence of vibrational properties in the calculations
of harmonic interatomic force constants.

In this work, the QHA is adopted to investigate the tem-
perature dependent lattice constants, which introduces the
effect of temperature through the volume dependence of the
vibrational frequency, and only the volume dependence is
considered for the phonon anharmonicity. In the most popular
scheme of QHA, the phonon spectra of about ten or more
volumes are usually calculated to simulate the relationship
of volume and phonon frequencies. Then the equilibrium
volume at a certain temperature can be achieved through the
direct minimization of the free energy. This method shows its
efficiency on the investigation of thermal expansion for lots
of isotropic materials, such as diamond, graphite, graphene,
h-BN, silicene, germanene, and blue phosphorene [38–40].
However, it is inefficient for anisotropic materials. Specifi-
cally, a series of calculations needs to be performed over a grid
of lattice-parameter points, and the dimensionality of the grid
is determined by the number of independent lattice parameters
[38]. It implies dozens or even hundreds of volumes of phonon
spectra, which need huge computational resources and time
consumption. Besides, another shortcoming of this method is
the readily emerging negative frequency for 2D materials. It
is well known that the ZA mode is soft near the � point, and
their frequency may turn negative under relatively large strain.
However, to accurately fit the data points of energy to an
equation of state, these data points should span in a reasonably
large energy range [39]. This contradiction also affects the
accuracy and validity of the method for 2D materials [39].
Grüneisen theory is a method of time saving and can be used
to deal with the case of anisotropic materials [41–49], which
needs the calculations of only several volumes of phonon
spectra. However, in Grüneisen theory, Grüneisen parameters
and elastic constants are independent of temperature and al-
ways keep constant, probably leading to significant deviation
at high temperature [50].

Within the QHA, we develop an ab initio method to deal
with the anisotropic thermal expansion based on the self-
consistent quasiharmonic approximation (SC-QHA) [51–54].
It can investigate thermal expansion not only with high
accuracy but also saves time. However, it does not adopt
the scheme of self-consistent iteration like SC-QHA, but
it achieves equilibrium lattice constants through pressure
solving directly, and is therefore named the pressure-solving
quasiharmonic approximation (PS-QHA). Furthermore, we
generalize it to the case of the anisotropic thermal expansion.

The total free energy consisting of electronic energy E (ai )
and phonon free energy Fph(ai ), can be expressed as

Ftot = E (ai ) + Fph(ai )

= E (ai ) + 1

N

∑
λ,q

{
1

2
h̄ωλ,q(ai )

+ kBT ln

[
1 − exp

(
− h̄ωλ,q(ai )

kBT

)]}
, (1)

where ai means the independent lattice parameter, i.e., a and
b for β-Te. kB, h̄, and N are the absolute temperature, Boltz-
mann’s constant, reduced Planck constant, and the number
of q points in the Brillouin zone, respectively. E (ai ) is the
ground-state energy, ωλ,q is the phonon frequency correspond-
ing to the wave vector q, mode λ. In the QHA, as ωλ,q is only
volume dependent, ωλ,q and the generalized mode Grüneisen
parameter γλ,q(ai ) can be described by a Taylor expansion, up
to the second order:

ωλ,q(ai ) = ωλ,q(ai,0) +
∑

i

(
∂ωλ,q

∂ai

)
0

	ai

+ 1

2

∑
i, j

(
∂2ωλ,q

∂ai∂a j

)
0

	ai	a j, (2)

γλ,q(ai ) = − ai

ωλ,q

[(
∂ωλ,q

∂ai

)
0

+
(

∂2ωλ,q

∂a2
i

)
0

	ai

]
. (3)

Here ai,0 is the reference lattice constant that is obtained
directly by the geometry optimization of DFT, and 	ai =
ai − ai,0. The equilibrium state under the zero external pres-
sure P, fulfills the relationship

∂Ftot

∂ai
= ∂Ftot

∂V

∂V

∂ai
= P

∂V

∂ai
= 0. (4)

In fact, ∂Ftot
∂ai

can be considered as the force acts on the area
perpendicular to the ai direction, and it also can be expressed
as

∂Ftot

∂ai
= ∂E

∂ai
+ ∂Fph

∂ai
= ∂E

∂ai
− h̄

Nai

∑
λ,q

ωλ,q(ai )γλ,q(ai )

×
⎧⎨
⎩1

2
+ 1[

exp
( h̄ωλ,q (ai )

kBT

) − 1
]
⎫⎬
⎭ = 0. (5)

Then we can obtain the equilibrium lattice constants at a
certain temperature by solving Eqs. (2), (3), and (5). Actually,
when the external pressure is zero, the equilibrium lattice con-
stants are determined by the balance of ∂E

∂ai
and ∂Fph

∂ai
, i.e., the

forces contributed by the electron and phonon, respectively.
At last, the LTEC can be achieved through

αi = 1

ai

∂ai

∂T
. (6)

Moreover, the temperature dependent 2D elastic constant
can be obtained based on the total free energy, through the
following equation:

Ci j = 1

S

∂2Ftot

∂εi∂ε j
= 1

S

(
∂2E

∂εi∂ε j
+ ∂2Fph

∂εi∂ε j

)
, (7)
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where S is the unit area, εi means the strain tensor, and the
Voigt notation is adopted. Note the first term on the right
side is the contribution of the electron to the 2D elastic
constant, while the second term means the contribution of the
phonon, which can be named the electronic and phonon elastic
constant. The latter can be expressed as

1

S

∂2Fph

∂εi∂ε j
= aia j

S

h̄

N

∑
λ,q

{(
1

2
+ 1

exp
( h̄ωλ,q

kBT

)−1

)
∂2ωλ,q

∂ai∂a j

− exp
( h̄ωλ,q

kBT

)
[
exp

( h̄ωλ,q

kBT

) − 1
]2

h̄

kBT

∂ωλ,q

∂ai

∂ωλ,q

∂a j

⎫⎬
⎭.

(8)

In this work, first, electronic energies of 48 sets of lattice
constants around the equilibrium lattice constants are cal-
culated using DFT. Specifically, a/a0 are chosen from 0.98
to 1.03, and b/b0 are in the range of 0.98 to 1.05. Both
of them are with a step of 0.01. These electronic energies
are interpolated with a cubic spline function, to obtain ∂E

∂ai
.

Then five sets of lattice constants of β-Te are considered
for the calculation of the phonon spectra: (0.99a0, 1.00b0),
(1.00a0, 1.00b0), (1.01a0, 1.00b0), (1.00a0, 0.99b0), and
(1.00a0, 1.01b0). Note a0 and b0 denote the reference lattice
constants obtained by DFT directly. The internal coordinates
of the atoms for each structure under strains are relaxed to
include the effect of the displacements of them on the phonon
property [45]. Usually, it is sufficient for the materials without
phase transition. The total five sets of phonon spectra are
calculated, to obtain the first and second order derivatives of
phonon free energy. Then phonon frequency and the gener-
alized Grüneisen parameter for any set of (a, b) can be also
obtained based on Eqs. (2) and (3). Furthermore, the total free
energy at a certain temperature T can be determined based on
Eq. (1). After that, we can solve Eq. (5) by using dichotomy.
Note there are two independent variables of a and b. We first
fix b = b0, then perform a dichotomy method for a, until
∂Ftot
∂a < eps, here eps is the stopping criterion. Now we denote

the convergent a from dichotomy as an. Next, with fixed a =
an, we perform a dichotomy method for b, until ∂Ftot

∂b < eps,
and denote the final b as bn. Then we can also check whether
∂Ftot
∂a < eps is satisfied. If the two conditions are satisfied

simultaneously, the calculation finishes. Otherwise, we should
repeat the above procedures, until the two conditions are
satisfied simultaneously. The last an and bn are the solution.
After the lattice constants are calculated at any T , TECs and
the temperature dependent elastic constants can be calculated
based on Eqs. (6)–(8). Compared with the conventional QHA
of minimization of free energy, our scheme cannot only save
lots of computational time for phonon spectra, but also avoid
the negative frequency for 2D materials when large strain is
applied.

III. RESULTS AND DISCUSSION

First of all, we focus on the calculation of LTECs of in-
plane isotropic 2D material to test the validity and reliability
of our PS-QHA. The LTECs of 2H-MoS2 and 2H-MoSe2 are
calculated and shown in Fig. 1. It is found that the lines of PS-
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FIG. 1. The LTECs of 2H-MoS2 and 2H-MoSe2, compared with
previous ab initio calculations. The black solid lines in (a) and (b)
present the results of PS-QHA, and the red dashed lines are from the
results of Refs. [52] and [54].

QHA are very close to the results of previous works [52,54]
indicating our PS-QHA is accurate and reliable.

The optimized structures of β-Te are displayed in Fig. 2(a).
The optimized lattice parameters are a = 5.499 and b =
4.173 Å, with the buckling height h = 2.176 Å. The data
we obtained are in good agreement with previous studies
[22,23,26–28]. Note here h is much thicker than many other
2D materials, such as silicene of 0.42 ∼ 0.45 Å [39,53], ger-
manene of about 0.69 Å [39,53], and blue phosphorene of
1.24 Å [39]. Actually, it can be compared to that of 2.51 Å
for black phosphorene [55]. It is worth noting that the rela-
tively large buckling height affects much on atom vibrations
and generalized mode Grüneisen parameter, which will be
discussed later.

Detailed knowledge of the phonon dispersions is a pre-
requisite not only for the performance of QHA, but also for
the understanding of various phononic and thermodynamic
properties. The calculated phonon dispersions of equilibrium
lattice constants, as well as the ones under the strains we
have chosen, are shown in Figs. 2(b) and 2(c). The projected
density of states (PDOS) for the equilibrium structure is also
exhibited in Fig. 2(d). It shows that all phonon branches of
equilibrium lattice constants are positive without negative fre-
quency, confirming the dynamical stability of β-Te [28]. The
range of phonon dispersion is 0 to about 5.5 THz. The out-of-
plane (Z) and in-plane (X and Y ) vibrations couple with each
other in the whole frequency range, different from graphene
[56]. The in-plane C-C bonds are orthogonal to the out-of-
plane direction in planar graphene, resulting in the complete
decoupling of in-plane and out-of-plane vibrations [52,53,56].
However, in β-Te with large thickness, the covalent bonds
become nonorthogonal, leading to the hybridization of these
vibrations. Furthermore, the phonon under tensile or com-
pressed strains along two directions, which are calculated by
Eq. (2), are free of imaginary frequency, too. It ensures the
validity of calculations of the thermal expansion. It is found
that the variations of the phonon spectra along the a direction
are smaller than the ones along the b direction, indicating the
smaller generalized mode Grüneisen parameters along the a
direction.
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FIG. 2. (a) The optimized structures of β-Te. Both top view and
side views are exhibited, and the primitive cell is marked with black
solid lines. Note h is the buckling height. (b) and (c) show the phonon
spectra of β-Te along the high symmetric line under strains, and
green solid lines always represent phonon dispersion free of strain.
Blue and red dashed lines mean the phonon spectra under ±1% strain
along the a direction in (b), while they represent the ones under ±1%
strain along the b direction in (c). The PDOS of the equilibrium
lattices along the X , Y , and Z directions are displayed in (d).

As an important physical parameter closely related to
phonon anharmonicity, the generalized mode Grüneisen pa-
rameter γ is investigated by applying the strains of ±1%
along the a and b directions, respectively, as exhibited in
Fig. 3. It should be noted that γ of most ZA phonons have
large negative values around �, as displayed in Fig. 3. It
is in agreement with the well-known phenomenon that ZA
phonons around � show a large negative γ for 2D material,
such as graphene [40,42], h-BN [40], and MoS2 [40,52]. It
is denoted as the membrane effect [38]: in a 2D system, the
vibrations of bending ZA modes can be compared to the ones
in a string. When the string is stretched, it will be stiffer with
vibrations of a smaller amplitude but higher frequency, lead-
ing to negative γ . However, there are also many ZA phonons
that have positive γ , due to its relatively large thickness.
This is different from the case of planar graphene and h-BN,
whose ZA phonons clearly show a total negative value of the
mode Grüneisen parameters [40,42]. It is similar to MoS2,
whose structure is nonplanar [40,52]. It originates from larger
thickness introducing more hybridization of the in-plane and
out-of-plane vibrations, leads to a softening effect on the ZA
modes in a thicker membrane. This is the so-called thickness
effect [57], which can counteract the membrane effect in 2D
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FIG. 3. The generalized mode Grüneisen parameters γ . (a)
shows γ (a) corresponding to the strain along the a direction, and
γ (b) corresponding to the strain along the b direction are exhibited
in (b).

systems. Also, it can significantly affect its thermal expansion
at low temperature, which will be discussed later in our
work. Furthermore, the distribution range of most γ (a) are
significantly smaller than that of γ (b), showing remarkable
anisotropy. The unique structure of β-Te along the a direction,
which is similar to the black phosphorene along the armchair
direction to some extent, determines that β-Te is softer along
the a direction [58]. Thus, the tension along the a direction
can change the bond properties less than that along the b
direction, indicating a smaller variation of phonon frequencies
and γ . The optical phonons around 1 THz have the greatest γ ,
implying relatively larger phonon anharmonicity, compared
with other optical phonons. After careful examination, we
find these optical phonons are corresponding to the vibrations
along the y direction (b direction), which is consistent with
previous study [28]. In fact, the anharmonic frozen-phonon
potential curve of this phonon mode in Ref. [28] illustrates
the relatively large anharmonicity, which can be reproduced
excellently by a fourth order polynomial fitting, while the
second order polynomial fitting shows significant deviation.
It also implies that the large γ originates from the nonlinear
dependence of restoring forces on atomic displacement am-
plitudes, which is also direct evidence of the anharmonicity
[28,59,60].

Macroscopic Grüneisen parameters can be defined as
[61,62]

γ̄ (ai ) =
∑

λ,q Cλ,qγλ,q(ai )∑
λ,q Cλ,q

, (9)

where Cλ,q is the mode contribution to the heat capacity.
It represents the average value of the generalized mode
Grüneisen parameter weighted by Cλ,q. Here γ̄ are calculated
and shown in Fig. 4. Based on Eq. (3), the generalized mode
Grüneisen parameter γ changes with lattice constants, which
depends on temperature. It can be found that γ̄ along both
directions shows a similar dependence of temperature. They
are all significant negative values at very low temperature, as
the ZA phonons with low frequency and negative γ can be
activated readily. Then they rise quickly and become positive.
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FIG. 4. Macroscopic Grüneisen parameters γ̄ vary with temper-
ature. Short-dotted lines indicate γ̄0, corresponding to the reference
lattice constants a0 and b0. Note the line of γ̄0(a) nearly overlaps that
of γ̄ (a).

The corresponding critical temperatures are 20 and 10 K for
γ̄ (a) and γ̄ (b). At last they reach their saturation values.
However, the saturation value of γ̄ (b) is 1.61, remarkably
larger than 0.65 of γ̄ (a). This is consistent with the results
of mode Grüneisen parameter γ , as shown in Fig. 3. The
macroscopic Grüneisen parameters γ̄0, based on the mode
Grüneisen parameter γ0 corresponding to the reference lattice
constants a0 and b0, are also displayed for comparison. In
general, γ̄ and γ̄0 are very close to each other, especially those
along the a direction. At high temperature, there is a small
difference between the lines of γ̄ (b) and γ̄0(b). It implies
γ changes little with the change of lattice constants and are
independent of temperature approximately.

The ratios of lattice constants a(T )/a0 and b(T )/b0 are
displayed in Fig. 5(a). First, the lattice constants at 0 K, i.e.,
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FIG. 5. The ratios of lattice constants (a) and TECs (b) for
β-Te. The black and red lines represent the data along the a and
b directions, respectively. The short-dotted lines are the TECs from
conventional QHA in (b).

a(0) and b(0), are not equal to the reference lattice constants
a0 and b0. They expand by 0.19% and 0.08% along the a and b
directions, respectively. It originates from the contribution of
zero-point vibration, which is also included in the most popu-
lar scheme of QHA, whereas it is omitted in Grüneisen theory.
The lattice constant b stretches greatly with the increasing
temperature. It also shows remarkable anisotropy. At 500 K, b
expands by about 1.6% while a expands by only 0.7%.

We also plot the temperature dependence of LTECs in
Fig. 5(b). It is found that β-Te shows giant thermal expan-
sion, especially along the b direction. At 500 K, the LTEC
along this direction α2 is as large as 4.9 × 10−5 K−1, much
larger than many 2D materials, such as black phosphorene
(9 ∼ 10 × 10−6 K−1) [58,63], MoS2 (7.5 × 10−6 K−1) [52],
MoSe2 (8 × 10−6 K−1) [54], and MoTe2 (4 × 10−6 K−1) [54].
The LTEC along the a direction α1 is 8.9 × 10−6 K−1, much
smaller than the one along the b direction at the same tem-
perature. In fact, at 500 K, the ratio of the LTEC along the
a direction to that along the b direction is about 0.18, indi-
cating giant anisotropic thermal expansion. For comparison,
the ratio of the LTECs is about 0.39 for black phosphorene
at high temperature [58]. It is concluded that β-Te shows
much stronger in-plane anisotropy of thermal expansion than
black phosphorene. Below 35 K, α1 is negative, and it reaches
the lowest value of −4.6 × 10−6 K−1 at 15 K. It is similar
to the case of MoS2, which also has small negative thermal
expansion only in a narrow temperature range [40,52]. On
the contrary, graphene and h-BN show significantly negative
thermal expansion from 0 K to high temperature [40]. The
difference originates from their planar or nonplanar structures,
which affect mode Grüneisen parameters around the � point.
The most negative value of Grüneisen parameters of ZA
phonons is about −25 in β-Te, much higher than those of
planar graphene and h-BN (as low as −80) [40], indicating
there can be only a small temperature range of negative
thermal expansion in β-Te. On the other side, α2 is positive
in the whole temperature range. It is noteworthy that α2 is
positive, while γ̄ (b) are negative in the range of 0–10 K,
contrary to the common perspective for isotropic material,
where the negative macroscopic Grüneisen parameter usually
leads to negative thermal expansion [38,39], and vice versa. It
can be understood using Grüneisen theory [34]:

α1 = CV

A0
(S11γ̄ (a) + S12γ̄ (b))

α2 = CV

A0
(S12γ̄ (a) + S22γ̄ (b)). (10)

Here CV is the heat capacity, A0 is the area of the primitive
cell, and Si j is the matrix element of the elastic compliance
tensor, which is the inverse of the elastic stiffness tensor:

S11 = C22

C11C22 − C2
12

, S22 = C11

C11C22 − C2
12

,

S12 = − C12

C11C22 − C2
12

. (11)

Based on Eq. (10), it is found that the macroscopic
Grüneisen parameter can determine the sign of LTEC as
γ̄ (a) = γ̄ (b) in isotropic materials. However, the macroscopic
Grüneisen parameter cannot solely determine the sign of
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QHA, displayed by black solid circles. The red line shows the
structures β-Te can actually reach during thermal expansion. Blue
solid circles are the points corresponding to imaginary frequencies.
(b) exhibits the phonon spectra of β-Te at 0, 300, and 500 K,
respectively. Note the lattice constants of β-Te at 300 and 500 K are
(1.004a0, 1.008b0 ) and (1.007a0, 1.016b0 ), respectively.

LTEC for anisotropic materials. For instance,γ̄ (a), γ̄ (b) are
−1.636, −0.881, respectively, and S11, S12, S22 are 0.095,
−0.025, 0.043 m N−1 at 5 K. This combination determines
LTEC is positive though γ̄ (b) is negative.

To further confirm the validity and reliability of our PS-
QHA, we also calculate TECs for β-Te by conventional QHA.
Here we construct a grid of 54 points of lattice constants.
Specifically, a/a0 is chosen from 0.99 to 1.015, and b/b0 is
in the range of 0.99–1.03, with both in steps of 0.005. The
results are also plotted by short-dotted lines in Fig. 5(b) for
comparison. It is found that the data of the two methods
are in reasonable agreement with each other, especially at
low temperature. However, at high temperature, there are
significant deviations. After carefully checking, we find the
remarkable deviations come from the inevitable imaginary
frequency in conventional QHA. In conventional QHA, a 2D
grid is constructed, where the phonon spectra of each lattice
parameter point need calculating. The points used by conven-
tional QHA and those β-Te can actually reach during thermal
expansion, as well as the ones which are corresponding to
imaginary frequencies, are displayed in Fig. 6(a). It should
be noted that the grid is for the fitting of the curve surface
of total free energies, though most points in the grid are
not corresponding to the points where the cell of β-Te can
actually reach in the process of thermal expansion, as shown
in Fig. 6(a). Moreover, the points β-Te can actually reach
at high temperature are closed to the region of imaginary
frequency. These additional points then cannot be removed
in the conventional QHA method, though they correspond to
the imaginary frequency. It is because in conventional QHA,
the range of the grid should be large enough to ensure the
accuracy and reliability of the fitting result. This contradic-
tion causes the result of conventional QHA not to be quite
reliable for β-Te. However, our PS-QHA can circumvent the
problem of imaginary frequencies, as displayed in Fig. 6(a).
The phonon spectra of β-Te at 300 and 500 K are plotted

in Fig. 6(b), without any imaginary frequency, indicating the
validity and reliability of our PS-QHA. There is no structure
with negative frequency involved in PS-QHA, indicating our
method is more reliable and accurate than conventional QHA
for β-Te. In fact, previous work [39] has already pointed out
that conventional QHA is not very applicable for 2D mate-
rials with large thermal expansion, as imaginary frequencies
probably occur under large strain in 2D materials.

Based on the temperature dependent elastic constants,
we can obtain the temperature dependent 2D bulk moduli,
Young’s moduli, and Poisson’s ratios [55,64–67]:

B2D = 1

4
(C11 + C22 + 2C12),

Ex = C11C22 − C12C21

C22
, Ey = C11C22 − C12C21

C11
,

vxy = C21

C22
, vyx = C12

C11
. (12)

Note that C12 is equal to C21, and the unit of these 2D elastic
moduli is N m−1, which can be converted to a bulk unit of
N m−2 by dividing the effective thickness of the material.
These elastic moduli and Poisson’s ratios are calculated and
plotted in Fig. 7, and show significant in-plane anisotropy. The
elastic constant and bulk modulus along the a direction (C11

and Ex) are much smaller than those along the b direction (C22

and Ey), implying β-Te is much softer along the a direction.
This is also in agreement with the distribution of general-
ized mode Grüneisen parameters. Moreover, C22 and Ey are
more sensitive to temperature than C11 and Ex. From 0 to
500 K, elastic moduli reduce by 15, 35, 17, and 36% for
C11, C22, Ex, and Ey, respectively. All the elastic moduli
decrease with increasing temperature, indicating the softening
of β-Te at high temperature. Based on Eq. (12), the Poisson’s
ratios change with the variations of elastic constants C11,
C22, and C12 at elevated temperature. It is notable that the
sign of Poisson’s ratio does not have a direct relation to the
sign of thermal expansion coefficients, as positive/negative
thermal expansion is not solely determined by elastic con-
stants based on Grüneisen theory. These elastic constants are
always positive, determining the positive Poisson’s ratios in
the temperature range we studied. The Poisson’s ratio vxy

rises, while vyx declines when temperature becomes higher.
The different temperature dependent behaviors originate from
the faster decline of C22 than C12 with increasing tempera-
ture, whereas C12 decreases faster than C11. All these results
above show the in-plane anisotropy is weakened by increasing
temperature.

Since the total free energy consists of electronic energy
and phonon free energy, the contributions of electron to elastic
constants and bulk modulus (electronic elastic constants and
bulk modulus) are also displayed with short-dotted lines for
comparison, as shown in Fig. 7. It is assumed that the tempera-
ture dependences of elastic moduli are solely caused by lattice
thermal expansion, without the contribution of phonons. The
electronic elastic moduli also reduce with increasing tempera-
ture, as volume expansion always causes the decease of the
second derivative of the potential-energy surface [57]. The
electronic elastic moduli are nearly the same with the total
elastic moduli at 0 K, as the contribution of phonon trends
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FIG. 7. The temperature dependences of 2D elastic constants (a), bulk moduli (b), Young’s moduli (c), and Poisson’s ratios (d). Note the
short-dotted lines represent the physical quantities considering the contribution of electron only.

toward zero at this temperature, based on Eq. (8). In fact, at
0 K the phonon elastic constants can be expressed as

lim
T →0

1

S

∂2Fph

∂εi∂ε j
= aia j

S

h̄

N

∑
λ,q

1

2

∂2ωλ,q

∂ai∂a j
. (13)

Thus, it can be concluded that the second order derivative
of ω is very small and can be ignored safely, since the elec-
tronic elastic constants are equal to the total elastic constant
at 0 K, indicating the phonon elastic constants trend to zero.
Moreover, it is in agreement with Fig. 4, which implies the
mode Grüneisen parameter γ does not vary much along with
lattice constants. At high temperature, there are significant
derivations between the electronic and total elastic moduli,
which originates from the intense excitation of phonons at
high temperature. The reductions of electronic elastic moduli
only represent minor percentages of the whole reductions.
For instance, the reduction of electronic bulk modulus is only
41% of the reduction of total bulk modulus in the temperature
range. It indicates that the phonon dominates the temperature
dependences of elastic moduli in β-Te, the same as many other
2D materials [50]. The effect of the phonon must be taken
into account when the elastic properties are investigated at
elevated temperature. Based on Eq. (8), at high temperature

the contribution of the phonon to elastic constants can be
expressed approximately as

lim
T →∞

1

S

∂2Fph

∂εi∂ε j
= −1

S

kBT

N

∑
λ,q

(γλ,q(ai )γλ,q(a j )). (14)

Note that the second derivative of the frequency ω is
ignored here. It is obvious that generalized mode Grüneisen
parameters have an important effect on the temperature depen-
dence of the elastic moduli. On the whole, γλ,q(a) are much
smaller than γλ,q(b), leading to the smaller reduction of C11

than that of C22 at high temperature, as shown in Fig. 7. It
also determines the faster decline of C22 than C12, as well
as the more rapid decrease of C12 than C11. Furthermore, it
also indicates that the temperature dependence of the elastic
constant is nonlinear, as mode Grüneisen parameters vary
with lattice constants, which also change with temperature.
It is in agreement with Fig. 7(a). It is concluded reasonably
that the generalized mode Grüneisen parameters also play an
important role in the variations of elastic moduli, Poisson’s
ratios, and in-plane anisotropy along with temperature.
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IV. CONCLUSIONS

In summary, we investigated the anisotropic thermal ex-
pansion and thermodynamic properties for β-Te using first-
principles calculations. Based on QHA, we develop a scheme
named PS-QHA to study anisotropic thermal expansion of
β-Te with high accuracy and time saving, which needs
only five sets of phonon spectra. β-Te shows giant positive
thermal expansion along the b direction, which is about
4.9 × 10−5 K−1 at 500 K. The in-plane thermal expansion is
significantly anisotropic. The LTEC along the a direction is
about 18% of that along the b direction at 500 K. Phonon spec-
tra, generalized mode Grüneisen parameters γ and macro-
scopic Grüneisen parameters γ̄ are also studied. The values of
γ (a) are found to disperse within a narrower range than those
of γ (b), because the material is softer along the a than the b
direction. It also leads to smaller saturation value of γ̄ (a) than
γ̄ (b) at high temperature. The comparison of PS-QHA and
conventional QHA is displayed, with the conclusion that PS-
QHA is more reliable and valid than conventional QHA for
β-Te, while this conclusion can be extended to 2D materials
with large thermal expansion. Furthermore, the temperature
dependent 2D elastic constants, bulk modulus, Young’s mod-
ulus, and Poisson’s ratios are exhibited. All of them show

intense in-plane anisotropy, while it becomes weaker at ele-
vated temperature. The electronic contributions to the varia-
tions of these 2D elastic moduli with increasing temperature
are not dominant. The phonon contributes most to the varia-
tions and cannot be ignored in the investigation of thermody-
namic properties at high temperature, while the variations of
the elastic moduli, Poisson’s ratios, and in-plane anisotropy
are also dominated by the generalized mode Grüneisen pa-
rameters. Our work is likely to be of value not only for
the potential applications of β-Te such as a thermoelectric
material, but also for the development of theoretical research
of anisotropic thermal expansion. Our scheme can be expected
to investigate anisotropic thermal expansion of other materials
efficiently.
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