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Sublattice symmetry breaking and Kondo-effect enhancement in strained graphene
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Kondo physics in doped monolayer graphene is predicted to exhibit unusual features due to the linear
vanishing of the pristine material’s density of states at the Dirac point. Despite several attempts, conclusive
experimental observation of the phenomenon remains elusive. One likely obstacle to identification is a very
small Kondo temperature scale TK in situations where the chemical potential lies near the Dirac point. We
propose tailored mechanical deformations of monolayer graphene as a means of revealing unique fingerprints
of the Kondo effect. Inhomogeneous strains are known to produce specific alternating changes in the local
density of states (LDOS) away from the Dirac point that signal sublattice symmetry-breaking effects. Small
LDOS changes can be amplified in an exponential increase or decrease of TK for magnetic impurities attached
at different locations. We illustrate this behavior in two deformation geometries: a circular “bubble” and a long
fold, both described by Gaussian displacement profiles. We calculate the LDOS changes for modest strains and
analyze the relevant Anderson impurity model describing a magnetic atom adsorbed in either a “top-site” or
a “hollow-site” configuration. Numerical renormalization-group solutions of the impurity model suggest that
higher expected TK values, combined with distinctive spatial patterns under variation of the point of graphene
attachment, make the top-site configuration the more promising for experimental observation of signatures of the
Kondo effect. The strong strain sensitivity of TK may lift top-site Kondo physics into the range experimentally
accessible using local probes such as scanning tunneling microscopy.
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I. INTRODUCTION

The honeycomb structure of the graphene lattice has in-
teresting consequences for the low-energy electron dynamics.
An effective massless dispersion near the Dirac point, accom-
panied by spinor eigenstates with well-defined helicities that
impose specific phase relations between their components,
yields high carrier mobilities and unique optical properties for
the pristine material [1]. In addition, the strong sp2 carbon
bonding confers remarkable mechanical properties that allow
graphene to withstand high levels of in-plane strain while
being easily rippled under external stress, much like paper [2].
The formation of wrinkles [3–5], folds [6–8], and bubbles [9]
can be driven by lattice mismatch with a substrate [10,11],
intercalated impurities trapped during the deposition process
[12], or directly by external application of controlled stress
fields [13].

Such local deformations of graphene are responsible for
inhomogeneous charge density distributions with character-
istics determined by the magnitude and spatial dependence
of the strain field. The connection between deformations
and charge inhomogeneities was quantitatively confirmed in
recent measurements of the local density of states (LDOS)
via scanning tunneling microscopy (STM) in setups with
mobile (tip-induced) and static (intercalated impurity) local
deformations [14]. Analysis of STM images revealed local
sublattice symmetry breaking in strained regions, whereby the
two carbon atoms within each unit cell are differentiated by
contrasting signal intensities. Interestingly, despite the local
deformation, the gapless dispersion of the pristine sample is

maintained. Strain-induced density enhancements have also
been reported in transport experiments through isolated folds,
where charge confinement gives rise to Coulomb-blockade
features across the axis of the fold [15].

The studies cited in the previous paragraph suggest that
strain may be used to control local charge distributions and
thereby reach regimes where electron-electron interactions are
important that are difficult to access in undeformed graphene.
An iconic example of strong correlations is the Kondo ef-
fect, where mobile carriers collectively screen a localized
magnetic moment embedded in the system. This many-body
phenomenon depends on the dynamics of spin carriers and
is sensitive to magnetic fields [16]. Its characteristic energy
scale, set by the Kondo temperature TK , depends strongly
on both the hybridization matrix elements between localized
and delocalized levels and the LDOS of delocalized levels
at the local-moment site. Pristine graphene is predicted to
be the setting for two distinct types of Kondo physics. If
the material is doped or gated so that its chemical potential
is away from the Dirac point, the Kondo effect is expected
to be largely conventional: the impurity contribution to bulk
properties should show the same dependencies at sufficiently
low temperatures, frequencies, and magnetic fields as are
found in a three-dimensional bulk metal [16]. In undoped
graphene, where the chemical potential lies precisely at the
Dirac point, theory instead predicts [17–19] a “pseudogap”
Kondo effect [20] with very different low-energy properties
[19,21–28]. In both the conventional and pseudogap cases,
clear evidence for the Kondo effect can be obtained only in
experiments that are able to probe temperatures below TK .
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Kondo physics has recently been proposed to be the
origin of features in angle-resolved photoemission on Ce-
intercalated graphene [29]. However, the experimental se-
tups most commonly pursued to realize the Kondo effect in
graphene involve either vacancies in the carbon lattice or
adatoms deposited on top of the sample. Claims of definitive
detection of Kondo physics in these settings remain controver-
sial. Magnetotransport measurements on irradiated (vacancy
containing) graphene appear to reproduce the characteristic
temperature dependence of the resistivity [30], but doubt has
been cast on the Kondo interpretation by (i) the persistence of
this dependence as the chemical potential was tuned through
the Dirac point [26], and (ii) the absence of Kondo signatures
in the magnetic response of irradiated graphene [31] (although
see [32]). More recently, graphene with isolated vacancies has
been reported to exhibit Kondo features [33] with a crucial
dependence on curvature of the graphene sheet [34].

Local STM probes of adatoms on graphene have yielded
even more ambiguous results. For example, early studies of
cobalt adatoms on graphene found features in the conduc-
tance expected for single- and two-channel Kondo effects,
associating the two cases with different adsorption geometries
[35]. However, similar features were later suggested to arise
instead from inelastic tunneling mediated by vibrations of
cobalt adatoms [36]. STM experiments involving hydrogen
or fluorine adsorbed on graphene have revealed no Kondo
signatures [37], although different possible gating and/or
doping regimes have not yet been fully explored.1

First-principles prediction of the properties of adatoms
on graphene has also proved to be very challenging. An
STM study of preferred adsorption sites for nickel and cobalt
adatoms on graphene with different substrate conditions [38]
in some cases bore out, and in others contradicted, the pre-
dictions of density-functional theory. Theoretical analyses
[24,39,40] suggest that the STM signatures of adatoms on
graphene are highly sensitive to the absorption geometry,
which determines the relative energies of different atomic
orbitals, the effective Coulomb interactions between electrons
in various adatom orbitals, and the overlap integrals between
adatom and host orbitals. The Berry phase associated with the
two inequivalent Dirac points has also been predicted to play
an essential role [39].

It has been argued that part of the difficulty with observing
the Kondo effect with adatoms on graphene is the low density
of states near the Dirac point, which is expected to strongly
suppress the Kondo temperature of the system [23,25–27] (es-
pecially for cases of strict particle-hole symmetry, where no
Kondo screening is possible [22,25,26]). Clear identification
of Kondo features may also be hindered by long-range charge
fluctuations producing a distribution of Kondo temperatures
[41] and by the spatial delocalization of the impurity magnetic
moment over nanometer scales [37].

Recent experiments on graphene deposited on Ru(0001)
surfaces [42] have highlighted strain as an important factor.
Lattice mismatch with the substrate imparts a rippled moiré
superstructure to graphene. Cobalt atoms were seen to adhere
preferentially to graphene regions of high strain. Fits of the

1I. Brihuega (private communication).

differential conductance to Fano line shapes suggested dif-
ferent Kondo temperatures TK � 12 and 5 K for adsorption
at two types of site, each located at a local maximum of
the strain. The Kondo interpretation was supported by the
observation of magnetic-field-induced Zeeman splitting of the
zero-bias conductance feature. Although these results appear
to provide strong evidence for Kondo physics, it is hard to
point to this as an example of Kondo screening by pristine
graphene since strong hybridization with Ru(0001) surface
states washes out the Dirac point and its linear dispersion [43].

We propose that with suitable modifications, experiments
like those in Ref. [42] are very promising for the observation
and characterization of unique features of Kondo physics in
graphene. The key idea is to study samples in which the
strained regions are not strongly hybridized with a substrate.
This may be accomplished by employing a substrate such
as hBN, or by focusing on free-standing graphene. In this
paper, we show that smooth deformations can induce modest
modulations of the LDOS that lead to strong changes in the
Kondo temperature when the chemical potential lies in the
linear dispersion regime near, but not precisely at, the Dirac
point. The LDOS modulations consist of two components: one
that breaks particle-hole symmetry about the Dirac point, and
one that breaks the symmetry between sublattices A and B. In
certain regions near a deformation, an increase in the LDOS
of one sublattice is accompanied by a reduction of the LDOS
at nearby sites of the other sublattice. This local sublattice
symmetry breaking is amplified in the dependence of the
Kondo temperature on the location at which a magnetic atom
adsorbs to the graphene host. In some cases, an exponential
enhancement of the Kondo scale will allow the observation of
Kondo physics where it would be undetectable in the absence
of deformation.

We illustrate these ideas for two representative out-of-
plane deformation geometries: a localized Gaussian “bubble”
with circular symmetry and an extended Gaussian “fold” that
preserves lattice translational symmetry along the fold axis.
We present and apply a formalism for calculating the graphene
LDOS changes resulting from modest strains, then analyze
the relevant Anderson impurity model describing a magnetic
atom in one or other of the two most probable adsorption con-
figurations: so-called “top” and “hollow” sites. Through non-
perturbative numerical renormalization-group calculations,
we demonstrate that top-site adsorption above a single carbon
atom leads to strong strain sensitivity: even weak deforma-
tions (strain �1%) can result in enhancement of TK by at least
an order of magnitude. For hollow-site adsorption at the center
of a carbon hexagon, it is unlikely that modest strains can
overcome a strong suppression of the Kondo scale in prsitine
graphene that results from destructive interference between
tunneling of electrons between the adatom and the six nearest
host atoms.

The organization of the remainder of the paper is as fol-
lows. Section II reviews a description of strained graphene in
terms of scalar and (pseudo)vector gauge fields. This formal-
ism is applied to compute the LDOS near a Gaussian bubble
and a Gaussian fold. Section III presents Anderson impurity
models describing top-site adsorption and hollow-site adsorp-
tion of a magnetic atom and emphasizes the differing effects
of strain in the two configurations. Numerical solutions of the
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impurity model are used to map the variation of the Kondo
temperature with the location of top-site adsorption near a
Gaussian bubble or a Gaussian fold. Section IV discusses the
results and presents suggestions for experimental conditions
favorable for the observation of the predicted features.

II. LDOS OF STRAINED GRAPHENE

A successful way to describe strain in graphene within a
continuum Hamiltonian formulation is by introducing effec-
tive (pseudo)gauge fields that change electron dynamics with-
out breaking time-reversal symmetry [44,45]. Deformation-
induced changes in the LDOS can be understood in terms
of (pseudo) Landau levels [12] or long-lived local reso-
nances (quasibound states) that are strain-field dependent
[8,15]. Due to the space inversion symmetry properties of
the gauge fields, strain is predicted to produce valley-filtered
currents where electrons near the two Dirac points are scat-
tered differentially [14,46]. These effects are expected to
be enhanced in the presence of external electromagnetic
fields [47].

This section reviews aspects of the continuum description
of strained graphene and presents calculations of the LDOS at
points near out-of-plane Gaussian deformations. Since such
deformations have been the topic of several previous studies
[46,48–52], Sec. II A presents a unified framework to enable
comparison between various results. The framework facili-
tates a discussion of various effects introduced by strain and
identifies those captured in scalar and pseudovector fields as
most relevant for electron dynamics in the energy range of
interest. Section II B outlines the Green’s function formalism
used to calculate the LDOS in deformed graphene. Based
on underlying lattice symmetries of graphene and the effec-
tive gauge fields, we derive relations between deformation-
induced changes in the LDOS in each valley and on each
sublattice. These relations point to the origins of the sublattice
symmetry breaking and particle-hole symmetry breaking that
are evident in the LDOS and, furthermore, are shown in
Sec. III to be magnified in the spatial variation of the Kondo
temperature scale. The section concludes by illustrating the
LDOS at different spatial positions relative to a Gaussian
bubble or fold, as calculated for several representative com-
binations of model parameters.

A. Strain represented via effective gauge fields

We start with a model for undistorted monolayer graphene,
with nearest-neighbor bond length a = 1.42 Å, assumed to lie
in the plane z = 0 with the x (y) axis chosen to point along
one of the zigzag (bond) directions. Throughout this paper,
boldface symbols represent two-dimensional vectors in the
x-y plane, and indices i, j run over 1 and 2 (equivalent to x
and y, respectively).

Deformations of the two-dimensional graphene membrane
that are smooth on interatomic length scales can be described
within continuum elasticity theory. In-plane and out-of-plane
displacements of carbon atoms from their equilibrium po-
sitions are assumed to be described by functions u(r) and
h(r), respectively, that vary slowly with undistorted in-plane
position r = (x, y) ≡ (r cos φ, r sin φ). To lowest order, the

deformation is described by an in-plane strain tensor [53]

εi j = 1
2 (∂ jui + ∂iu j + ∂ih∂ jh). (1)

One effect of the deformation is to replace an undistorted
nearest-neighbor lattice vector δ by a distorted counterpart δ′

of length [54,55]

|δ′| = a + 1

a
δ · ε · δ. (2)

As a result, the undistorted nearest-neighbor hopping matrix
element t0 changes to [56]

t = t0 exp[−β(|δ′|/a − 1)]

� t0[1 − (β/a2)δ · ε · δ], (3)

where β � 3 is the Grüneisen parameter [57].
The modified hopping can be inserted into the nearest-

neighbor tight-binding Hamiltonian describing the π elec-
trons in graphene. Linearization around the Dirac points K
and K ′ yields a low-energy (effective) Hamiltonian for de-
formed graphene that, when written in the valley-isotropic
basis (KA, KB) and (−K ′

B, K ′
A) [58], can be expressed in the

form

Hτ = vF σ · [−ih̄∇ − τK + τeA(r)] + �(r) σ0. (4)

Here, τ = 1 (−1) identifies the K (K ′) valley centered around
wave vector τK with K = (4/33/2, 0)π/a, −e is the electron
charge, vF = 3t0a/2h̄ is the Fermi velocity, which we take
to be vF = 106 m/s (implying that t0 = 3.1 eV); σx and σy

are Pauli matrices, and σ0 is the 2 × 2 identity matrix, all
acting on the sublattice index. The effect of the deformation is
contained in effective gauge fields [45,59]: a vector potential
A having components

Ax = h̄β

2ea
(εyy − εxx ), Ay = h̄β

ea
εxy, (5)

and a scalar potential

�(r) = gs(εxx + εyy). (6)

Equation (4) takes the form of the Hamiltonian for free
electrons in the presence of an electric field E = −∇� and
a pseudomagnetic field B = ∇ × (τA). The pseudomagnetic
field changes signs between valleys, locally breaking the
underlying inversion symmetry of the honeycomb lattice but
preserving time-reversal invariance. This sign reversal gives
τA the character of a pseudovector gauge field.

The existence of a scalar potential of the form of Eq. (6)
was originally argued [59] in the context of carbon nanotubes,
based on preservation of charge neutrality in a deformed area,
and led to an unambiguous prediction that gs > 0. The value
of gs for graphene has been reported to be between 4 and
6 eV [45,57]. However, one well-cited study corresponds to
gs = −2.5 eV [60] and another may be interpreted as giving
a similar value [61]. Given this uncertainty over the sign of
gs, below we illustrate results obtained both for positive and
negative values of gs.

In this work, we consider setups where the deformations
are of low aspect ratio, i.e., the maximum out-of-plane dis-
placement is much smaller than the in-plane distance over
which the deformation occurs. These conditions can be cre-
ated, for example, when atoms or molecules are intercalated
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FIG. 1. Two types of out-of-plane Gaussian deformation studied
in this work: (a) a circular bubble and (b) a long fold. Below each
schematic is a corresponding color map of (c), (d) the effective
magnetic field B for electrons in the K valley, and (e), (f) the scalar
potential � near both K and K ′. White circles in (c)–(f) indicate
positions where the LDOS is plotted in Figs. 2 and 3. Data shown are
for deformations of peak height h0 = 1 nm and Gaussian half-width
b = 8 nm, with couplings gv = 7 eV and gs = 3 eV.

between graphene and a substrate, or through substrate engi-
neering [8,62]. In such cases, in-plane atomic displacements
u(r) can be neglected compared to out-of-plane displacements
h(r) in Eq. (1) [2].

We focus on two specific deformation geometries: a circu-
lar “bubble” and a long “fold” extending along the x (zigzag)
direction, both having Gaussian out-of-plane height profiles
[46,49–52]. The bubble, shown schematically in Fig. 1(a),
is a centrosymmetric deformation described in the Monge
parametrization [63] by a height function

h(r) = h0 e−r2/b2
, (7)

while the long fold, sketched in Fig. 1(b), has an out-of-plane
profile

h(r) = h0 e−y2/b2
. (8)

For these specific deformations, the description in terms of
continuum elasticity theory is valid as long as we take η =
(h0/b)2 � 1 [53], while the condition b � a ensures the
absence of intervalley scattering. Under both geometries, the
strain field given by Eq. (1) is spatially inhomogeneous and
has a peak magnitude εmax = η2/e with e being Euler’s num-
ber (not to be confused with the elementary positive charge
e). All results presented in this paper are for deformations
with a peak height h0 = 1 nm and a Gaussian half-width
b = 8 nm, for which the maximum strain takes a rather small
value εmax � 0.6%.

For the circular bubble, Eq. (5) predicts a vector potential

A(r) = gvη
2

evF
f
( r

b

)
(− cos 2φ, sin 2φ), (9)

where gv = h̄βvF /2a � 7 eV and f (z) = 2z2 exp(−2z2),
while Eq. (6) gives a scalar potential

�(r) = gsη
2 f

( r

b

)
. (10)

The corresponding gauge fields for the long fold are

A(r) = gvη
2

evF
f
(y

b

)
(1, 0) (11)

and

�(r) = gsη
2 f

(y

b

)
. (12)

Figures 1(c) and 1(d) map the effective out-of-plane mag-
netic field B(r) = ∇ × A(r) = B(r) ẑ as experienced by elec-
trons in the K valley. This field has the opposite sign for
electrons in the K ′ valley. The effective field B(r) produced
by a circular bubble [Fig. 1(c)] exhibits threefold rotational
symmetry about the deformation peak at r = 0 with alter-
nating positive and negative “petals,” as previously reported
[14,45,49,50]. The effective magnetic field created by a long
fold [Fig. 1(d)] is odd under y → −y with alternating positive
and negative regions on each side of the fold axis. By contrast,
the corresponding scalar fields, mapped in Figs. 1(e) and 1(f),
exhibit the even symmetry of the deformation profile.

Aside from the gauge fields described above, which origi-
nate in bond-length deformations, strain induces other effects:
(1) Additional gauge fields arise from changes in the orienta-
tion of π orbitals as the graphene membrane is displaced out
of the plane [64,65]. These fields can be shown to be smaller
than those in Eqs. (5) and (6) by a multiplicative factor of or-
der (a/b)2. (2) Shifts in the positions of the K and K ′ points in
reciprocal space lead to renormalization of the effective Fermi
velocity vF [45,61,66–69]. Based on Ref. [61], we estimate
that this renormalization induces fractional LDOS changes
|�ρ|/ρ � 4εmax. For the specific situations illustrated in this
paper, where (a/b)2 � 0.02 and εmax = 0.6%, effects (1) and
(2) can be safely neglected.

B. LDOS changes induced by strains

In the continuum limit, the LDOS at position r and energy
E of electrons on sublattice 
 = 1 or 2 in valley τ = ±1 is

ρτ,
(r, E ) = −π−1sE Im[Gτ (r, r, E )]

. (13)

Here, sE = sgn E and [Gτ (r, r′, E )]

′ , an element of the 2 ×
2 matrix single-particle Green’s function

Gτ (r, r′, E ) = 〈r|(E + isE 0+ − Hτ )−1|r′〉,
≡ eiτK·(r−r′ )Ḡτ (r, r′, E ) (14)

describes propagation of an electron in valley τ from spatial
location r′ in sublattice 
′ to location r in sublattice 
. The
distinction between Gτ and Ḡτ , which is usually neglected and
does not affect the density of states [Eq. (13)], will prove to
be important when we consider hollow-site adsorption of a
magnetic impurity (see Sec. III C).
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In the limit b � a considered in this work, the slowly
varying deformation induces negligible intervalley scattering
and one can calculate Gτ (r, r′, E ) perturbatively in the Born
approximation [70] as

Gτ (r, r′, E ) � G0,τ (r, r′, E ) +
∫

G0,τ (r, r1, E ) [Vτ (r1)

+ �(r1)σ0] G0,τ (r1, r′, E ) dr1, (15)

where G0,τ is the Green’s function of pristine graphene, and
the first and second terms in the square brackets describe
scattering at a location r1 = (x1, y1) ≡ (r1 cos φ1, r1 sin φ1)
due to the effective vector and scalar potentials, respec-
tively. When written in the valley-isotropic basis (KA, KB)
and (−K ′

B, K ′
A), Ḡ0,τ ≡ Ḡ0 is independent of τ . Within the

approximation of a linear dispersion in pristine graphene, i.e.,
εk = ±h̄vF |k − τK| (valid for |εk| � t0), one can show [71]
that

Ḡ0(r, r′, E ) = − iq

4h̄vF

(
sE H0(qd ) ie−iφd H1(qd )

ieiφd H1(qd ) sE H0(qd )

)
. (16)

Here, q = |E |/h̄vF , Hn(x) is the order-n Hankel function
of the first kind, and d = r − r′ ≡ (d cos φd , d sin φd ). After
summation over the valley index, the pristine Green’s function
leads to a pristine density of states per sublattice, per spin
orientation, and per unit area

ρ0(E ) = |E |
2π h̄2v2

F

. (17)

For the Gaussian bubble, the scattering matrix arising from
the pseudovector field τA(r) is

Vτ (r1) = τevF σ · A(r1)

= −τgvη
2 f

( r1

b

)(
0 ei2φ1

e−i2φ1 0

)
. (18)

The corresponding quantity for the Gaussian fold is

Vτ (r1) = τgvη
2 f

(y1

b

)(
0 1
1 0

)
. (19)

Using Eqs. (10), (12), (15), (16), (18), and (19), and noting
that the elements of the unperturbed Green’s function satisfy

[G0(r, r′, E )] jj ′ = (−1) j−j ′+1[G0(r, r′,−E )] jj ′

= (−1) j−j ′
[G0(r′, r, E )] jj ′ (20)

for j, j ′ ∈ {1, 2}, one can show that �Gv
τ (r, r1, E ) and

�Gs
τ (r, r1, E ) [respectively the pseudovector and scalar con-

tributions to the integral in Eq. (15)] when evaluated at r′ = r
satisfy

[
�Gs

τ

]
11 = [

�Gs
τ

]
22 = [

�Gs
−τ

]
11 = even in E , (21)[

�Gv
τ

]
11 = −[

�Gv
τ

]
22 = −[

�Gv
−τ

]
11 = odd in E . (22)

Taking into account the ordering of the basis in each valley,
Eq. (13) yields corresponding deformation-induced shifts in

the local density of states that satisfy

�ρs
K,A(r, E ) = −�ρs

K,A(r,−E ) = �ρs
K ′,A(r, E )

= �ρs
K,B(r, E ) = �ρs

K ′,B(r, E ), (23)

�ρv
K,A(r, E ) = �ρv

K,A(r,−E ) = �ρv
K ′,A(r, E )

= −�ρv
K,B(r, E ) = −�ρv

K ′,B(r, E ). (24)

In summary, valleys K and K ′ contribute equally to the net
change of LDOS �ρ
(r, E ) experienced by each sublattice.
While the contribution of the scalar potential to �ρ
(r, E ) is
identical for the two sublattices but odd in energy E , the shift
coming from the vector potential is even in E but has opposite
signs for 
 = A and B. The last property will prove to be the
origin of sublattice symmetry breaking in signatures of Kondo
physics.

In the following sections, we present sublattice-resolved
LDOS shifts �ρα


 (r, E ) (α = v, s) and the total LDOS
ρ
(r, E ). The LDOS shifts are calculated via the method
described above, numerically integrating Eq. (15) using the
linearized approximation [Eq. (16)] for Ḡ0(r, r′, E ). The full
LDOS is computed as

ρ
(r, E ) = ρ0(E ) +
∑
α=s,v

�ρα

 (r, E ), (25)

where ρ0(E ) is the exact nearest-neighbor tight-binding den-
sity of states of pristine graphene [1]. The use of the exact
ρ0(E ) makes little difference on the energy scales |E | � t0
spanned by Figs. 2 and 3 but it allows for a more realistic
treatment of higher energy scales, important for an accurate
computation of the Kondo temperature.

C. LDOS for graphene with a Gaussian bubble deformation

Figure 2 contains representative results for the graphene
LDOS in the vicinity of a Gaussian bubble deformation. Data
are shown at four different distances (r = 0.5b, 0.866b, 1.3b,
and 1.8b) from the center of the bubble along two different
directions: φ = 90◦ (along a carbon-carbon bond direction,
which forms the symmetry axis of one of the petals in the
pseudomagnetic field) and φ = 75◦ (halfway in angle between
the petal symmetry axis and a direction φ = 60◦ of zero
pseudomagnetic field). The eight chosen locations are marked
by white circles in Fig. 1(c). Along the direction φ = 90◦,
r = 0.866b is a position of maximum pseudomagnetic field
B. At each r value, rotating from φ = 90◦ to φ = 75◦ moves
off the petal symmetry axis, resulting in a reduction in B.

Figures 2(a)–2(d) show contributions to the change in the
LDOS (valley summed, per spin orientation, per unit area) for
sublattice A due to the vector (α = v) and scalar (α = s) gauge
fields, plotted as �ρα

A/(gαη2) vs E/Eb, where Eb = h̄vF /b.
Here, gαη2 determines the maximum magnitude of the α field,
while Eb is the natural energy scale associated with spatial
variations over a length b. When scaled in this fashion, the
LDOS changes at given r/b and φ are universal functions,
independent of the deformation length scales (h0 and b) as
well as the gauge couplings (gα). The results can be extended
to negative values of E and to the B subattice using the
symmetry relations in Eqs. (23) and (24).
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FIG. 2. LDOS near a Gaussian bubble. Each row shows data at a different radial distance r from the center of the deformation (labeled
in the right panel) and at two polar angles φ = 90◦ and 75◦; see the locations marked by white dots in Fig. 1(c). (a)–(d) Scaled changes
�ρα

A/(gαη
2) in the A-sublattice LDOS (valley summed, per spin orientation, per unit area) due to the scalar (α = s, solid lines) and vector

(α = v, dashed and dotted lines) gauge fields, plotted vs positive energy E divided by Eb = h̄vF /b. (Changes due to the scalar potential are
independent of φ.) Note the different vertical scales in these panels. (e)–(h) LDOS (valley summed, per spin orientation, per unit area) for
the A (solid lines) and B (dashed lines) sublattices at locations having coordinates φ = 90◦ and the radii r used in (a)–(d), respectively. The
LDOS of pristine graphene is shown for reference (dotted lines). (i)–(l) Same as (e)–(h) except for locations at φ = 75◦. Data in (e)–(l) were
calculated for h0 = 1 nm, b = 8 nm, gv = 7 eV, and gs = 3 eV.

At each of the eight locations shown in Figs. 2(a)–2(d), the
vector LDOS shift |�ρv

A(r, E )| increases from zero at E = 0,
passes through one or more maxima at energies E ∼ O(Eb),
and then decreases toward zero for E � Eb. The oscillations
on the energy scale Eb are the result of interference between
scattering at different locations throughout the deformed re-
gion. The greatest value of |�ρv

A(r, E )| over all E correlates
closely with the magnitude of the pseudomagnetic field B(r).
The scalar shift |�ρs

A(r, E )| rises from zero at E = 0, ex-
hibits interference features around E = O(Eb), and saturates
for E � Eb at a value proportional to �(r). This saturation
behavior has a simple interpretation: for E � Eb, electrons
experience an energy shift equal to the local scalar poten-
tial �(r), resulting in a LDOS shift �ρs

A(r, E ) = ρ0[E −
�(r)] − ρ0(E ) � −�(r)/(2π h̄2v2

F ).
The functional form of the LDOS changes can be deter-

mined analytically for |E | � Eb. Due to the exponential decay
of the scattering potentials Vτ (r1) and �(r1) for |r1| � b, the
integral over r1 in Eq. (15) can be restricted to values of |r1|

smaller than a few times b. Then, the argument of the Hankel
functions in Eq. (16), kd ≡ (E/Eb)|r1 − r|/b, vanishes as
E/Eb → 0. Using the forms of the Hankel functions for
small arguments, one can deduce that �ρv

A(r, E ) ∝ |E/Eb|
and �ρs

A(r, E ) ∝ sE (E/Eb)2 ln |E/Eb|, relations that are in
good agreement with our numerical data for |E | � 0.1Eb

for positions inside the deformed region. The corresponding
analysis for positions outside this region results in a leading-
order contribution from the vector potential proportional to
(E/Eb)4e−|E/Eb|2 plus a term due to the scalar potential that
behaves as sE (E/Eb)2 ln |E/Eb|.

The remaining panels in Fig. 2 plot the full LDOS ρA(r, E )
(solid line) and ρB(r, E ) (dashed line) vs E/Eb for our ref-
erence case of a Gaussian bubble with a maximum height
h0 = 1 nm and a half-width b = 8 nm (Eb � 0.082 eV), with
couplings gv = 7 eV and gs = 3 eV. Figures 2(e)–2(h) show
results for φ = 90◦ at the same r values as in Figs. 2(a)–2(d),
respectively, while Figs. 2(i)–2(l) represent φ = 75◦. Each
panel includes for comparison the linear LDOS of pristine
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FIG. 3. LDOS near a long Gaussian fold. Each row shows data
at a different perpendicular distance y from the central axis of the
deformation (labeled in the right panel); see the locations marked
by white dots in Fig. 1(c). (a)–(f) Scaled changes �ρα

A/(gαη
2) in

the A-sublattice LDOS (valley summed, per spin orientation, per
unit area) due to the scalar (α = s, solid lines) and vector (α = v,
dashed lines) gauge fields, plotted vs positive energy E divided by
Eb = h̄vF /b. (g)–(l) LDOS (valley summed, per spin orientation, per
unit area) for the A (solid lines) and B (dashed lines) sublattices
at the locations considered in (a)–(f), respectively, calculated for
h0 = 1 nm, b = 8 nm, gv = 7 eV, and gs = 3 eV. The LDOS of
pristine graphene is shown for reference (dotted lines).

graphene (dotted line). These plots clearly show the shift in
spectral weight from E > 0 to E < 0 induced by the scalar
potential �, as well as the spectral weight transfer between
the two sublattices that arises from the pseudovector potential
τA. At each location r, the greatest difference between the A
and B sublattice LDOS occurs for energies E ∼ Eb, while the
greatest difference between the energy-integrated LDOS on
the two sublattices occurs at the position r = 0.866b, φ = 90◦
of strongest pseudomagnetic field.

D. LDOS near a long Gaussian fold deformation

Figure 3 shows the LDOS (valley summed, per spin ori-
entation, per unit area) near an extended Gaussian fold de-
formation. Results are presented for the six locations marked
by white circles in Figs. 1(d) and 1(f), chosen to sample
the range of coordinates y (measured from the fold axis
y = 0) over which the pseudomagnetic field and the scalar
deformation potential exhibit their strongest spatial variations.
Figures 3(a)–3(f) plot changes in the A-sublattice LDOS due
to the vector and scalar gauge fields, scaled in the same way
as the results in the left column of Fig. 2. Just as for the
bubble, �ρv

A/(gvη
2) is largest at the locations of greatest mag-

nitude of the pseudomagnetic field, which here are y = 0.331b
[Fig. 3(b)] and y = 1.068b [Fig. 3(e)]. Similarly, �ρs

A/(gsη
2)

is largest at the peak location y/b = 2−1/2 � 0.7 of the scalar
potential [not far from the positions shown in Figs. 3(c) and
3(d)]. Larger y values are associated with increasing numbers
of features in the �ρv

A(r, E ) around energy scales of order Eb,
resulting from extended regions of interference as electrons
scattering from the regions of largest pseudomagnetic field
and scalar potential must travel longer path lengths en route
to locations r further from the deformation axis.

Analysis of the low-energy asymptotic behavior of LDOS
shifts is more complicated than in the case of the Gaussian
bubble because (as noted above) the scattering region is
unbounded along the x direction, allowing the arguments of
the Hankel functions entering Eq. (16) to take arbitrarily large
values for any |E | � Eb. For positions |y| � b, both the vector
and scalar LDOS shifts are well described for |E | � 0.1Eb by
a leading term proportional to |E/Eb|. The LDOS also exhibit
oscillations at energies E � Eb, similar to those shown by the
bubble, that can be traced back to interference between scat-
tering at different locations throughout the deformed region.

Figures 3(g)–3(l) plot the full LDOS ρA(r, E ) (solid line)
and ρB(r, E ) (dashed line) vs E/Eb, for parameters h0 =
1 nm, b = 8 nm (Eb � 0.082 eV), gv = 7 eV, and gs = 3 eV.
The LDOS for pristine graphene is included for reference
(dotted lines). Particle-hole symmetry is broken due to the
presence of the scalar potential, as seen most clearly in
Figs. 3(i) and 3(j). The contribution from the vector potential
to the LDOS change obtained through Eq. (15) is proportional
to sin φd and therefore involves destructive interference be-
tween scattering processes at every pair of locations symmet-
rically positioned at equal perpendicular distances from the
fold axis. At y = 0, equal scattering strengths lead to perfect
cancellation and �ρv

A(r, E ) = 0 for all E . For other points
inside the deformation region, however, such cancellation
does not occur.
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Crossings between �ρA(r, E ) and �ρB(r, E ) occur at
energies where �ρv


 (r, E ) (which oscillates due to the in-
terference processes mentioned above) passes through zero.
For locations further from the symmetry axis of the fold [see,
for example, Figs. 3(k) and 3(l)], some of the crossings are
replaced by anticrossings.

III. KONDO PHYSICS

In this section, we consider a magnetic adatom on a dis-
torted graphene membrane and find the effect of deformations
on the characteristic Kondo screening temperature TK . We
focus on the most basic models for top- and hollow-site ad-
sorption, disregarding additional complexities such as orbital
degrees of freedom and coupling anisotropies [72] that have
been shown to be important for certain adatoms. Our intention
is to emphasize general Kondo signatures, independent of
the nature of the adsorbate or the microscopic details of the
hybridization. Section III A describes the Anderson impurity
model used in our work and reviews certain properties of
similar models for impurities in a conventional metallic host.
Section III B applies the model to top-site adsorption on
graphene, while Sec. III C addresses the hollow-site case.

A. Anderson impurity model

We investigate Kondo physics using a nondegenerate
(single-orbital) Anderson impurity Hamiltonian for a mag-
netic adatom hybridized with a strained graphene host:

H = Hhost + Himp + Hhyb . (26)

The host term is

Hhost =
∑
ν,σ

εν c†
ν,σ cν,σ , (27)

where cν,σ annihilates an electron in graphene with spin z
projection σ = ± 1

2 (or, equivalently, ↑/↓), nonspin quantum
numbers that we collectively label ν, and energy εν . The
isolated adatom (or “impurity”) is described by

Himp = εd

∑
σ

d†
σ dσ + U d†

↑d↑d†
↓d↓, (28)

where dσ annihilates an electron of energy εd and spin σ in
an orbitally nondegenerate level having an onsite Coulomb
repulsion U . The coupling between the adatom and its host is
captured in the term

Hhyb =
∑
j,ν,σ

Wjd
†
σ ϕν (R j )cν,σ + H.c., (29)

where Wj is the matrix element (assumed to be spin indepen-
dent) for tunneling into the impurity level from the pz orbital
of carbon atom j at location R j where the host eigenstate ν has
a (dimensionless) tight-binding wave function ϕν (R j ). The j
sum runs over all carbon atoms in the graphene, even though
Wj will be non-negligible only for a small number of carbons
located close to the adatom. The wave function ϕν is defined
only at the carbon sites, and is normalized so that

〈ϕν |ϕν ′ 〉 =
∑

j

ϕ∗
ν (R j )ϕν ′ (R j ) = δν,ν ′ . (30)

In undeformed graphene, host eigenfunctions with small wave
vectors q = (q cos φq, q sin φq) measured from the valley cen-
ter at τK (τ = ±1) and small energies E = sE h̄vF q (sE =
±1) measured from the Dirac point can be written in the form

ϕ
,τ,q,sE (R j ) = s
−1
E√
Nc

ei(τK+q)·R j eiτ (
−3/2)φq , (31)

where Nc is the number of unit cells in the graphene sheet, and

 = 1 (A) or 2 (B) labels the sublattice to which carbon atom
j belongs.

All single-particle energies (εν , εd , and the chemical poten-
tial μ) will be measured from the Dirac point in undistorted
graphene. We will focus on situations where εd − μ < 0 and
2(εd − μ) + U > 0 so that the ground state of the isolated
impurity has a single electron that therefore forms a local
magnetic moment.

Equation (29) can be rewritten as

Hhyb = 1√
Nc

∑
ν,σ

W̃ν d†
σ cν,σ + H.c., (32)

where

W̃ν = √
Nc

∑
j

Wj ϕν (R j ). (33)

It is convenient to transform to an energy representation by
defining

aE ,σ =
√

π

Ncg(E )

∑
ν

δ(E − εν )W̃νcν,σ , (34)

with a (non-negative) hybridization function

g(E ) = π

Nc

∑
ν

|W̃ν |2 δ(E − εν ) (35)

so that {aE ,σ , a†
E ′,σ ′ } = δ(E − E ′) δσ,σ ′ . This allows one to

express Eq. (32) in the form

Hhyb =
∑

σ

d†
σ

∫
dE

√
g(E )/π aE ,σ + H.c., (36)

and Eq. (27) in the form

Hhost =
∑

σ

∫
dE E a†

E ,σ aE ,σ + · · · , (37)

where “. . .” represents contributions from linear combinations
of host states that do not couple to the impurity and that will
not be considered any further.

Different possible symmetries of the impurity orbital and
adsorption configurations on the surface of graphene can be
modeled by appropriate choices of the matrix elements Wj

entering Eq. (29). Both experiments and ab initio calculations
suggest that two adsorption configurations are energetically
most likely as follows [73]:

(1) “Top-site” attachment over a single carbon atom
has been observed for Co adatoms on epitaxial monolayer
graphene on SiC(0001), as well as for both Co and Ni
on quasi-free-standing mononolayer graphene on SiC(0001)
[74]. This configuration can be minimally described by just
one nonzero Wj .
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(2) “Hollow-site” attachment at the center of a carbon
hexagon, as has been observed for Ni adatoms on mono-
layer graphene on SiC(0001) [74,75] and (in addition to top-
site attachment) for both Co and Ni on quasi-free-standing
monolayer graphene on SiC(0001) [74]. This case can be
approximated by six nonzero values Wj , which may all be
equal (e.g., for an s or dzz impurity orbital) or may differ (as
in the case of other d orbitals or any f orbital).

Anderson models for these two adsorption configurations
on undistorted graphene have been considered previously;
see, for example, Refs. [18,19,24,28,76,77]. In this paper
we generalize these previous treatments to take into account
deformation of the host surface.

Before discussing specific adsorption configurations, some
general remarks are in order. Equations (26), (28), (36), and
(37) together make up a standard representation of the Ander-
son impurity model for a magnetic impurity hybridizing with
a host via an energy-dependent hybridization function g(E ).
The canonical version of this model has chemical potential
μ = 0 and a “‘top-hat” hybridization function

g(E ) = � �(D − |E |), (38)

where �(x) is the Heaviside function and the prefactor � is
termed the “hybridization width.” For any � > 0, the impurity
spin degree of freedom becomes collectively screened by
the conduction band at temperatures T below a crossover
scale: the Kondo temperature TK . The dependencies of phys-
ical properties on T , magnetic field B, and frequency ω

are described by universal functions of T/TK , B/TK , and
ω/TK for T, B, ω � TK .2 Provided that U � D, εd − μ �
−�, U + εd − μ � �, and 2U� � π |εd − μ|(U + εd − μ)
(conditions that place the model deep in its strongly correlated
Kondo regime), the Kondo temperature can be written [78]

TK � 0.36

√
2Ug(μ)

π
exp

[
−π |εd −μ|(U +εd −μ)

2Ug(μ)

]
, (39)

where μ = 0 and g(μ) = � in the canonical version of the
model. In more general cases where μ �= 0 and/or g(E ) is not
strictly constant, but still varies slowly within the energy range
|E − μ| � U that sets TK [78], the low-energy properties still
follow the universal scaling forms with a Kondo scale given
(up to an overall multiplicative correction) by Eq. (39).

Anderson models in which g(E ) has strong energy depen-
dence near the chemical potential can exhibit strong devia-
tions from canonical Kondo physics. A well-studied example
is the pseudogap Anderson model [20–27], characterized by a
hybridization function

g(E ) = � |E/D|r �(D − |E |) (40)

with a band exponent r > 0. If the chemical potential μ

is nonzero so that g(μ) > 0, then the pseudogap Anderson
model exhibits conventional physics for T, B, |ω| � TK , in
many cases also retaining an exponential dependence of TK

on g(μ). For μ = 0, by contrast, the depletion of hybridization
close to the chemical potential allows Kondo screening of the
impurity moment only if the hybridization width exceeds a

2We work in units where h̄ = kB = μB = 1.

threshold value �c > 0. For � < �c, TK effectively vanishes
and the system instead approaches a low-energy regime in
which the impurity moment asymptotically decouples from
the conduction band. A quantum phase transition (QPT) at
� = �c separates local-moment (� < �c) and Kondo (� >

�c) phases. In each phase, physical properties take scaling
forms that depend on the band exponent r entering Eq. (40)
as well as T/T ∗, B/T ∗, and ω/T ∗. Here, T ∗ (which replaces
TK in the conventional Anderson model) is a many-body scale
that vanishes as T ∗ ∝ |� − �c|ν close to the QPT, with ν

being a positive, r-dependent exponent.
As pointed out previously [19,24,28,76,77], adsorption of

a magnetic impurity in a top-site configuration on undeformed
graphene can be described by an Anderson model with a
hybridization function that at low energies |E | � D = 3t0
corresponds to Eq. (40) with r = 1, while hollow-site ad-
sorption realizes the case r = 3. This raises the prospect of
realizing the pseudogap Kondo effect in undoped graphene
where the chemical potential coincides with the Dirac points,
but (as mentioned in Sec. I) there is a high likelihood that
the characteristic scale T ∗ lies below the range accessible in
experiments. Our focus in this work is on a different regime
|μ| = O(Eb) that reveals unique features of Kondo physics in
deformed graphene. Here, the low-energy properties follow
their conventional (metallic) forms and the effects of strain
can be captured in the variation of the Kondo tempera-
ture TK for different adatom locations relative to the peak
deformation.

To calculate TK , we solve the appropriate Anderson impu-
rity model using the numerical renormalization-group (NRG)
method [79–82], as adapted to treat an arbitrary hybridiza-
tion function [22]. The Kondo temperature is determined
via the standard operational definition (with gμB = kB = 1)
TKχimp(TK ) = 0.0701 [79,80], where χimp(T ) is the impurity
contribution to the system’s magnetic susceptibility at abso-
lute temperature T . All NRG results reported below were
obtained using a Wilson discretization parameter � = 2.5,
retaining up to Nkept = 2000 many-body spin multiplets after
each iteration. A known artifact of NRG band discretization is
a reduction in the hybridization width from its nominal value
� to an effective one �/A [80]. When making comparisons
with Eq. (39), we use the correction factor A = 1.204 [22]
appropriate for � = 2.5 and a linear hybridization function
[Eq. (40) with r = 1].

B. Top-site adsorption

When a magnetic atom adsorbs directly over a carbon
atom, it is a good approximation to assume that there is
just one non-negligible hybridization matrix element W . If
the hybridizing carbon atom is at position R in sublattice 
,
then the relevant Anderson impurity model has hybridization
function

gTS(E ) = 2D� Acρ
(R, E ), (41)

where Ac = 3
√

3a2/2 is the graphene unit-cell area, D = 3t0
is the half-bandwidth of graphene, � = πW 2/(2D) is the
mean value of gTS(E ) taken over all |E | < D, and ρ
(R, E )
is the valley-summed local density of states per spin ori-
entation, per unit area as discussed in Secs. II C and II D.
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Equation (41) shows that the hybridization function gTS(E )
directly follows the energy dependence of the LDOS for the
sublattice to which the hybridizing carbon belongs. In un-
deformed graphene, ρ
(R, E ) reduces for |E | � D to ρ0(E )
given in Eq. (17) and, thus, gTS(E ) = (6

√
3/π )�|E/D|. We

assume that the slowly varying out-of-plane deformations
considered in this study induce negligible change in the
hybridization matrix element W , so that strains enter the
Anderson model solely through changes in ρ
(R, E ).

In Secs. III B 1 and III B 2 below, we present results for
mechanical deformations with the same geometric parameters
as were used in Sec. II: maximum height h0 = 1 nm, Gaussian
half-width b = 8 nm (so that Eb = h̄vF /b = 0.082 eV), and
gauge couplings gv = 7 eV and gs = 3 eV. In light of the
disagreement in the literature over the sign and magnitude of
gs, we also show results for gs = −3 and 1 eV. We consider
situations where the graphene is gated or doped to produce
a chemical potential μ = ±0.15 eV � ± 1.8Eb in the energy
range of largest deformation-induced changes in the LDOS
ρ
(R, E ) (see Secs. II C and II D).

It is also necessary to choose parameters εd , U , and � de-
scribing the adatom. To determine the parameter values appro-
priate for a particular magnetic impurity species would require
ab initio calculations or detailed experimental measurements
that are beyond the scope of this work. However, qualitative
behaviors to be expected can be adequately illustrated by
focusing on a single value of the level energy εd = −1 eV
with either U = −2εd = 2 eV (for an impurity level that is
particle-hole symmetric for μ = 0) or U = ∞ (representing
maximal particle-hole asymmetry). We choose 0.65 eV �
� � 3 eV, values that cause the Kondo temperature T 0

K in the
absence of strain to fall between 20 mK and 4.2 K.

Let us start from the reference case of an adatom with pa-
rameters U = −2εd = � = 2 eV adsorbed on top of a carbon
atom in undeformed graphene having a chemical potential
μ = ±0.15 eV. NRG calculations for this case give T 0

K =
0.21 K, within 20% of the value 0.25 K predicted by Eq. (39).
This close agreement suggests that, despite the complicated
energy dependence of gTS(E ), the Kondo scale is set mainly
by the value of gTS(μ). (We will return to this point when
we discuss hollow-site adsorption.) That T 0

K is independent
of the sign of μ is due to the strict particle-hole symmetry
about the Dirac points ε = 0 of the hybridization function
[i.e., gTS(E ) = gTS(−E ) for all E ] and of the adatom energy
levels (i.e., U = −2εd ).

Having established this reference case, we can now look at
the effects of deformation of the graphene host.

1. Kondo temperature for top-site adsorption
near a Gaussian bubble

Figure 4 shows Kondo temperatures for an adatom on
top of a carbon atom in sublattice A (data points connected
by solid lines) or in sublattice B (dashed lines), located at
four distances r from the peak of a Gaussian bubble along
directions at φ = 90◦ (left panels) and φ = 75◦ (right panels)
measured counterclockwise from the positive x axis. The
locations illustrated are marked by white dots in Fig. 1(c) and
correspond to the ones in Fig. 2. All data in this figure are
for U = −2εd = 2 eV. Each row corresponds to a different

FIG. 4. Kondo temperature TK vs distance r from the center of
a Gaussian bubble deformation [Fig. 1(a)] along directions φ = 90◦

(left panels) and φ = 75◦ (right panels). Data are for height h0 =
1 nm and width b = 8 nm, for gauge vector coupling gv = 7 eV, and
for a symmetric magnetic impurity described by U = −2εd = 2 eV.
The other model parameters are specified in a legend for each row.
Solid (dashed) lines connect TK values for adatoms on top of carbon
atoms in the A (B) sublattice. A horizontal dotted line represents the
Kondo temperature in the absence of deformation.

combination of the chemical potential μ, the adatom hy-
bridization width �, and the scalar gauge coupling gs. Each
row after the first differs from a higher row by a change in
just one of μ, �, and gs, chosen to illustrate and highlight a
general trend as one moves within the parameter space of the
model.

Figures 4(a) and 4(b) illustrate the case gs = 3 eV for
which the A- and B-sublattice LDOS are plotted in Fig. 2. The
other parameters are μ = 0.15 eV � 1.8Eb and � = 2 eV. At
each of the eight locations illustrated, the scalar gauge poten-
tial decreases the LDOS on both sublattices, while the vector
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gauge potential increases the LDOS on one sublattice and re-
duces it on the other sublattice, as expected from Eqs. (23) and
(24); since the vector gauge coupling is larger than the scalar,
the net effect at all locations except (r, φ) = (0.5b, 75◦) is a
net increase of ρ
(R, μ) for one sublattice and a net decrease
for the other. Comparison between Figs. 2(e)–2(l), 4(a), and
4(b) reveals that TK rises/falls in close correlation with the
value of the sublattice LDOS at the chemical potential. The
extremal TK values occur at r = 0.866b, φ = 90◦, where the
A sublattice has a density of states per unit area ρA(μ) =
0.0176/(DAc ) and a Kondo scale TK = 3.5 mK, while the
B sublattice has ρB(μ) = 0.0312/(DAc) and TK = 0.43 K;
for comparison, pristine graphene has ρ0(μ) = 0.0268/(DAc )
and (as noted above) Kondo temperature T 0

K = 0.21 K. In
this particular region near a bubble deformation, the LDOS at
the chemical potential decreases by 34% on the A sublattice
and increases by 16% on the B sublattice. These changes
are amplified in the Kondo temperature, which (relative to
undeformed graphene) decreases by a factor of 60 on the A
sublattice while doubling on the B sublattice. However, the
amplifications are not quite as strong as the 110-fold decrease
for A and the 3.7-fold increase for B predicted by Eq. (39),
reinforcing the point that TK depends on values taken by the
hybridization function gTS(E ) within a window around the
chemical potential, not just on gTS(μ). Note in particular that,
as can be seen in Fig. 2 and Eq. (41), a deformation that de-
creases (increases) gTS(μ) tends to increase (decrease) gTS(E )
at energies E not too far from μ. The subtle interplay of these
changes in gTS(E ) explains, for example, why deformation
results in a modest decrease of TK on the B sublattice at
r = 0.5b, φ = 90◦ even though ρB(r, μ) and hence gTS(μ)
undergo a slight increase.

Figures 4(c) and 4(d) illustrate the same situation as
Figs. 4(a) and 4(b), respectively, apart from a reversal in sign
of the chemical potential to μ = −0.15 eV. As noted above,
the Kondo temperature for our reference case in undeformed
graphene is unchanged by this reversal due to the strict
particle-hole symmetry of the LDOS and the adatom level en-
ergies. However, the scalar component of the LDOS changes
induced by deformation breaks particle-hole symmetry; for
gs > 0, the effect is to decrease the LDOS for E > 0 and
increase it for E < 0. Therefore, the case μ = −0.15 eV sam-
ples a higher LDOS in the vicinity of the chemical potential
than is the case for μ = 0.15 eV, and as one might expect,
higher Kondo temperatures follow. The highest and lowest
Kondo temperatures in Figs. 4(c) and 4(d) are 1.7 K and
79 mK, respectively, 8 and 0.4 times T 0

K . That a modest (here
0.6%) strain can enhance TK by an order of magnitude is one
of the principal findings of this work. It significantly improves
the prospects of experimental detection of Kondo physics in
situations where the signatures would otherwise occur below
the base temperature of an experiment.

Figures 4(e) and 4(f) differ from Figs. 4(c) and 4(d) only by
a decrease in gs from 3 to 1 eV, which reduces the magnitude
of the particle-hole symmetry breaking caused by the scalar
potential. The variation of TK with position (r, φ) in Figs. 4(e)
and 4(f) is qualitatively very similar to that in Figs. 4(c) and
4(d). However, each TK in the third row of the figure is smaller
than its counterpart in the second row, while still being greater
than the corresponding value for μ = 0.15 eV in the first row.

Figures 4(g) and 4(h) differ from Figs. 4(a) and 4(b) only
by a switch in gs from 3 to −3 eV, reversing the sign of
the LDOS change due to the scalar potential while leaving
unaffected the change due to the vector potential. For the cases
considered here, where the undeformed gTS(E ) = gTS(−E )
and U = −2εd , a change in sign of gs while keeping μ

constant has the same effect on TK as a change in the sign of
μ at fixed gs. For this reason, the Kondo temperatures shown
in Figs. 4(g) and 4(h) are identical to those in Figs. 4(c) and
4(d).

Finally, Figs. 4(i) and 4(j) differ from Figs. 4(g) and 4(h)
only by an increase in � from 2 to 2.5 eV. This change
increases the Kondo temperature T 0

K for an undeformed host
from 0.21 to 4.2 K. Near the Gaussian bubble, the pattern of
TK values on each sublattice is qualitatively very similar to
that for � = 2 eV. However, Figs. 4(i) and 4(j) show values
of TK/T 0

K spanning a range 0.61 to 4.0 that is narrower than
the range 0.38 to 8.0 in Figs. 4(g) and 4(h). Such a reduction
with increasing � in the sensitivity of the Kondo scale to
deformation-induced LDOS changes is consistent with the
approximation that TK is given by Eqs. (39) and (41). For still
greater values of the hybridization width, the system should
cross over from its Kondo regime into mixed valence, where
TK depends linearly, rather than exponentially, on g(μ).

2. Kondo temperature for top-site adsorption near a long
Gaussian fold

We now turn to Fig. 5, which shows Kondo temperatures
for an adatom on top of a carbon atom in sublattice A (solid
lines) or sublattice B (dashed lines) at six perpendicular
distances y from the symmetry axis (y = 0) of an extended
Gaussian fold. The locations illustrated are marked by white
dots in Fig. 1(d) and are the ones for which the LDOS is
plotted in Fig. 3. The left panel in each row shows data for
the same combination of μ, gs, U = −2εd , and � (and hence
the same value of T 0

K ) as appears in the corresponding row
of Fig. 4, thereby facilitating the identification of similarities
and differences between the effects of bubble and fold defor-
mations. The right panel differs from its left counterpart only
in that the data are for U = ∞ and � has been adjusted to keep
T 0

K , the Kondo temperature in the absence of deformation,
within the range 20 mK to 2–3 K. (Without any adjustment
of �, the value of T 0

K calculated for U = ∞ and our standard
hybridization width � = 2 eV would be 24 μK for chemical
potential μ = 0.15 eV or 490 K for μ = −0.15 eV, in both
cases placing the Kondo scale outside the window of experi-
mental interest for most experiments.)

Figures 5(a)–5(d) illustrate the case gs = 3 eV for which
the A- and B-sublattice LDOS are plotted in Fig. 3. Fig-
ures 5(a) and 5(b) are for μ = 0.15 eV � 1.8Eb, while
Figs. 5(c) and 5(d) are for μ = −0.15 eV. Comparison be-
tween these panels and Figs. 3(g)–3(l) reveals that (just as
for the Gaussian bubble illustrated in Figs. 2 and 4), TK

varies within a panel in close correlation with the value of
ρ
(R, μ). Due to a reversal in the sign of the vector gauge field
compared to the bubble, for |y| � 0.7b it is sublattice A (rather
than B) that has the larger LDOS and hence the higher Kondo
temperature. Nonetheless, the range of values of TK/T 0

K for
U = −2εd shown in Figs. 5(a) and 5(c) is similar to that for
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FIG. 5. Kondo temperature TK vs distance y away from the
symmetry axis of an extended Gaussian fold deformation [Fig. 1(b)].
Data are for height h0 = 1 nm and width b = 8 nm, for gauge vector
coupling gv = 7 eV, for an impurity level energy εd = −1 eV, and
for onsite Coulomb interactions U = 2 eV (left panels) and U = ∞
(right panels). All other model parameters are specified in a legend
for each row. Those for the left panels are identical to the ones in the
corresponding row of Fig. 4. Each panel in the right column shares
the same μ and gs as its left neighbor, but has a different �. Solid
(dashed) lines connect TK values for adatoms on top of carbon atoms
in the A (B) sublattice, and a horizontal dotted line represents the
Kondo temperature in the absence of deformation.

the bubble in Figs. 4(a)–4(d). For U = ∞, there is a much
stronger difference between the behavior for μ = 0.15 eV and
−0.15 eV: in the former case, even with � increased to 2.5 eV
the Kondo temperature on undeformed graphene is only T 0

K =
21 mK, an order of magnitude smaller than in our reference
case U = −2εd = � = 2 eV; for μ = −0.15 eV, by contrast,
even with � reduced to 1.5 eV, we find an order-of-magnitude
enhancement of T 0

K to 2.5 K.

The asymmetric behavior seen for U = ∞ under reflec-
tion of the chemical potential about the Dirac point can
be understood within a poor man’s scaling analysis of the
Anderson model [16,83] that progressively integrates out
the conduction-band states lying furthest in energy from the
chemical potential, accounting for the eliminated band-edge
states through perturbative adjustment of εd , U , and g(E ). For
U = ∞, the renormalized value of the level energy ε̃d evolves
according to the differential equation [83]

π
d ε̃d

dD̃
= �̃(D̃ + μ)

D̃ − (ε̃d − μ)
− 2�̃(−D̃ + μ)

D̃ + (ε̃d − μ)
, (42)

where D̃ (with initial value D + |μ| and satisfying dD̃ < 0)
is the running half-bandwidth as measured from the chem-
ical potential and �̃(±D̃ + μ) represents the renormalized
hybridization function evaluated at the edges of the reduced
band. The factor of 2 in the second term on the right-hand
side of Eq. (42) arises because an electron of either spin z
projection s = ± 1

2 can undergo virtual tunneling from the
bottom of the band into the empty impurity level. Virtual
tunneling of the electron from a singly occupied impurity level
to the upper band edge (described by the first term on the
right side) has no factor of 2 because it must conserve the
spin of that electron. Equation (42) shows that band states
below, but not very far from, the chemical potential make a
greater contribution to the renormalization of ε̃d than do band
states an equal distance above the chemical potential. Due to
the presence of the Dirac point at E = 0, the LDOS at energy
E = μ − D̃ for a given D̃ > 0 is lower for μ = 0.15 eV than
it is for μ = −0.15 eV. A faster scaling of ε̃d with decreasing
D̃ generally results in a higher Kondo temperature [83], so it
is to be expected that T 0

K is higher for μ < 0.
Figures 5(e) and 5(f) differ from Figs. 5(c) and 5(d) only by

a decrease in gs from 3 to 1 eV, which reduces the particle-hole
symmetry breaking caused by the scalar potential. As was the
case for Fig. 4, the variation of TK with position in Figs. 5(e)
and 5(f) is qualitatively similar to that in Figs. 5(a)–5(d), but
at a given location, TK for each sublattice lies between the
corresponding values in the first and second rows of the figure.

Figure 5(g) differs from Fig. 5(a) only by a switch in the
sign of gs. As discussed in connection with Figs. 4(g) and 4(h),
for U = −2εd this switch is equivalent to changing the sign of
μ, implying that the data in Fig. 5(g) are identical to those in
Fig. 5(c). By contrast, there is no simple relation between the
TK values in Figs. 5(a) and 5(h), which differ not only as to the
sign of gs, but also in their values of �. Even if the � values
were the same, there would be no symmetry connecting these
two U = ∞ cases.

Finally, in Figs. 5(i) and 5(j) differ from Figs. 5(g) and
5(h), respectively, only by an increase in � by 0.5 eV. This
change increases the Kondo temperature for an undeformed
host from T 0

K = 0.21 K in Fig. 5(g) to T 0
K = 4.2 K in Fig. 5(i),

and from T 0
K = 21 mK in Fig. 5(j) to T 0

K = 1.9 K in Fig. 5(j).
The pattern of TK values on each sublattice is qualitatively
very similar for the smaller and larger � values, but (just as
is seen for the bubble), the larger � yields ratios TK/T 0

K that
deviate less from 1, indicating that as the system moves from
deep in its Kondo regime toward mixed valence, the Kondo
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temperature becomes less sensitive to deformation-induced
changes in the LDOS on each sublattice.

To summarize, Figs. 4 and 5 show many similarities be-
tween the spatial variation of TK for top-site adsorption near a
Gaussian deformation of bubble and fold geometry. The most
striking feature is that the Kondo temperature, a quantity that
can be deduced from scanning-tunneling spectroscopy per-
formed over adatom, serves to amplify deformation-induced
changes in the LDOS. The degree of enhancement or suppres-
sion of TK relative to its value T 0

K for undeformed graphene
depends on properties of the adatom (as modeled via the
parameters εd , U , and �), on characteristics of the graphene
(such as the parameters gs and gv and the degree of strain),
and on environmental details such as the chemical potential
μ established via doping or back gating. However, without
any fine tuning of parameters, we have demonstrated that
TK can easily be enhanced by an order of magnitude, in-
creasing the prospects for experimental observation of Kondo
phenomenology.

In the top-site configuration, the effective scalar potential
� defined in Eq. (6) tends to modify the Kondo temperature
on both sublattices in the same direction, lowering TK in
situations where the chemical potential has the same sign
as gs but raising it when μ and gs have the opposite sign.
By contrast, the vector potential defined in Eq. (5) changes
TK in the opposite direction for adatoms attached to the A
and B sublattices, but the direction of change for a given
sublattice is unaffected by reversal in the sign of μ. These
differing trends provide a signature that can unambiguously
distinguish Kondo physics from other phenomena that may
occur in graphene.

On a more speculative level, the results in Figs. 4 and 5
also suggest a possible method for disentangling the scalar
and vector contributions to the deformation-induced LDOS
change. Suppose that for a given adatom species and a fixed
chemical potential μ, it is possible to measure (e.g., via the
width of an STM Fano line shape) not only the Kondo temper-
ature T 0

K for top-site adsorption on pristine graphene, but also
the scales T A

K (R) and T B
K (R) for adsorption above close-lying

A- and B-sublattice carbon atoms in the vicinity of a smooth
deformation. As noted above, and further discussed below
in connection with Fig. 7, Eq. (39) proves to be reasonably
accurate for top-site adsorption deep in the Kondo regime.
Using Eq. (41), and decomposing the LDOS in the presence
of deformation according to Eq. (25), one can estimate the
fractional LDOS change due to the scalar effective potential,

�ρs
A(R)/ρ0(μ) � c ln

[
T A

K (R)T B
K (R)/

(
T 0

K

)2]
, (43)

as well as its counterpart due to the vector effective potential,

�ρv
A(R, μ)/ρ0(μ) � c ln

[
T A

K (R)/T B
K (R)

]
, (44)

where c is a dimensionless constant that is independent of R.
By applying Eqs. (43) and (44) at different points R relative
to the peak deformation, one should be able to gain insight
into the sign and magnitude of the coupling gs relative to the
better-understood quantity gv .

Even though we have considered a relatively small number
of combinations of model parameters, the results in Figs. 4

FIG. 6. Schematics of the hollow-site geometry. The impurity
adatom, located directly above the point labeled R, hybridizes with
the six nearest carbon atoms in the plane represented as circles.
Nearest carbon atoms Aj ( j = 1, 2, 3) from sublattice A (red circles)
are located at positions described by two-dimensional vectors δ j ,
while nearest carbon atoms Bj from sublattice B (black circles) are
located at −δ j .

and 5 are broadly representative of the range of qualitative
behaviors that can be expected across the full parameter space.
Additional complexities, such as adatoms having higher spins
or spin-anisotropic interactions, are likely to alter only in
quantitative detail the Kondo amplification of deformation-
induced LDOS changes that is the central result of this work.

C. Hollow-site adsorption

The description of hollow-site adsorption is more compli-
cated than that of the top-site configuration due to quantum-
mechanical interference between tunneling from the ac-
tive impurity level to different carbon atoms in monolayer
graphene. We first treat adsorption at a hollow site on pristine
graphene before considering the effects of deformation.

1. Hollow-site adsorption on pristine graphene

For simplicity, we assume that the adatom is located above
point R on the graphene plane and hybridizes only with the six
nearest carbon atoms (see Fig. 6): three from sublattice A at lo-
cations RA,n = R + δn (n = 1, 2, 3) and three from sublattice
B at locations RB,n = R − δn, with δ1 = (−√

3, 1)a/2, δ2 =
(0,−1)a, and δ3 = (

√
3, 1)a/2. In general, the hybridization

matrix elements Wj between the active impurity orbital and
the nearest carbon atoms can take independent values WA,n

and WB,n. In previous studies [19,24,76,77], the hybridization
function gHS(E ) for hollow-site adsorption was calculated by
substituting into Eq. (35) the expression

W̃ν =
3∑

n=1

[WA,nϕA,ν (RA,n) + WB,nϕB,ν (RB,n)] (45)

with ν = (τ, q, sE ) and ϕ
,τ,q,sE (r) being a plane-wave state
defined in Eq. (31).

Reference [19] identifies two different classes of hollow-
site adsorption. In situations where

WA,n = WA and WB,n = WB for n = 1, 2, 3, (46)
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such that the adatom hybridizes equally with the three near-
est carbons on a given sublattice, gHS(E ) ∝ |E/D|3 at low
energies. In all other cases, where the set of hybridization
matrix elements breaks the full C3v point-group symmetry of
the lattice, one instead finds gHS(E ) ∝ |E/D|, qualitatively
the same as for top-site adsorption. The additional factor of
(E/D)2 in the first class can be attributed to the appearance in
|W̃τ,q,sE |2 of a multiplicative factor of |∑3

n=1 exp[i(τK + q) ·
δn]|2, which vanishes at the valley minimum q = 0.

Anticipating extension of the calculation to situations with
deformation, we can instead derive the hybridization func-
tion gHS(E ) from the continuum-limit single-particle Green’s
function in the basis (ψA, ψB):

G(r, r′, E ) =
∑
ν,ν ′

〈r|ν〉〈ν|(E + isE 0+ − H )−1|ν ′〉〈ν ′|r′〉

=
∑

ν

1

E + isE 0+ − εν

×
(

ψA,ν (r)ψ∗
A,ν (r′) ψA,νψ

∗
B,ν (r′)

ψB,ν (r)ψ∗
A,ν (r′) ψB,νψ

∗
B,ν (r′)

)
. (47)

The continuum-limit wave functions ψ
,ν (r) are defined at all
two-dimensional position vectors r within the graphene sheet
of total area A, and are normalized so that

〈ψ
,ν |ψ
,ν ′ 〉 =
∫

d2r ψ∗
ν (r) ψν ′ (r) = δν,ν ′ . (48)

These continuum-limit wave functions can be connected
with the tight-binding ones entering Eq. (33) via ψ
,ν (r) =
A−1/2

c ϕ
,ν (r), where Ac is the area of the graphene unit cell.
This allows one to write

gHS(E ) = −sE Ac Im
∑

n,n′,
,
′
W
,nW

∗

′n′ [G(R
,n, R
′,n′ , E )]

′ .

(49)
In the range |E | � t0, one can reduce the above to a sum
over contributions from valley-resolved Green’s functions
Gτ (r, r′, E ) defined in Eq. (14).

Equation (49) can be evaluated in closed form within the
approximation of linear dispersion about the Dirac points.
Here, we illustrate this by summarizing the results for con-
figurations with full C3v symmetry [i.e., satisfying Eq. (46)]
where, moreover, WA/WB is real. This encompasses as special
cases both (a) WA = WB describing an active impurity orbital
that has cylindrical symmetry about an axis perpendicular to
the graphene plane, as is the case for s, dzz, and fz3 orbitals,
and (b) WA = −WB, appropriate for fx(x2−3y2 ) and fy(y2−3x2 )
orbitals. After some laborious algebra, one finds that the

 �= 
′ terms in Eq. (49) sum to zero, while the 
 = 
′ terms
combine to give

gHS(E ) = 36
√

3

π
�|E/D|[1 − J0(2

√
3|E |/D)] (50)

with � = π (|WA|2 + |WB|2)/(4D). On the right-hand side of
Eq. (50), the term 1 inside the square brackets comes from
pure LDOS (n = n′) terms in Eq. (49), while the zeroth-order
Bessel function comes from nonlocal (n �= n′) terms. In the
regime where 2

√
3|E |/D � 1, the approximation J0(x) �

1 − x2/4 leads to gHS(E ) � (108
√

3/π )�|E/D|3, consistent

FIG. 7. Kondo temperature T 0
K vs chemical potential μ for an

adatom with U = −2εd = 2 eV on pristine (undeformed) graphene,
showing data for top-site adsorption with hybridization width
� = 2 eV (∗) as well as C3v-symmetric hollow-site adsorption with
� = 2 eV (open circle) and � = 1.5 eV (open square).

with previous work [19,24,76,77]. The additional factor of
(E/D)2 compared with gTS(E ) ∝ |E/D| arises from the com-
plete destructive interference at the Dirac points (E = 0) be-
tween (i) virtual tunneling of an electron from a given carbon
atom in sublattice 
 into the active impurity level, then from
the impurity back to the same carbon atom, and (ii) similar
processes that end with the electron tunneling back to one of
the other two nearest carbons belonging to sublattice 
.

The cubic energy dependence of gHS(E ) for small |E/D|
means that hybridization is greatly suppressed for hollow-site
adsorption compared with its top-site counterpart. Hence, for
a chemical potential close to the Dirac point and any given
combination of the parameters εd , U , and �, the Kondo
scale T 0

K will generally be much lower in the hollow-site
configuration, as noted previously in Ref. [28]. We illustrate
this tendency in Fig. 7, which plots the Kondo temperature
T 0

K vs the chemical potential μ for three different cases, all
involving a magnetic impurity level with U = −2εd = 2 eV.
Asterisks show T 0

K for top-site adsorption of an impurity
having hybridization width � = πW 2/(2D) = 0.2 eV. Over
the range of μ spanned in the figure, the numerical data
agree with Eq. (39) to within better than a factor of 4. This
observation supports the assessment made near the start of
Sec. III B that the Kondo physics for top-site adsorption on
graphene is essentially conventional, with the effect of the
pseudogap in the density of states being adequately captured
through the value of gTS(μ).

The remaining points in Fig. 7 represent T 0
K for C3v-

symmetric hollow-site adsorption, calculated assuming that
gHS(E ) = 6[1 − J0(2

√
3|E |/D)] gTS(E ), a relation that holds

rigorously only for the region |E | � D of linear dispersion.
Although there are doubtless some corrections to this relation
within the energy range |E − μ| � U that determines TK [78],
the approximation is adequate to illustrate the qualitative dif-
ferences between top- and hollow-site adsorption. The circles
in Fig. 7 correspond to the same hybridization width � = 2 eV
illustrated for top-site adsorption, and show that T 0

K is so
small for μ � 0.26 eV as to be completely inaccessible to
experiments, but then rises rapidly over a narrow range of
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chemical potential so that for μ � 0.28 eV, it exceeds the
Kondo scale for top-site adsorption. Over the entire range of μ

covered in the figure, the hollow site T 0
K exceeds by at least 50

orders of magnitude the value predicted by Eq. (39), pointing
to strong departures from conventional Kondo physics.

Based on the spatial geometries, we believe it likely that
for a given adatom, hollow-site adsorption will involve a
smaller wave-function overlap between the active impurity
level and the pz orbital on any of the nearest carbon atoms
than would be the case for top-site adsorption. This suggests
that the top-site case � = 2 eV should more properly be
compared with hollow-site adsorption for some value � <

2 eV. The first-principles calculations required to estimate the
appropriate value of � are beyond the scope of this work.
However, the general idea can be seen by considering sample
data for � = 1.5 eV, plotted with squares in Fig. 7. The T 0

K
vs μ curve for this case has the same shape as its hollow-site
counterpart for � = 2 eV, but it is shifted to higher μ values.
Not surprisingly, further reductions in � lead to even larger
shifts in the curve.

If the hybridization matrix elements do not satisfy Eq. (46),
as will be the case for most d and f atomic orbitals, then
following the arguments in Ref. [19], one should expect
�HS(E ) for undeformed graphene instead to vanish linearly
for |E | � D, with a prefactor that depends on the degree of
C3v symmetry breaking. In such cases, the dependence of the
Kondo scale on chemical potential should be very similar to
that shown in Fig. 7 for top-site adsorption, quite possibly with
a shift to the right arising from reduced hybridization matrix
elements.

Results such as those shown in Fig. 7 suggest that ex-
perimental observation of the Kondo effect for adatoms on
undeformed graphene will depend on the ability, via doping
or application of back-gate voltages, to move the chemical po-
tential significantly (e.g., several hundred meV) away from the
Dirac point. Top-site and C3v-symmetry-breaking hollow-site
adsorption are expected to display an exponential dependence
of the Kondo temperature on the value of the host LDOS at
the chemical potential. Due to tunneling interference effects,
C3v-symmetric hollow-site adsorption should exhibit an even
greater sensitivity to the location of the chemical potential.

2. Hollow-site adsorption on deformed graphene

Equation (49) remains valid in the presence of smooth
out-of-plane deformations of the graphene monolayer. As
discussed in Secs. II A and II B, such deformations modify
the continuum-limit electronic Green’s function G(r, r′, E ).
Nearby deformations are likely also to modify the hybridiza-
tion matrix elements Wj between a hollow-site adatom and
its surrounding carbon atoms. In general, both the changes
in the Green’s function and those in the hybridization matrix
elements will break any C3v symmetry about the impurity
site that might have been present when the graphene was
undistorted, and can be expected to introduce into gHS(E )
terms proportional to η2 (the strain measure introduced in
Sec. II A) that vanish at the Dirac points as |E/D|. Terms aris-
ing from changes in the Green’s function should reach their
greatest magnitude at energies |E | = O(Eb), as is the case
for top-site adsorption, while terms originating in changes in

hybridization matrix elements likely extend throughout the
energy range |E | � D/6 of Dirac dispersion. Since a hollow-
site adatom couples to both sublattices, deformations will
have an overall more muted impact on the Kondo temper-
atures than for top-site adsorption and will not lead to dis-
tinctive alternating patterns analogous to the ones described
Sec. III B.

As shown in Sec. III C 1, the Kondo scale for C3v-symmetic
hollow-site adsorption in pristine graphene varies almost as
a step function with respect to variation of the chemical
potential, rising over a very narrow window of μ from being
undetectably small to become larger than T 0

K for top-site
adsorption. Unless an experimental system is fine tuned into
this window, the deformation-induced effects discussed in the
preceding paragraph will have negligible effect on the Kondo
temperature and on the prospects for experimental observation
of Kondo physics. For this reason, little purpose is served
by performing detailed numerical calculations for hollow-site
adsorption in the presence of deformation.

IV. DISCUSSION

The theoretical and numerical work reported in this pa-
per has investigated factors that influence the characteristic
temperature TK and energy scale kBTK of the Kondo effect
for adatoms on graphene. The two-dimensional host enters
the Kondo physics through the hybridization function g(E ),
which provides a spectral description of adatom-host orbital
overlaps. Depending on the adsorption geometry, g(E ) for
pristine graphene is expected to vanish with an either linear
or cubic dependence on |E | on approach to the Dirac points at
E = 0. As a result, TK shows strong sensitivity to the position
of the chemical potential μ. For top-site adsorption of the
magnetic atom directly above a single host carbon, TK displays
an exponential dependence on μ that is captured quite well by
substituting the value g(μ) ∝ |μ| into the standard expression
for the Kondo scale in a conventional metal. Adsorption of
the magnetic atom in the hollow site in a high-symmetry
configuration at the center of a carbon hexagon, described by
g(E ) ∝ |E |3 for |E | much smaller than the half-bandwidth,
yields a much sharper, almost steplike variation of TK with
increasing μ. As a result, prospects of probing the Kondo
regime T � TK for hollow-site adsorption hinge on the ability
to dope or gate the chemical potential far from the Dirac
points.

The main focus of the paper has been the exploration of
strain as a tool for enhancing the value of TK and revealing
unique aspects of the Kondo effect in graphene. We have
shown that different placements of magnetic adatoms relative
to the peak of a slowly varying deformation yield wide varia-
tions in the Kondo screening temperature with a spatial depen-
dence that amplifies an underlying pattern of strain-induced
changes in the local density of states. Fairly modest (smaller
than 1%) strains can locally increase the Kondo temperature
for a top-site adatom coupled to a single carbon atom from
one sublattice by at least an order of magnitude compared to
the situation in undeformed graphene, while simultaneously
decreasing by a similar factor TK for nearby adsorption to
the other sublattice. These effects can be observed over a
wide range of the model parameters εd , U , and � describing
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the adatom and its hybridization with the graphene host, and
depend crucially only on the chemical potential lying in the
general energy range where the LDOS on each sublattice is
significantly affected by the deformation. This unique pattern
of spatial variation can be used as a fingerprint to identify the
Kondo regime for adatoms on graphene. Magnetic adatoms
attached in other geometries, such as the hollow-site config-
urations, are expected to experience weaker strain-induced
modulations in TK .

In recent years, much progress has been achieved in the
area of substrate engineering for graphene [8,62]. Setups like
those reported in Ref. [62], for example, create a periodic
strain modulation in graphene deposited on top of SiO2

nanospheres. The weak graphene-substrate hybridization in

such experiments makes applicable the theoretical description
developed in this paper. Local probes, combined with atomic
manipulation of adatom placement, should allow observation
of variations in TK that map strain fields at a truly microscopic
level.
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