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In conventional solid-state electron systems with localized states the ac absorption is linear since the inelastic
widths of the energy levels exceed the drive amplitude. The situation is different in the systems of cold
atoms in which phonons are absent. Then even a weak drive leads to saturation of the ac absorption within
resonant pairs, so that the population of levels oscillates with the Rabi frequency. We demonstrate that, in
the presence of weak dipole-dipole interactions, the response of the system acquires a long-time component
which oscillates with frequency much smaller than the Rabi frequency. The underlying mechanism of this
long-time behavior is that the fields created in the course of the Rabi oscillations serve as resonant drive for
the second-generation Rabi oscillations in pairs with level spacings close to the Rabi frequency. The frequency
of the second-generation oscillations is of the order of interaction strength. As these oscillations develop, they
can initiate the next-generation Rabi oscillations, and so on. Formation of the second-generation oscillations is
facilitated by the nondiagonal component of the dipole-dipole interaction tensor.
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I. INTRODUCTION

A transparent physical picture of absorption of the ac
electric field in a system with localized electron states was
proposed by Mott [1]. According to Mott, absorption takes
place within pairs of states with energy spacing h̄ω, where
ω is the driving frequency. Frequency dependence of the ac
conductivity within this picture is σ (ω) ∝ ω2 ln2 ω (in one
dimension), where one power of ω comes from the photon
energy, while the other comes from the restriction that the pair
is singly occupied. Finally, ln ω comes from the overlap inte-
gral between initial and final states. Later, Mott’s formula was
rigorously derived from the Kubo linear-response formalism
by Berezinskii [2].

The condition of applicability of the linear response is that
inelastic widths of the localized levels are much bigger than
the absorption matrix element. This condition is satisfied in
conventional solid-state systems where inelastic widths are
due to the phonon emission.

Regime of strong ac drive, opposite to the linear response,
can be realized in cold-atom systems, where phonons are
absent. The ac drive in these systems is implemented by the
synchronous modulation of the intensity of laser beams which
create a quasirandom one-dimensional (1D) on-site energy
profile [3].

Possibility to realize the regime of strong drive in a
localized system without thermal bath raises a number of
conceptual questions which, with rare exceptions [4–6], were
not addressed in earlier studies. These questions can be con-
ventionally divided into three groups:

(i) On the single-particle level [7–11], the fundamental
question is: does the localization persist in the presence
of strong drive, when electron states evolve into the Flo-
quet eigenstates? Anderson localization is the result of in-
terference of the backscattering amplitudes in the course of

multiple scattering [2]. Floquet states can be viewed as a
combination of satellites with energies separated by nh̄ω.
Development of satellites upon increasing drive leads to the
new channels of interference, and thus suppresses the local-
ization, like in multichannel wires.

(ii) Another physical mechanism relevant for nonlinear ac
response of localized noninteracting systems is the adiabatic
Landau-Zener transitions [9,11]. This mechanism comes into
play when the drive is strong and slow. In this limit, the
effect of drive can be viewed as periodic modulation of
energies of the localized states [12–14]. It was proposed in
Refs. [12–14] that the effective absorption in this limit can
be captured within the random-matrix description. As the
levels corresponding to neighboring states slowly pass by
each other, an electron can adiabatically change the level.
This, in turn, can lead to the long-time component of the ac
absorption [15]. Spreading of the electron due to the level
crossings illustrates the tendency of drive to suppress the
localization.

(iii) The third group of papers is the most numerous, see,
e.g., Refs. [15–22], and addresses the physics of ac driven lo-
calized interacting systems. They are focused on the dynamics
of heating and on the long-times properties of nonequilibrium
state. In particular, the question of interest is whether or not
the long-time behavior of an interacting many-body system is
sensitive to its initial state.

When the drive amplitude is much smaller than the drive
frequency ω, resonant pairs get saturated after the time of
the order of the inverse Rabi period. Higher harmonics in the
pair dynamics are small in this regime [23]. Landau-Zener
transitions also do not take place when the drive is fast. It
is argued in Ref. [15] that long-time dynamics in this limit
is due to interaction between the pairs. Namely, a group
of n interacting pairs can be engaged into collective Rabi
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FIG. 1. Schematic illustration of the relay-race mechanism: resonant drive with frequency ω engages spin a into the Rabi oscillations. As a
result, the Zeeman levels of a get split by �a, the Rabi frequency. If �a is close to the Zeeman splitting of spin b, then the Rabi oscillations of
a will serve as a resonant drive for b via the nondiagonal component of the dipole-dipole interaction Dab. If, in turn, the Rabi frequency �b of
the second-generation Rabi oscillations is close to the Zeeman splitting of spin c, the third-generation Rabi oscillations are initiated as a result
of dipole-dipole interaction Dbc, and so on.

oscillations, whose frequency is proportional to nth power of
drive.

In the present paper we propose an alternative mechanism
of long-time dynamics in a system of weakly interacting
pairs under a weak drive. Namely, a saturated pair, executing
the Rabi oscillations, creates a field which plays the role of
drive for a distant pair, thus causing the second-generation
Rabi oscillations (Fig. 1). At resonance, the level spacing of
the second-generation pair is equal to the Rabi frequency of
the first-generation pair. If this frequency is much smaller
than the pair-pair interaction, then the second-generation Rabi
oscillations are slow. We perform statistical averaging analyt-
ically and find the slow component of the absorption.

II. DYNAMICS OF TWO INTERACTING DRIVEN SPINS

To illustrate the proposed mechanism we employ the sim-
plest model. Namely, as is common in the literature, we em-
ploy the language of spins to describe two-level systems and,
correspondingly, the ac magnetic field to describe the drive.
Consider two spins a and b subject to magnetic fields Ba and
Bb, respectively. Since the drive amplitude B1 is much smaller
than ω, the rotating-wave approximation applies. Then the
Hamiltonian of the pair reads

Ĥ = Ba

2
Sa

z + Bb

2
Sb

z

+ 2B1
(
Sa

x + Sb
x

)
cos ωt + 2B1

(
Sa

y + Sb
y

)
sin ωt

− D(r)

[
3(Sa · r)(Sb · r) − (Sa · Sb)r2

r2

]
, (1)

where we have incorporated the dipole-dipole interaction of a
magnitude,

D(r) = D0

(a

r

)3
, (2)

with a being the distance between two neighboring spins,
while r is the vector distance between spin a and spin b. In
the following we adopt the convention that all magnetic fields
and the dipole-dipole interactions are measured in the units of
frequency.

In the absence of interaction, only spin a is in resonance
with the drive |ω − Ba| � ω, while spin b is off-resonance
Bb � ω, and does not respond to the drive. Components Sx

a
and Sy

a of the driven spin a oscillate with frequencies close

to ω. Thus, the fields produced by these components on spin b
via dipole-dipole interaction do not induce the dynamics of b.
On the other hand, the z component of spin a oscillates with
much smaller frequency

�a = [
B2

1 + (ω − Ba)2
]1/2

. (3)

These slow oscillations of Sz
a translate into the field acting on

b. The field generated by the z-z component of the interaction
is also inefficient, since spin b is already directed along z. Spin
b can be set in motion via the z-x and z-y components of the
dipole-dipole interaction when �a is close to Bb. This is why
we will keep only the z-x component.

Summarizing, the relevant components of the field act-
ing on a are (B1 cos ωt, B1 sin ωt, Ba + DSb

x ), while the field
acting on b has an x component, equal to DSa

z , and z
component Bb.

The equations of motion for the projections of a which
follow from dS

dt = B × S, read

dSa
x

dt
= B1 sin ωtSa

z − (
Ba + DSb

x

)
Sa

y , (4)

dSa
y

dt
= −B1 cos ωtSa

z + (
Ba + DSb

x

)
Sa

x , (5)

dSa
z

dt
= B1 cos ωtSa

y − B1 sin ωtSa
x , (6)

while the equations of motion for the components of spin b
have the form

dSb
x

dt
= −BbSb

y ,
dSb

y

dt
= −DSa

z Sb
z + BbSb

x , (7)

dSb
z

dt
= DSa

z Sb
y . (8)

To analyze the coupled equations of motion for a and b
it is convenient to cast them into the integral form. First, we
express Sa

x and Sa
y in terms of Sa

z and Sb
x . Substituting the result

into the equation for Sa
z and taking into account the initial

condition Sa
z (0) = 1, we get

dSa
z

dt
= −B2

1

∫ t

0
dt ′Sa

z (t ′) cos

[
(ω − Ba)(t − t ′)

− D
∫ t

t ′
dt ′′Sb

x (t ′′)
]
. (9)
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FIG. 2. Numerical example illustrating the formation of the long-
time component of the ac response. First generation of the Rabi
oscillations (blue) is plotted from (12) for the drive frequency ω =
2B1 and the Zeeman splitting Ba = 1.8B1. Assuming that the Zeeman
energies are homogeneously distributed between 0 and 1.5ω, the
ensemble-averaged 〈Sz(t )〉 is calculated from (34) and is plotted with
black. Second-generation Rabi oscillations are shown with red. They
are calculated from (15) and (16) in which we chose the Zeeman
energy of spin b to be Bb = 0.5B1 and the magnitude of interaction
to be D0 = 0.05B1.

Similarly, we express Sb
x and Sb

y in terms of Sa
z and Sb

z and,
using Sb

z (0) = 1, substitute them into the equation for Sb
z . This

yields

dSb
z

dt
= −D2

∫ t

0
dt ′Sb

z (t ′)
[
Sa

z (t )Sa
z (t ′)

]
cos Bb(t − t ′). (10)

To get the closed system, we also invoke the expression for
Sb

x obtained in the course of solving the system (7),

Sb
x (t ) = − D

Bb
(1 − cos Bbt )

+ D
∫ t

0
dt ′Sa

z (t ′)Sb
z (t ′) sin Bb(t − t ′). (11)

Three equations (9), (10), and (11) describe fully the dynamics
of both spins.

For D = 0, spin b points along z, while spin a executes the
Rabi nutations. In course of these nutations Sa

z (t ) follows the
seminal Rabi formula

Sa
z (t ) = (ω − Ba)2

�2
a

+ B2
1

�2
a

cos �at, (12)

which also follows from Eq. (9).
For a finite D spin b is also set into motion. This motion

causes a “feedback” on spin a, reflected by the term pro-
portional to D in the argument of cosine. Most importantly,
comparison of (9) and (10) quantifies our main message that
the motion of spin a plays the role of drive for spin b; the role
of the driving field is played by DSa

z (t ).
For spin a the resonant drive corresponds to the frequency

ω = Ba. Under this condition, Sa
z oscillates with frequency

B1. Thus, for spin b, the resonant condition is B1 = Bb. We
also expect that, within a factor, the nutation frequency of
spin b at resonance is equal to D, as illustrated in Fig. 2.
Note that the nutation frequency D of the second-generation
Rabi oscillations does not depend on B1. However, this is

valid only at exact resonance. We will see below that, for any
small deviation from resonance, both the amplitude and the
frequency of the second-generation Rabi oscillations acquire
the B1 dependence. In particular, the amplitude vanishes in the
limit B1 → 0.

Upon substituting (12) into (10), the product Sa
z (t )Sa

z (t ′)
assumes the form

Sa
z (t )Sa

z (t ′) = (ω − Ba)4

�4
a

+ B4
1

�4
a

cos �at cos �at ′

+ (ω − Ba)2B2
1

�4
a

(cos �at + cos �at ′). (13)

The second term of (13) generates the sum cos �a(t + t ′) +
cos �a(t − t ′). It is the second cosine that acts as a resonant
drive for spin b. Keeping only cos �a(t − t ′) term in (10),
we get

dSb
z

dt
= −D2B4

1

4�4
a

∫ t

0
dt ′Sb

z (t ′) cos[(�a − Bb)(t − t ′)]. (14)

This equation has a solution

Sb
z = (�a − Bb)2

�2
b

+ B2
2

�2
b

cos �bt, (15)

where the “second-generation” drive and the second-
generation Rabi frequency are defined as

B2 = DB2
1

2�2
a

, �b = [
B2

2 + (�a − Bb)2
]1/2

. (16)

Equations (15) and (16) constitute the main result of the
present paper. We analyze this result below.

III. STATISTICAL AVERAGING, LONG-TIME TAIL OF
THE AC ABSORPTION

The energy absorbed is proportional to averaged Sb
z (t ).

We should average Sb
z (t ) over Ba, Bb and over D, which is

equivalent to averaging over distances to the neighbors. We
notice that Ba enters into the Sb

z (t ) only in combination (Ba −
ω)2 + B2

1, so that Ba does not affect the result of averaging.
We now average Sb

z (t ), from Eq. (15), assuming the density
of spin states g to be constant. The averaging amounts to the
twofold integral

1 − 〈Sb
z (t )〉 = g

∫ ∞

a
dr4πr2

×
∫ ∞

0
dBb

(D(r)B2
1

4�2
a

)2

(D(r)B2
1

4�2
a

)2 + (�a − Bb)2

× 2 sin2

{[(
D(r)B2

1

4�2
a

)2

+ (�a − Bb)2

]1/2t

2

}
,

(17)

where a is the distance to the neighboring spin. Angular
averaging is not important, so we choose D(r) = D0( a

r )3, as
prescribed by (2).
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To proceed further, it is convenient to introduce, instead of
variables r and Bb, new variables u and v defined as

r =
(

D0B2
1a3

8�2
au

t

)1/3

, Bb = �a − 2v

t
. (18)

Then the integral assumes the form

1 − 〈
Sb

z (t )
〉 = 2πga3D0B2

1

3�2
a

∫ D0t/2

0
du

×
∫ ∞

−�at
dv

sin2(u2 + v2)1/2

u2 + v2
. (19)

In the long-time limit D0t 	 1, �at 	 D0t , we can replace
�at with infinity in the lower limit of the v integral. In order
to see the asymptotic behavior of 〈Sb

z (t )〉, we substitute v

as v = u
tan ψ

. With new variable ψ the integral (19) can be
rewritten as

1 − 〈
Sb

z (t )
〉∣∣

3D = 4πga3D0B2
1

3�2
a

∫ D0t/2

0

du

u
�(u), (20)

with �(u) defined as

�(u) =
∫ π/2

0
dψ sin2

(
u

sin ψ

)
. (21)

In one and two dimensions, the corresponding expressions for
1 − 〈Sb

z (t )〉 are similar to (20) and read

1 − 〈
Sb

z (t )
〉∣∣

1D=
4gaD0

3
(D0t

2

)2/3

(
B2

1

4�2
a

)1/3∫ D0t/2

0

du

u1/3
�(u), (22)

1 − 〈
Sb

z (t )
〉∣∣

2D = 8πga2D0

3
(D0t

2

)1/3

(
B2

1

4�2
a

)2/3∫ D0t/2

0

du

u2/3
�(u). (23)

The function �(u) in (21) can be calculated analytically in
two limits. For small u � 1, only small ψ ∼ u contribute to
the integral. This allows us to replace sin ψ by the argument
and extend the integration to infinity. The resulting integral
can be calculated explicitly, and one gets

�(u)
∣∣
u�1 = πu

2
. (24)

For large u 	 1, the typical argument of sin2 is big, so that
sin2 can be replaced by 1/2, leading to �(u)|u	1 ≈ π

4 . The
leading u-dependent correction comes from the vicinity of
ψ = π

2 , and thus oscillates with u. The asymptote has the form

�(u)
∣∣
u	1 = π

4
−

(π

8

)1/2 cos
(
2u + π

4

)
u1/2

. (25)

Using (24) and (25) we find the behavior of 〈Sb
z (t )〉 in three

dimensions:

1 − 〈
Sb

z (t )
〉 = 8πga3D0B2

1

�2
a

×
{

D0t, D0t
2 � 1,

1
2 ln(D0t ), D0t 	 1.

(26)

Note that, at D0t � 1, the average 〈Sb
z (t )〉 decreases linearly

with time. This is despite the fact that, for any given spin b,
the time deviation of Sz from Sz = 1 is quadratic. The reason
is that, if one expands (17) at small t , then the integral over

0 2 4 6 8 10 12t
0

1

2

3

3.5

C
d(1

-
S

zb
(t

)
)

d=1

d=2

d=3

FIG. 3. The average 1 − 〈Sb
z (t )〉 is plotted versus dimensionless

time D0t from Eqs. (22), (23), and (20) corresponding to one,
(red) two, (black), and three (blue) dimensions. The values of the

coefficient Cd are 4gaD0
3 (

B2
1

4�2
a

)
1/3

, 8πga2D0
3 (

B2
1

4�2
a

)
2/3

, and
4πga3D0B2

1
3�2

a
for

one, two, and three dimensions, respectively.

Bb will diverge. Overall, the characteristic timescale for the
change of 〈Sb

z (t )〉 is D−1
0 .

In derivation of the expression for Sb
z (t ), we have already

assumed that D0 � B1 when we neglected the feedback of b
on a. Now we see that the same assumption insures that the
evolution of the ensemble-averaged Sb

z (t ) is slow.
In Fig. 3 we show 〈Sb

z (t )〉 calculated numerically from
Eq. (20). Logarithmic behavior is evident. One can also
distinguish weak oscillations on the background of a log
profile. These oscillations become more pronounced in lower
dimensions. For example, in one dimension, Eq. (22) can be
written in the following form:

1 − 〈
Sb

z (t )
〉 = 4gaD0

3
(D0t

2

)2/3

(
B2

1

4�2
a

)1/3

F (D0t ), (27)

where

F (D0t ) =
∫ D0t/2

0

du

u1/3
�(u). (28)

If we substitute the leading asymptote �(u) = π
4 , we will find

that 〈Sb
z (t )〉 is time independent. In order to capture the time

dependence, we add and subtract π/4 from �(u). Then (28)
takes the form

F (D0t ) = 3π

8

(
D0t

2

)2/3

+
∫ D0t/2

0

du

u1/3

(
�(u) − π

4

)
. (29)

At long times, the first term describes the leading contri-
bution, while the second term saturates. This saturation is
accompanied by the oscillations. To establish the form of this
oscillating correction, it is convenient to present the integral∫ D0t/2

0 du as the difference of integrals
∫ ∞

0 du and
∫ ∞

D0t/2 du.

Then, in the integral
∫ ∞

D0t/2 du we can use the oscillating
term from the large-u asymptote in (25). This generates the
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following correction to F (D0t ):

−
(π

8

)1/2 sin
(
D0t + π

4

)
2
(D0t

2

)5/6 .

Substituting this correction into (27) indicates that the am-
plitude of oscillations in 〈Sb

z (t )〉 falls off as t−3/2. Numerical
plots for d = 1 and d = 2 in Fig. 3 confirm the saturation of
〈Sb

z (t )〉 at long times, which is accompanied by slow-decaying
oscillations. As follows from analytics and numerics, the
small time behavior of 1 − 〈Sb

z (t )〉 is linear in one and two
dimensions as well.

IV. THE ROLE OF FEEDBACK

Unconventionally, we find that the coupling of two spins
via dipole-dipole interaction is unidirectional: spin a drives
spin b, while the feedback effect of b on a is negligible under
the condition D � B1. On the other hand, it is the domain
D � B1, which is of interest, since it is in this domain where
the long-time tail of the ac absorption develops. If we take
into account that spin b is dipole-dipole coupled to spin c, see
Fig. 1, then b will drive c under the resonant condition, but
with negligible feedback. This is why we identify this spin
dynamics with relay race.

To estimate the effect of feedback, we take the expression
for Sa

z (t )Sb
z (t ) obtained in the lowest order and substitute it

into (11). The expression for Sa
z (t )Sb

z (t ) has the form similar
to the expression for Sa

z (t )Sa
z (t ′) in (13) with t ′ = t ,

Sa
z (t )Sb

z (t ) = (ω − Ba)2(�a − Bb)2

�2
a�

2
b

+ B2
1B2

2

�2
a�

2
b

cos �at cos �bt

+ (�a − Bb)2B2
1

�2
a�

2
b

cos �at

+ (ω − Ba)2B2
2

�2
a�

2
b

cos �bt . (30)

As seen from (11), Sb
x contains a “free precession” term

D
Bb

(1 − cos Bbt ), and the “drive-induced” term. The role of the
free precession term is the shift of resonance ω = Ba. Indeed,
substituting this term into the argument of cosine in (9), and
assuming that Bbt is big (or, equivalently, that �at is big),
results in replacement of (ω − Bb) by (ω − Bb − D2

Bb
), i.e., the

corrected resonance condition is

ω = Bb

(
1 + D2

B2
b

)
. (31)

Since the relevant value of Bb is the Rabi frequency B1, we
conclude that the shift is relatively small under the condition
B1 	 D, which coincides with the condition that the second-
generation Rabi oscillations are slow.

We neglected cos Bbt in free precession term because it
leads to the oscillating contribution D2

B2
b
(sin Bbt − sin Bbt ′) in

the argument of cosine in (9). This oscillating contribution
results in effective renormalization of the drive amplitude
[24] B1 → B1J0( D2

B2
b

), where J0 is the Bessel function. This

renormalization is small by virtue of the same condition D �
Bb ∼ B1.

We now turn to the effect of feedback from the drive-
induced term. As we have established in the course of sta-
tistical averaging, the second-generation Rabi oscillations
essentially saturate at times ∼ 1

D . On the other hand, we do not
expect significant feedback at times smaller that the period of
the first-generation Rabi oscillations. This simplifies our task
by restricting the time to the interval

1

B1
< t <

1

D
.

For further simplification, we consider the most “dangerous”
situation �a = Bb. Under this condition, spin b is resonantly
driven, so that the expected feedback is the strongest. Setting
�a = Bb in (30) we find that the first and the third terms
vanish. In the two remaining terms it is sufficient to set
cos �bt = 1, since �b is of the order of D. Also, with �a =
Bb, we have �b = B2. After that, (30) simplifies to

Sa
z (t )Sb

z (t ) = B2
1

�2
a

cos �at + (ω − Ba)2

�2
a

, (32)

which is nothing but simply Sa
z (t ). Still, the behavior of Sb

x (t )
emerging upon substitution of (32) into (11) is nontrivial
due to the beating of cos �at and sin Bb(t − t ′). This beating
generates a contribution to Sb

x equal to

B2
1

2�2
a

Dt sin �at .

We see that this contribution exceeds the free-precession
contribution and at t ∼ 1/D becomes of the order of 1, which
could be expected under the resonant condition �a = Bb. Our
main point is that, even under this condition, the feedback
of Sb

x on the first-generation Rabi oscillations remains small.
Indeed, performing the integration

∫ t
t ′ dt ′′ in the argument

of cosine in (9) generates the correction to this argument
equal to

B2
1D2

2�3
a

(t cos �at − t ′ cos �at ′).

While this correction grows with t ′ it does not exceed 1 as
long as t ′ is smaller than 1/D. Thus we conclude that when the
drive exceeds the interaction magnitude, the feedback effect is
negligible.

V. DISCUSSION

(i) In a driven system of noninteracting spins in a random
magnetic field (random Ba), only resonant spins respond
to the drive. With Rabi frequencies depending on Ba, Rabi
oscillations of different spins average out, so that the average
〈Sa

z (t )〉 approaches a constant. We note that this approach
is accompanied by slow-decaying oscillations. Indeed, for a
given spin, the oscillating part Sa

z (t ) has the form

Sa
z (t ) − Sa

z (t ) = B2
1 cos

[
B2

1 + (ω − Ba)2
]1/2

t

B2
1 + (ω − Ba)2

. (33)
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Assuming the homogeneous distribution of Ba in the interval
0 < Ba < �, the disorder-average of (33) has the form

〈
Sa

z (t ) − Sa
z (t )

〉 = 1

�

∫ �

0
dBa

B2
1 cos

[
B2

1 + (ω − Ba)2
]1/2

t

B2
1 + (ω − Ba)2

.

(34)
At long times, B1t 	 1, only the resonant spins contribute

to the integral. This allows us to expand the argument of
cosine as

[
B2

1 + (ω − Ba)2
]1/2

t ≈ B1t + (ω − Ba)2

2B1
t . (35)

We see that the relevant domain of (ω − Ba) is ∼( B1
t )

1/2 �
B1. This allows us to set Ba = ω in the denominator of
(34) and to extend the integration domain over (ω − Ba) to
(−∞,∞). Performing the Gaussian integration, we get

〈
Sa

z (t ) − Sa
z (t )

〉∣∣
B1t	1 =

(
πB1

�2t

)1/2

cos
(

B1t + π

4

)
. (36)

In Fig. 2 the result of numerical calculation of 〈Sa
z (t )〉 for a

certain parameter set is shown. Numerics confirms the pres-
ence of slow-decaying periodic oscillations in average 〈Sa

z 〉.
The amplitude of these oscillations of average Sz(t ) coming
from the sparse resonant spins should be compared to the Sb

z
coming from the typical second-generation Rabi oscillations
(26). The reasonable choice of � is ω. Characteristic t in (26)
is ∼1/D0. Then Sb

z is ∼ga3D0, while the oscillating part of

〈Sa
z (t )〉 can be presented as ∼B1

ω
( D0

B1
)
1/2

, which is the product
of two small parameters. On the other hand, the fact that we
considered the interaction of spin a with only one spin b,
requires that the product ga3D0 is also small.

(ii) Spin b can induce even slower Rabi nutations in spin c,
see Fig. 1. The corresponding Rabi frequency of these third-
generation oscillations will be

�c = [
B2

3 + (�b − Bc)2
]1/2

, (37)

where B3 is given by

B3 = DbcB2
2

2�2
b

= DbcD2
abB4

1

8�4
a�

2
b

. (38)

B3 = Dbc(Dab)2B4
1

8(ω − Ba)4(ω − Ba − Bb)2
. (39)

If we are away from resonance at each step, then drive
amplitude at nth step will be

Bn = Dn,n−1B2
n−1

2
(
ω − ∑

i={a,b,c,...,n−1 terms}Bi
)2 . (40)

By contrast, if we are at resonance in each step, then the
drive amplitude for the nth step will depend only on the
dipole-dipole interaction between nth spin and the n − 1th
spin. For example, the drive amplitude for n = 3 is Dbc/2, and
the drive amplitude for n = 2 is Dab/2, see Fig. 1.

Suppose that spin a is not in resonance with the drive,
(ω − Ba) > B1. Then the amplitude of the first-generation
Rabi oscillations is small. Still, spin b can oscillate with big

amplitude ∼1, provided that Bb is equal to �a ≈ (ω − Ba). At
the same time, the frequency of the oscillations of spin b will

be approximately DabB2
1

2(ω−Ba )2 , which is much smaller than Dab.
(iii) It follows from Eq. (26) that, while the contribution of

the second-generation Rabi oscillations to the absorption is a
slow function of time, the magnitude of this slow component
contains a small parameter ga3D0. Thus, as the dipole-dipole
interactions increases, the amplitude of the slow component
grows linearly with D0. On the other hand, the characteristic
time before they saturate drops as 1/D0.

(iv) For slow second-generation Rabi oscillations to de-
velop the drive amplitude should be bigger than the interaction
strength. On the other hand, the drive is assumed to be weak,
B1 � ω, which, in classification of Ref. [11], corresponds to
the linear absorption regime. Such a weak drive cannot affect
the overall many-body localized regime [25–29].

(v) In spirit, the relay-race mechanism considered in the
present paper bares some similarity to the mechanism of
delocalization of eigenmodes of dipole-dipole coupled os-
cillators or of the ensemble of two-level systems [30–33].
In Refs. [30–33] two undriven oscillators or two spins get
hybridized when the corresponding frequencies match each
other within the interaction magnitude. This hybridization
can be mediated by z-z component of the interaction. In our
notations, the frequencies of two hybridized oscillators can be
expressed as

ω2 = B2
a + B2

b

2
±

[(
B2

a − B2
b

)
4

+ D2
ab

]1/2

. (41)

We see that, even at resonance Ba = Bb, hybridization does
not result in a slow motion. By contrast, in our situation, the
resonance is dictated by drive and hybridization takes place
when �a is close to Bb. In other words, the motion of a in the
rotated frame is in resonance with b in the laboratory frame.

(vi) We introduced the relay-race mechanism using the lan-
guage of spins driven by ac magnetic field. In Refs. [9,11,15]
the ac absorption of electric field by localized electrons has
been studied. The main difference between the two scenarios
is that we considered the fields Ba to be random, but par-
allel to z. In the case of the ac electric field E cos ωt , the
Hamiltonian describing the drive has the form P · E cos ωt ,
where P is the dipole matrix element between the ground and
excited states. In spin language, randomness of the directions
of P translates into the randomness of the directions of Ba.
In a general case when Ba = naBa, B1 = n1B1, where na

and n1 are the unit vectors, the drive amplitude in the above
expressions should be modified as

B2
1 → B2

1(n1 × na)2. (42)

It is important to note that when the directions of the fields
Ba are random, we do not need the nondiagonal component
of dipole-dipole interaction to induce the second-generation
Rabi oscillations.

(vii) There is a similarity between the relay-race mech-
anism considered above and the Rabi-vibronic resonance
studied in Ref. [34]. In the latter case, the Rabi oscillations
are resonantly coupled to a vibronic mode rather than to the
neighboring spin.
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(viii) In the system we considered the pairs of Zeeman
levels with random splittings were well separated in space.
This should be contrasted to the situation of the ac absorption
in the system where energy levels strongly overlap in space
and almost evenly separated in energy. Then driven electron
can “climb” the staircase of energy levels. Remarkably, in this
situation, the absorption will still eventually saturate [4–6].

The reason is “dynamic localization,” i.e., trapping of electron
in energy space due to disorder in the level positions.

ACKNOWLEDGMENTS

The work was supported by the Department of Energy,
Office of Basic Energy Sciences, Grant No. DE-FG02-
06ER46313.

[1] N. F. Mott, Conduction in non-crystalline systems, Philos. Mag.
17, 1259 (1968).

[2] V. L. Berezinskii, Kinetics of a quantum particle in a one-
dimensional random potential, Sov. Phys. JETP 38, 620 (1974).

[3] P. Bordia, H. Lüschen, U. Schneider, M. Knap, and I. Bloch,
Periodically driving a many-body localized quantum system,
Nat. Phys. 13, 460 (2017).

[4] Y. Gefen and D. J. Thouless, Zener Transitions and Energy
Dissipation in Small Driven Systems, Phys. Rev. Lett. 59, 1752
(1987).

[5] D. M. Basko and V. E. Kravtsov, Dynamic Localization and the
Coulomb Blockade in Quantum Dots under ac Pumping, Phys.
Rev. Lett. 93, 056804 (2004).

[6] D. Cohen and T. Kottos, Quantum-Mechanical Nonperturbative
Response of Driven Chaotic Mesoscopic Systems, Phys. Rev.
Lett. 85, 4839 (2000).

[7] V. Khemani, R. Nandkishore, and S. L. Sondhi, Nonlocal adia-
batic response of a localized system to local manipulations, Nat.
Phys. 11, 560 (2015).

[8] R. Ducatez and F. Huveneers, Anderson localization for period-
ically driven systems, Annales Henri Poincaré 18, 2415 (2017).

[9] K. Agarwal, S. Ganeshan, and R. N. Bhatt, Localization and
transport in a strongly driven Anderson insulator, Phys. Rev. B
96, 014201 (2017).

[10] S. Ray, A. Ghosh, and S. Sinha, Drive-induced delocalization
in the Aubry-André model, Phys. Rev. E 97, 010101(R) (2018).

[11] D. T. Liu, J. T. Chalker, V. Khemani, and S. L. Sondhi, Mott,
Floquet, and the response of periodically driven Anderson
insulators, Phys. Rev. B 98, 214202 (2018).

[12] M. Wilkinson, Statistical aspects of dissipation by Landau-
Zener transitions, J. Phys. A: Math. Gen. 21, 4021 (1988).

[13] M. Wilkinson, Adiabatic transport of localised electrons, J.
Phys. A 24, 2615 (1991).

[14] M. Wilkinson and E. J. Austin, Dynamics of a generic quantum
system under a periodic perturbation, Phys. Rev. A 46, 64
(1992).

[15] S. Gopalakrishnan, M. Knap, and E. Demler, Regimes of
heating and dynamical response in driven many-body localized
systems, Phys. Rev. B 94, 094201 (2016).

[16] S. Gopalakrishnan, M. Müller, V. Khemani, M. Knap, E.
Demler, and D. A. Huse, Low-frequency conductivity in many-
body localized systems, Phys. Rev. B 92, 104202 (2015).

[17] P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin, Periodically
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