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Transport through a magnetic impurity: A slave-spin approach

Daniele Guerci
International School for Advanced Studies, Via Bonomea 265, I-34136 Trieste, Italy

(Received 14 January 2019; revised manuscript received 18 April 2019; published 7 May 2019)

We study transport across a magnetic impurity by means of a recently developed slave-spin technique that does
not require any constraint. Within a conserving mean-field approximation we find a conductance that displays
both the known zero-bias anomaly and also the expected peak at a bias of order U . We extend the slave-spin
mean-field approximation to study the out-of-equilibrium transient evolution of a quantum dot. We apply the
method to investigate the time evolution of a quantum dot induced by a time-dependent electrochemical potential
applied to the contacts. Similar to the time-dependent Gutzwiller approximation, the mean-field slave-spin
dynamics is able to capture dissipation in the leads, so that a steady state is reached after a characteristic
relaxation time.
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I. INTRODUCTION

Originally observed in magnetic alloys [1], the Kondo
effect [2,3], maybe the simplest collective phenomenon
due to strong correlations, is now routinely realized in
magnetic nanocontacts, either by real magnetic atoms and
molecules [4–6] or by artificial ones [7,8], e.g., quantum dots,
and reveals itself by the so-called zero-bias anomaly [9–12]. It
arises through the coupling between a single magnetic atom,
such as cobalt, and the conduction electrons of an otherwise
nonmagnetic metal. Such an impurity typically behaves like a
local moment that, due to spin exchange, forms a many-body
spin-singlet state with the itinerant electrons.

Unlike magnetic alloys, nanoscale Kondo systems can
be driven out of equilibrium by applying charge or spin
bias voltages across the devices [13]. In such a nonequi-
librium situation, the interplay between the time dynamics
and strong correlation effects makes the theoretical descrip-
tion extremely challenging. To address this problem many
innovative approaches have been developed, such as the
time-dependent numerical renormalization group [14–16],
real-time Monte Carlo [17,18], the time-dependent density-
matrix renormalization group [19–21], flow equation meth-
ods [22–24], the perturbative renormalization group [25–29],
time-dependent variational approaches [30,31], slave-particle
techniques [32–35], and exact approaches [36,37]. Despite the
rich variety of methods, they often become numerically costly
at long times, which limits their application to the short-time
evolution of simple models. However, some of them [31,32],
even if less accurate, are semianalytical methods able to study
the full out-of-equilibrium evolution of realistic systems.

To the latter class of approaches belongs the nonequilib-
rium slave-spin technique for magnetic impurities we present
in this paper. By means of a recently developed slave-spin
technique [38], we map without any constraint a single-
orbital Anderson impurity model (AIM), characterized by a
particle-hole symmetric hybridization with the contacts, onto
a resonant level model coupled to a single quantum pseu-
dospin. In this suitable representation, a simple self-consistent

Hartree-Fock calculation is able to reproduce qualitatively the
differential conductance of a single-orbital magnetic impurity
in both the small- and large-bias regimes. Moreover, the
slave-spin technique allows us to study the full time evolution
of magnetic impurities coupled with metallic leads under a
nonequilibrium protocol.

The plan of the paper is as follows: we first introduce
the AIM to describe a single-orbital magnetic impurity cou-
pled with metallic contacts in Sec. II. We then present in
Sec. II A our slave-spin mapping, which allows us to compute
time-dependent average values without any constraint; details
are given in Sec. II B. In Sec. III we present the mean-
field approximation for the out-of-equilibrium dynamics of
a single-orbital magnetic impurity. Then, by assuming that
the system relaxes after an initial transient, we present, in
Sec. IV, the mean-field approximation for the nonequilib-
rium steady-state regime. To highlight the importance of the
approach presented in this work, Sec. V is devoted to the
application of the method to transport in magnetic impurities
coupled with metallic contacts. In particular, in Sec. V A, we
consider the nonequilibrium steady state induced by applying
a constant voltage to the contacts. Furthermore, in Sec. V B
we compute within a self-consistent approximation scheme
the steady-state differential conductance. Finally, Sec. V C is
devoted to the analysis of the out-of-equilibrium evolution
induced by a time-dependent voltage applied to the metallic
contacts. Technical points of the calculations are given in
Appendixes A, B, and C at the end of the paper.

II. THE MODEL

We model a single-orbital magnetic impurity coupled to
left (L) and right (R) contacts in terms of an AIM,

H (t ;U,Vg, h) =Hdot (t ;U,Vg, h) + Hc + T (t ), (1)

where the first term corresponds to an interacting impurity,

Hdot (t ;U,Vg, h) = −U�/4 − Vg(t )(n − 1)

− h(t )(n↑ − n↓), (2)
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where dσ is the annihilation operator of an electron state on
the impurity, nσ = d†

σ dσ is the corresponding density, � =
−(2n↑ − 1)(2n↓ − 1), and n = n↑ + n↓. In Hamiltonian (2) U
denotes the charging energy, Vg is the gate potential, and h is
the Zeeman field applied on the dot. The noninteracting leads
are represented by a free-electron gas with half bandwidth D,

Hc =
∑

a=L,R

∑
kσ

(εk − φa)c†
akσ

cakσ , (3)

where φa is the electrochemical potential that fixes the number
of electrons in each contact, φL = −φR.

Finally, the tunneling coupling between the leads and the
central region is represented by

T (t ) =
∑

a=L,R

∑
kσ

(vak (t )c†
akσ

dσ + H.c.)/
√

V , (4)

where vak (t ) is a time-dependent tunneling amplitude and V
is the number of k states. In this paper we limit the analysis to
the symmetric case where vLk (t ) = vRk (t ). Furthermore, we
assume a particle-hole symmetric bath; that is, for any εk a k∗
exists such that εk∗ = −εk and

�(−ε, t ) = �(ε, t ),

where

�(ε, t ) = π
∑

k

|vk (t )|2δ(ε − εk )/V. (5)

Under a spin-σ particle-hole transformation Cσ ,[
dσ → d†

σ ∪
∏

k

(cLkσ → −c†
Rk∗σ ∪ cRkσ → −c†

Lk∗σ )

]
, (6)

the Hamiltonian (1) parameters change as follows:

U → −U, Vg → ∓h, h → ∓Vg, (7)

where the upper and lower signs refer to the action of C↑
and C↓, respectively. The particle-hole transformation (6) has
been defined by mixing the R and L contacts to leave the
electrochemical potential (3) invariant.

To study transport across the impurity it is convenient to
perform the Glazman-Raikh rotation [11]:(

c1kσ

c2kσ

)
= 1√

2

(
1 1
1 −1

)(
cLkσ

cRkσ

)
. (8)

We notice that the antisymmetric combination of the electron
states in the leads c2kσ is fully decoupled from the impurity,
while the symmetric combination c1kσ remains coupled to dσ

[see Eq. (4)]. Thus, the Kondo screening involves only the c1kσ

variables. On the other hand, the current operator is expressed
only in terms of c2kσ :

I (t ) = −i
∑

σ

∑
k

[vk (t )c†
2kσ

dσ − H.c.]/
√

2V , (9)

where the current operator, defined as I = (IL − IR)/2 and
Ia = Ṅa, is invariant under the particle-hole transforma-
tion (6).

A. The slave-spin representation

In the local magnetic regime, when U is by far the largest
energy scale, charge fluctuations are well separated in energy
from spin ones. However, Hamiltonian (1) lacks a clear sep-
aration between charge and spin degrees of freedom that is
desirable in the magnetic moment regime. To disentangle low-
and high-energy sectors we enlarge the original Hilbert space
H by adding a single quantum pseudospin variable σ :

|n〉 → |n〉 ⊗ |s〉,
where |n〉 = {|0〉, |↑〉, |↓〉, |↑↓〉} and |s〉 = {|+〉, |−〉}. There-
fore, we encode valence fluctuations, measured by the opera-
tor:

� = −(2n↑ − 1)(2n↓ − 1) =
{−1 if {|↑↓〉, |0〉},
+ 1 if {|↑〉, |↓〉},

in σ z by imposing the local constraint that filters the physical
subspace out from the enlarged Hilbert space H ∗:

〈s| ⊗ 〈n|(σ z�)|n〉 ⊗ |s〉 = 1.

Consequently, the eigenstates of σ z refer to the presence
(|+〉) or the absence (|−〉) of a local magnetic moment in
the impurity site. In addition, we introduce two auxiliary
fermionic operators fσ that annihilate a pseudofermion state
on the impurity. The precise relation between the original
electrons and the auxiliary degrees of freedom is given by

dσ = σ x fσ , (10)

ensuring the anticommutation relations {dσ , d†
σ ′ } = δσσ ′ . In

the physical subspace, which is selected by the projector

P = 1 + σ z�

2
, (11)

the original model (1) is equivalent to

H∗(t ;U,V g, h) = Hc + σ xT (t ) + H∗
dot (t ;U,Vg, h), (12)

where Hc remains unalterated, T (t ) is obtained by replacing
dσ with fσ in Eq. (4), and the dot Hamiltonian is

H∗
dot (t ;U,Vg, h) = −U

4
σ z − Vg(t )(1 − σ z )

(
n↑ − 1

2

)
− h(t )(1 + σ z )

(
n↑ − 1

2

)
. (13)

Thus, the original Anderson impurity model is mapped into a
resonant level model coupled to the pseudospin σ x operator
in the presence of a transverse field along the σ z compo-
nent. We observe that the Hamiltonian H∗ possesses a local
Z2 gauge symmetry generated by the parity transformation
σ z� = 2P − 1. Therefore, the quantum dynamics, induced
by the operator σ xT (t ), couples the singly occupied impu-
rity configuration {|↓〉, |↑〉} ⊗ |+〉 with {|0〉, |↑↓〉} ⊗ |−〉 and
does not mix physical and unphysical subspaces.

Finally, we notice that in the physical subspace the current
operator reads

I∗(t ) = σ xI (t ), (14)

where I (t ), defined in Eq. (9), contains fσ pseudofermion
operators.

Remarkably, the time-dependent evolution of the AIM,
Eq. (1), can be obtained from the auxiliary model in Eq. (12)
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without any constraint on the enlarged Hilbert space. The
proof of this equivalence follows the same steps as the equi-
librium case (see Ref. [38]). However, we consider it valuable
to show, in the next section, the possibility to remove the
constraint in the time-dependent average value of the charge
current, defined in Eq. (9).

B. Fate of the constraint in the dynamics

Without losing generality, we assume the model in Eq. (12)
is prepared at time t = 0 in thermal equilibrium at temperature
T = 1/β:

ρ(U,Vg, h) = e−βH (U,Vg,h)

Z (U,Vg, h)
,

where Z (U,Vg, h) = Tr(e−βH (U,Vg,h) ) and the impurity is de-
coupled from the contacts vk (0) = 0. For t > 0 we let the
system evolve by suddenly changing the coupling between the
bridging region and the leads: vk (t > 0) = vk . We note that
the initial distribution may include a chemical potential bias
between the L and R contacts. The average current flowing
across the dot (9) is defined as

I (t ;U,Vg, h)

= Tr[ρ(U,Vg, h)U †(t, 0;U,Vg, h)IU (t, 0;U,Vg, h)],

where U is the unitary time evolution operator. Since the trace
is invariant under similarity transformations and C†

↓IC↓ = I ,
Eq. (7) implies

I (t ;U,Vg, h) = I (t ; −U, h,Vg)

and

I (t ;U,Vg, h) = I (t ;U,Vg, h) + I (t ; −U, h,Vg)

2
. (15)

Within the slave-spin representation the initial equilibrium
distribution is described by

ρ∗(U,Vg, h) = e−βH∗(U,Vg,h)

Z (U,Vg, h)
,

and the average value of the current reads

I (t ;U,Vg, h) = Tr[ρ∗(U,Vg, h)(U ∗)†(t, 0;U,Vg, h)

× σ xIU ∗(t, 0;U,Vg, h)P],

where the trace is on the enlarged Hilbert space; P, defined
in Eq. (11), is the projector in the physical subspace; and U ∗
is the time evolution operator generated by H∗. In the slave-
spin representation (12) the role of the particle-hole symmetry
transformation C↓ is simply played by σ x, so

I (t ; −U, h,Vg) = Tr[ρ∗(−U, h,Vg)(U ∗)†(t, 0; −U, h,Vg)

× σ xIU ∗(t, 0; −U, h,Vg)P]

= Tr[ρ∗(U,Vg, h)(U ∗)†(t, 0;U,Vg, h)

× σ xIU ∗(t, 0;U,Vg, h)σ xPσ x].

Equation (15) implies

2I (t ;U,Vg, h) = Tr[ρ∗(U,Vg, h)(U ∗)†(t, 0;U,Vg, h)

× σ xIU ∗(t, 0;U,Vg, h)P]

+ Tr[ρ∗(U,Vg, h)(U ∗)†(t, 0;U,Vg, h)

× σ xIU ∗(t, 0;U,Vg, h)σ xPσ x].

Since 1 = P + σ xPσ x, it readily follows that

I (t ;U,Vg, h) = Tr

[
e−βH∗(U,Vg,h)

Z∗(U,Vg, h)
(U ∗)†(t, 0;U,Vg, h)

× σ xIU ∗(t, 0;U,Vg, h)

]
, (16)

where we have used the equivalence Z∗(U,Vg, h) =
2Z (U,Vg, h). Equation (16) states that the time-dependent
average value of the current flowing across the impurity (1)
can be computed in the slave-spin representation (12) without
any constraint.

Following the same line of reasoning, the previous result
extends to any time-dependent average of physical observ-
ables and holds for any nonequilibrium protocol. Thus, we
conclude that the out-of-equilibrium evolution of the original
model (1) can be obtained within the slave-spin represen-
tation (12) without projecting out unphysical configurations
introduced by the mapping (10).

III. TIME-DEPENDENT MEAN-FIELD EQUATIONS

In this section we present the mean-field approximation to
describe the out-of-equilibrium evolution of a driven magnetic
impurity. The dynamics of the AIM (1) is governed by the
time-dependent Schrödinger equation:

i∂t |�(t )〉 = H∗(t ;U,Vg, h)|�(t )〉, (17)

where at t = 0 the system is prepared in the ground-state
configuration |�(0)〉 of the initial Hamiltonian (12).

The mean-field approach consists of approximating [38]
the time-dependent wave function |�(t )〉 with a factorized
one, the product of a fermionic part |(t )〉 times a spin part
|χ (t )〉:

|�(t )〉 = |χ (t )〉 ⊗ |(t )〉. (18)

We notice that the previous approximation is appropriate
in the local moment regime, i.e., U/�  1, where the two
subsystems are characterized by well-separated energy scales.
This is indeed the regime we consider hereafter.

The dynamics of the interacting model (17) is thus reduced
to the evolution of a spin degree of freedom:

∂t 〈σ i(t )〉 = −2εi jkB j (t )〈σ k (t )〉 (19)

under a self-consistent time-dependent magnetic field:

�B(t ) =
(

−〈T (t )〉, 0,
U

4
+ [h(t ) − Vg(t )]

(〈n↑(t )〉 − 1
2

))
.

Equation (19) is coupled with the Schrödinger equation for
the Slater determinant |(t )〉:

i∂t |(t )〉 = H∗
f (t )|(t )〉, (20)

where the effective fermionic Hamiltonian is

H∗
f (t ) = Hleads + 〈σ x(t )〉T (t ) − λ↑(t )n↑ (21)

and λ↑(t ) = Vg(t )[1 − 〈σ z(t )〉] + h(t )[1 + 〈σ z(t )〉]. For
a given initial configuration, |�(0)〉 = |χ (0)〉 ⊗ |(0)〉,
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Eqs. (19) and (20) allow us to study the dynamics of the
original correlated model in terms of the evolution of a spin
1/2 coupled with a time-dependent resonant level model.

As observed in Sec. II B, we emphasize that the nonequi-
librium evolution of the Hamiltonian (1) can be obtained by
the slave-spin representation without any need for local con-
straints that project out unphysical configurations introduced
by the mapping (10). The advantages, with respect to other
slave-particle approaches [32,35], are twofold. On the one
side, we reduce the number of dynamical equations. On the
other side, we avoid the mean-field mixing of unphysical and
physical subspaces.

The dynamical equations (19) and (20) are equivalent to
the ones obtained by applying the time-dependent Gutzwiller
approximation [39] to the AIM [31]. In this regard, the evolu-
tion of the time-dependent Gutzwiller parameters resembles
the dynamics of the spin variable, while the bath cakσ and
the pseudofermion fσ degrees of freedom evolve under a
time-dependent self-consistent Hamiltonian (21).

For a long time, namely, after the transient, we assume
that, due to the coupling with infinite contacts, the solution
of Eqs. (19) and (20) thermalizes to a steady state. In order
to describe the asymptotic regime we develop, in the next
section, the nonequilibrium stationary mean-field approach.

IV. MEAN FIELD FOR THE NONEQUILIBRIUM
STEADY STATE

In this section we discuss the mean-field approximation in
the nonequilibrium steady state.

Without losing generality, we shall assume that at t = 0 the
contacts are disconnected to the dot but in the presence of a
finite bias, so that their distribution functions read

〈c†
L(R)kσ

cL(R)kσ 〉 = fL(R)(εk ) = f (εk ∓ φ/2), (22)

where φ is the voltage difference applied to the contacts
and f (ε) is the Fermi-Dirac distribution function. Once the
tunneling amplitude (4) is turned on, a time-dependent current
starts to flow across the junction accordingly to Eqs. (19)
and (20). For a long time, namely, after the transient, we
assume that the system described by the ground state |�(t )〉
reaches a stationary state,

|�(t )〉 → |�〉st , (23)

characterized by a constant current. We observe that Eq. (23)
is a justified assumption. Indeed, as presented in Sec. V C, the
slave-spin mean-field evolution predicts, for a long time, the
existence of a steady state due to the coupling of the dot with
infinite contacts.

Following the same reasoning as in Sec. III, the station-
ary mean-field approach consists of approximating [38] the
ground-state wave function (23) with a factorized one:

|�〉st = |χ〉st ⊗ |〉st , (24)

where |〉st is the fermionic part and |χ〉st is the spin one. At
stationarity, the pseudospin degree of freedom is controlled by

the Hamiltonian

H∗
σ = −U

4
σ z + 〈T 〉st σ x + (Vg − h)

〈
n↑ − 1

2

〉
st

σ z, (25)

where 〈· · · 〉st = 〈| · · · |〉st and

〈T 〉st =
√

2

V

∑
kσ

vk〈 f †
σ c1kσ + H.c.〉st , (26)

〈n↑〉st = 〈 f †
↑ f↑〉st (27)

are expectation values in the fermionic steady-state wave
function. The ground state of (25) is identified by

〈σ x〉st ≡ sin θ = Bx/Bz√
1 + (Bx/Bz )2

,

〈σ z〉st ≡ cos θ = 1√
1 + (Bx/Bz )2

,

(28)

where for convenience we have introduced the self-consistent
magnetic field:

�B =
(

−〈
T

〉
st
, 0,

U

4
− (

Vg − h
)〈

n↑ − 1

2

〉
st

)
. (29)

The fermionic problem is thus reduced to find the steady-state
ground state of the quantum Hamiltonian

H∗
f = Hc + sin θ

∑
kσ

√
2

V
vk (c†

1kσ
fσ + H.c.) − λ↑n↑, (30)

where c1kσ is introduced in the aforementioned unitary trans-
formation (8) and

λ↑ = h(1 + cos θ ) + Vg(1 − cos θ ).

Since we deal with a nonequilibrium situation, we work in
the framework of the Keldysh technique, as employed in the
literature [40–42]. Equation (26) requires the evaluation of the
lesser Green’s function G<

1k f σ (t, t ) = i〈 f †
σ (t )c1kσ (t )〉, which,

by means of Dyson’s equation, can be expressed in terms of
the dressed Green’s function of the fσ pseudofermions and
the free Green’s function of the contacts. Instead, Eq. (27)
can be expressed in terms of only the pseudofermion Green’s
function. By performing straightforward calculations, which
are summarized in Appendix A, we obtain

〈T 〉st = 2

sin θ

∑
σ

∫
dε(ε + λσ ) fneq(ε)A f σ (ε), (31)

〈n↑〉st =
∫

dε fneq(ε)A f ↑(ε), (32)

where the nonequilibrium distribution on the impurity is
fneq(ε) = [ fL(ε) + fR(ε)]/2 and the fσ pseudofermion spec-
tral function reads

A f σ (ε) = 1

π

−Im�R
f σ (ε)[

ε + λσ − Re�R
f σ (ε)

] + Im�R
f σ (ε)2

.

Within the mean-field approximation, the fσ pseudofermion
self-energy is given by

�R
f σ (ω) = 2 sin2 θ

∫
dε

π

�(ε)

ω − ε + i0+ ,
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where the factor of 2 accounts for the presence of two different
leads, while the hybridization function �(ε) is defined in
Eq. (5).

Given the spectral properties of the contacts, i.e., �(ε),
Eqs. (31) and (32) give analytic expressions for the effective
magnetic field B, which depends on the steady-state average
〈σ x〉st . Therefore, we close the set of mean-field equations,
and the steady-state variational ground state is obtained by
solving

sin θ = Bx(θ )/Bz(θ )√
1 + [Bx(θ )/Bz(θ )]2

, (33)

which corresponds to a root-finding problem g(θ ) = 0 in a
single angular variable θ .

Before concluding the section, we observe that the
nonequilibrium steady-state self-consistent equation (33) is
equivalent to the one obtained with the out-of-equilibrium
Gutzwiller approach for quantum dots [43]. However, in
comparison with the latter approach, the slave-spin method
has the advantage of allowing one to use the machinery of
quantum field theory, i.e., Wick’s theorem, to improve mean-
field results by including fluctuations.

V. APPLICATION TO TRANSPORT THROUGH
A MAGNETIC IMPURITY

The last section of this work is devoted to the application
of the method, developed in Secs. III and IV, to study the
nonequilibrium dynamics of a magnetic impurity coupled
with metallic contacts. To highlight the importance of our
formulation here we consider the simple case Vg = h = 0, and
we take the wide-band limit (WBL). Moreover, we will first
analyze the steady-state regime by computing the nonequi-
librium ground state and the differential conductance as a
function of the voltage applied to the contacts. Then, we will
study the out-of-equilibrium evolution induced by a slowly
varying time-dependent voltage.

A. The steady-state solution in the wide-band limit

Initially, we assume the dot is disconnected from the
leads, which are prepared at two different chemical potentials,
±φ/2, so that their initial distribution function is described by
Eq. (22). Once the tunneling amplitude is turned on, after the
initial transient, the steady-state Hamiltonian, which describes
the quantum pseudospin degree of freedom, is given by

H∗
σ = −U

4
σ z + 〈T 〉stσ

x.

In the wide-band limit, where �(ε) = �0, the f -electron self-
energy reduces to

�R
f σ (ω) = −i2�0 sin2 θ, (34)

and we readily find that

〈T 〉st = − 4�

π sin θ
ln

D√
�2 + φ2/4

, (35)

where � is the renormalized hybridization amplitude � =
2�0 sin2 θ . The steady-state variational ground state is ob-

tained by solving the self-consistent equation

sin θ = − 4〈T 〉st/U√
1 + (4〈T 〉st/U )2

. (36)

For large U and φ � �, the solution of the self-consistent
equation (36) for � reads

�(φ) � �(0) − φ2

8�(0)
, (37)

where

�(0) = D exp

[
− πU

16(2�0)

]

is the same as in slave-boson mean-field theory and can be
associated with the Kondo temperature TK , although it is
overestimated with respect to its actual value [44]. As shown
in Eq. (37), the effect of an external voltage φ, within mean-
field approximation, is to reduce the equilibrium value of the
renormalized hybridization �(0). Moreover, the mean-field
steady-state breaks spontaneously the Z2 gauge symmetry by
choosing one of the two degenerate minima 〈σ x〉st �= 0, as
already observed in the equilibrium case [44].

At the steady-state variational minimum we can compute
the average value of the current:

〈I〉st = − i√
2V

∑
kσ

vk (〈c†
2kσ

σ x fσ 〉st − c.c.), (38)

which involves the evaluation of the two-particle correlation
function G<

x·2kσ (t, t ′) = i〈c†
2kσ

(t ′)σ x(t ) fσ (t )〉st . In a consistent
approximation scheme the self-energy corrections have to
be included in two-particle correlation functions through the
Bethe-Salpeter equation. In the next section, by means of the
Abrikosov representation [45] of the pseudospin variable σ ,
we readily compute the average value of the current (38)
consistently with the mean-field approximation (24).

B. The steady-state current within a self-consistent
mean-field approximation

To perform a self-consistent calculation of the current,
Eq. (38), we introduce a couple fermionic operators ψ cor-
responding to the pseudospin operator �σ according to the
formula [45]

ψ†
ασ i

αβψβ = σ̂ i, (39)

where the upper index i = 1, 2, 3 denotes the Pauli matrices,
while α, β = ±. The fermion substitution equation (39) in-
troduces two additional configurations, (0,0) and (1,1), to the
two-dimensional Hilbert space of the σ matrices, which is
composed of (1,0) and (0,1). However, in the case of spin S =
1/2 the unphysical configurations are automatically excluded
since physical quantities involve only averages of products of
σ̂ i, which have the property of giving zero when acting on the
nonphysical states (0,0) and (1,1).

In this representation, the hybridization term in Eq. (4)
becomes the four-leg fermionic interaction vertex depicted
in Fig. 1(b). The Hartree-Fock approximation corresponds
to the mean-field decoupling presented in Sec. IV and is
described by the self-energy diagrams in Figs. 1(c) and 1(d).
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Ĝfσ Ĝψαβ

Ĝ11kσ Ĝ22kσ

Ĝ12kσ Ĝ21kσ

(a)

vk

σx

(b)

(c) (d)

FIG. 1. (a) Bare Green’s functions. (b) Bare interaction. Hartree-
Fock self-energy diagrams corresponding to the slave-spin mean-
field approximation: (c) elastic scattering between fσ and c1kσ

fermions renormalized by 〈ψ†
ασ x

αβψβ〉 and (d) ψ fermion self-energy
determined by valence fluctuations induced by the hybridization
operator T .

The average value of the current reads

〈I〉st = − i√
2V

∑
kσ

vk
(〈

c†
2kσ

ψ†
ασ x

αβψβ fσ
〉
st

− c.c.
)

and implies the evaluation of the two-particle correlation
function 〈c†

2kσ
ψ†

ασ x
αβψβ fσ 〉st . Therefore, consistent with the

slave-spin mean-field decoupling, the current is made up of
two contributions [Figs. 2(a) and 2(b)]:

〈I〉st = 〈I f 〉st + 〈δI〉st , (40)

where the former, 〈I f 〉st , involves only the low-energy pseud-
ofermion degree of freedom and can be obtained by straight-
forward calculations summarized in Appendix A. Here, we

= +

(a) (b)

(c)

FIG. 2. Feynman diagrams contributing to the average value of
the current. (a) 〈If 〉st low-energy contribution to the current given
by a resonant level model with renormalized hybridization ampli-
tude. (b) 〈δI〉st is determined by the convolution of the low-energy
fermions with the valence fluctuations described by �xx . (c) Dyson’s
equation for the �xx propagator.

-8 -6 -4 -2 0 2 4 6 8

ω/2Γ
0

A
d(ω

) 
(a

.u
.)

U/2Γ
0
=12.5

U/2Γ
0
=5.0

FIG. 3. Physical dσ electron spectral function Ad (ω) computed
at equilibrium, φ = 0, for U/D = 0.1 and U/2�0 = 12.5, 5.0. In
addition to the low-energy Abrikosov-Suhl or Kondo resonance
Ad (ω) presents high-energy sidebands.

report the final result in the WBL:

〈I f 〉st = 2�(φ)
2e

h
arctan

(
eφ

2�(φ)

)
, (41)

where e is the elementary charge and h is Planck’s constant.
Instead, the latter term in Eq. (40) takes into account the

contribution of valence fluctuations and can be expressed as

〈δI〉st = −4�0e

h

∫
dω[ fL(ω) − fR(ω)]ReK(ω), (42)

where the kernel K(ω) is given by

K(ω) =
∫

dε

2π

[
�<

xx(ε)GR
f (ω − ε)

+�R
xx(ε)GR

f (ω − ε) + �R
xx(ε)G<

f (ω − ε)
]
,

where �xx is the ψ fermion spin-correlation function; for
more details we refer to Appendix B. Consistent with the
Hartree-Fock approximation, �xx satisfies Dyson’s equation
in Fig. 2(c), whose solution for the retarded component reads

�R
xx(ω) = 1[

�0R
xx(ω)

]−1 − �R
xx(ω)

, (43)

and the lesser component is

�<
xx(ω) = �R

xx(ω)�<
xx(ω)�A

xx(ω), (44)

where �0R
xx(ω) = 2ω0 cos2 θ/(ω2 − ω2

0 ) and �A
xx(ω) =

[�R
xx(ω)]∗. The self-energies appearing in Eqs. (43) and (44)

are obtained by contracting the four-leg vertex in Fig. 1(b),
the details of which can be found in Appendix B. Specifically,
the self-energy �xx(ω) allows us to reconstruct incoherent
sidebands characterized by a width of the order of the bare
hybridization �0 and centered around ±U/2, as shown in
Fig. 3.
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2 /h

U/2Γ
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U/2Γ
0
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0
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FIG. 4. Differential conductance as a function of the applied
voltage φ/2�0 for U/D = 0.1 and different hybridization amplitudes
2�0.

Numerical integration of Eq. (42) permits us to compute
the differential conductance

G(φ) = d〈I〉st

dφ
,

which is shown in Fig. 4. We observe two distinct contribu-
tions: (i) the well-known zero-bias anomaly which derives
from the Kondo peak at the Fermi level and controls the
low-bias behavior and (ii) an incoherent one, which mainly
contributes to the large bias features of the conductance.

To compare our result for G(φ) with the universal behavior
of the conductance in the Kondo regime, obtained with the
renormalization group approach in Refs. [46,47], we expand
〈I〉st around φ/� � 1, obtaining

G(φ) = 2e2

h

[
1 − 1

4

(
φ

�

)2
]
. (45)

In agreement with our self-consistent Hartree-Fock approx-
imation, Eq. (45) reproduces exactly the φ2 contribution
given by the phase shift but neglects the contribution from
the residual scattering among low-energy quasiparticles [48].
We believe that, in the slave-spin representation, the latter
contribution comes from vertex corrections, which are not
included in our perturbative calculation.

C. Adiabatic dynamic induced by a time-dependent voltage

Physically, applying a time-dependent voltage between the
source and the drain contacts means that the single-particle
energies become time dependent: εk → εk − φa(t ) (here, the
a label refers to the left, L, or right, R, lead) [49]. Starting
at t = 0, from an equilibrium configuration characterized
by φL = φR = 0 (NL = NR) and a finite tunneling amplitude
vk , we consider the evolution induced by a time-dependent
electrochemical potential:

φL(t ) = θ (t )φ
1 − e−t/t∗

2
, φR(t ) = −φL(t ), (46)

where t∗ is the characteristic timescale of the external pertur-
bation, φ is the asymptotic value of the voltage, and θ (t ) is the
Heaviside step function such that φL(t ) = 0 for t � 0. Here,
we consider the WBL analogously to the steady-state analysis.
The dynamic of the pseudospin variable is

∂t 〈σ x(t )〉 = U 〈σ y(t )〉/2,

∂t 〈σ y(t )〉 = −2〈T (t )〉〈σ z(t )〉 − U 〈σ x(t )〉/2, (47)

∂t 〈σ z(t )〉 = 2〈T (t )〉〈σ y(t )〉,
where the time-dependent average value of the hybridization
is given by

〈T (t )〉 = 2

〈σ x(t )〉 Im

[∫
dε

π
�<

f (t, ε) � GA
f (t, ε)

]
. (48)

In the case of (48), the normal product is substituted with
� = exp [i(

←−
∂ ε

−→
∂ t − ←−

∂ t
−→
∂ ε )/2], while �<

f (t, ε) and GA
f (t, ε)

are the Wigner transform of the lesser component of the
self-energy and the advanced Green’s function of the fσ
pseudofermions; for more details we refer to Appendix C.

In the following, we consider an external perturbation φ(t ),
which is a slowly varying function of time compared to the
characteristic scales of the equilibrium state, i.e., t∗TK  1.
Therefore, we can assume that the temporal inhomogeneity is
weak, and only lowest-order terms in the variation are kept,
the so-called gradient expansion [40,41]. To the first order in
the temporal variation we have

〈T (t )〉 � 2

〈σ x(t )〉 Im
∫

dε

π

×
[
�<

f (t, ε)GA
f (t, ε) + i

2

{
�<

f (t, ε), GA
f (t, ε)

}
ε,t

]

= 〈T (t )〉(0) + 〈T (t )〉(1), (49)

FIG. 5. From top to bottom, evolution of 〈σ z(t )〉, 〈σ y(t )〉, and
〈σ x (t )〉 as a function of t TK for several values of the external voltage
timescale t∗, U/D = 0.1, 2�0/U = 0.06, and φ/U = 0.05. The solid
black line represents the steady-state result for the same set of
parameters.
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FIG. 6. Time-dependent average value of the current as a func-
tion of t TK for t∗TK = 1.5, U/D = 0.1, 2�0/U = 0.06, and φ/U =
0.05. Orange and purple lines represent the evolution of the current
obtained within first and zeroth order in the gradient expansion. As
shown from the inset, first-order corrections to the quasistatic ap-
proximation introduce relaxation processes that suppress the residual
oscillations.

where { f , g}ε,t = ∂ε f ∂t g − ∂t f ∂εg; more details can be found
in Appendix C.

The evolution of the pseudospin variable induced within
the zeroth order in the gradient expansion (49) is displayed in
Fig. 5. In the limit of t∗TK  1 we observe, as expected, the
quasistatic dynamic; that is, the system stays in equilibrium
at all times and follows the change in μ(t ) adiabatically.
However, for any smaller value of t∗TK the dynamics is char-
acterized by persistent oscillations that become, eventually,
centered around the steady-state result represented by the
solid black line.

Remarkably, the first-order correction, given by the latter
term in Eq. (49), introduces a relaxation mechanism, and the
dynamic converges to the expected stationary regime. This
is shown in Fig. 6, where we compare the time-dependent
average value of the current obtained within the zeroth and
first orders in the gradient expansion.

VI. CONCLUSIONS

We have shown that the out-of-equilibrium evolution of a
single-orbital AIM (1) can be calculated in the slave-spin rep-
resentation (12) without any constraint on the enlarged Hilbert
space. The advantages of the new representation are twofold.
On the one side, we disentangle charge and spin degrees of
freedom. On the other side, we avoid the mean-field mixing
of unphysical and physical subspaces, which affects the time
evolution of other slave-particle techniques. In the steady-
state regime the self-consistent Hartree-Fock decoupling is
able to predict properties of the model even deep inside the
large-U Kondo regime; specifically, the conductance shows
both the known zero-bias anomaly and also the expected
peak at a bias of order U . Furthermore, we have extended
the slave-spin approach to study the transient dynamic of
a driven magnetic impurity. By means of a time-dependent
Hartree-Fock calculation, in the adiabatic regime, we have
proved that, at first order in the gradient expansion, the current
relaxes to the steady-state value after an initial transient.

Finally, we mention that the technique we have proposed
can be applied to study the out-of-equilibrium dynamics of
multiorbital magnetic impurities by using the generalized
mapping presented in Ref. [38].
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APPENDIX A: THE EFFECTIVE RESONANT LEVEL
MODEL IN THE STEADY-STATE REGIME

In this Appendix we derive analytic expressions for the
hybridization equation (26) and the current equation (41).
Moreover, we compute Keldysh’s components of the fσ and
ψ fermion Green’s function within the Hartree-Fock approxi-
mation.

(a) fσ pseudofermion Green’s function. The unperturbed
retarded and advanced Green’s functions of the contacts are

GR/A
11σ (ε, k) = GR/A

22σ (ε, k) = 1

ε − εk ± i0+ ,

GR/A
12σ (ε, k) = GR/A

21σ (ε, k) = 0,

and

G<
11σ (ε, k) = G<

22σ (ε, k) = 2iπδ(ε − εk )
fL(ε) + fR(ε)

2
,

G<
12σ (ε, k) = G<

21σ (ε, k) = 2iπδ(ε − εk )
fL(ε) − fR(ε)

2
,

where we have already performed the rotation in Eq. (8). In
terms of the matrix representation

Ĝ =
(

GR G<

0 GA

)
, (A1)

Dyson’s equation for the fσ pseudofermion Green’s function
on Keldysh’s contour is

Ĝ f σ = Ĝ0
f σ + Ĝ0

f σ · �̂ f · Ĝ f σ (A2)

where Ĝ f σ is the dressed Green’s function and Ĝ0
f σ is the

unperturbed one. In Eq. (A2) we use a notation where the
product · is interpreted as a matrix product in the internal vari-
ables (time and Keldysh’s indices). In the stationary regime
the time-translational invariance is restored; thus, by taking
the Fourier transform of Eq. (A2) we obtain

GR/A
f σ (ε) = 1

ε + λσ − �
R/A
f σ (ε)

(A3)

and

G<
f σ (ε) = GA

f σ (ε)�<
f σ (ε)GR

f σ (ε). (A4)
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Within the mean-field approximation the self-energy of the
� f σ reads

�
R/A
f σ (ε) = 〈σ x〉2

st

2

V

∑
k

v2
k GR/A

11σ (ε, k)

= 2〈σ x〉2
st

∫
dω

π

�(ω)

ε − ω ± i0+

and

�<
f σ (ε) = 〈σ x〉2

st

2

V

∑
k

v2
k G<

11σ (ε, k)

= 4〈σ x〉2
st i�(ε) fneq(ε). (A5)

(b) Expectation values. The average occupation on the
quantum dot (32) follows from Eqs. (A4) and (A5). The
average value of the hybridization (26) involves the lesser
component of the mixed Green’s function:

G<
1k f σ =

√
2

V
vk〈σ x〉st [Ĝ11kσ · Ĝ f σ ]<. (A6)

Thus,

〈T 〉st = 2

〈σ x〉st

∑
σ

∫
dε

2π
Im[�̂ f σ (ε) · Ĝ f σ (ε)]<. (A7)

By using Eqs. (A3), (A4), and (A5) we readily obtain Eq. (31)
reported in the main text. Finally, we briefly derive the ex-
pression for the low-energy contribution to the current average
value (41). In this case the mixed Green’s function involved is
G<

2k f σ (t, t ) = i〈 f †
σ (t )c2kσ (t )〉st , and its Dyson’s equation reads

G<
2k f σ (ε) =

√
2

V
vk〈σ x〉st G

<
21kσ (ε)GA

f σ (ε).

The average value of the current is

〈I f 〉st =
∑

σ

∫
dε

2π
Re

[
�<

21σ (ε)GA
f σ (ε)

]
, (A8)

where

�<
21σ (ε) = 〈σ x〉2

st

2

V

∑
k

v2
k G<

21kσ (ε)

= 4〈σ x〉2
st i�(ε)

fL(ε) − fR(ε)

2
.

In the WBL Eq. (A8) gives Eq. (41).
(c) ψ fermion Green’s function. Dyson’s equation for the

ψ fermion reads

Ĝψ = Ĝ0
ψ + Ĝ0

ψ · �̂ψ · Ĝψ, (A9)

where the Hartree-Fock self-energy, depicted in Fig. 1(c), is

�̂ψ = σ x〈T 〉st .

In Eq. (A9) we use the same notation introduced in Eq. (A2),
where the hat refers to the matrix structure (A1). By perform-

ing straightforward calculations we obtain

GR(A)
ψ (ε) =

∑
μ

σμGR(A)
ψμ (ε),

where μ = 0 denotes the identity and μ = 1, 2, 3 are the
remaining Pauli matrices, while GR(A)

ψ2 (ε) = 0 and

GR(A)
ψ0 (ε) = 1

2

(
1

ε + ω0/2 ± i0+ + 1

ε − ω0/2 ± i0+

)
,

GR(A)
ψ1 (ε) = sin θ

2

(
1

ε + ω0/2 ± i0+ − 1

ε − ω0/2 ± i0+

)
,

GR(A)
ψ3 (ε) = cos θ

2

(
1

ε + ω0/2 ± i0+ − 1

ε − ω0/2 ± i0+

)
,

with ω0 = U
√

1 + 16〈T 〉2
st/U 2/2 and θ being the solution of

Eq. (33). Finally, we report the lesser component:

G<
ψ (ε) =

∑
μ

σμG<
ψμ(ε),

where G<
ψ2(ε) = 0 and

G<
ψ0(ε) = iπ f (ε)[δ(ε + ω0/2) + δ(ε − ω0/2)],

G<
ψ1(ε) = iπ f (ε) sin θ [δ(ε + ω0/2) − δ(ε − ω0/2)],

G<
ψ3(ε) = iπ f (ε) cos θ [δ(ε + ω0/2) − δ(ε − ω0/2)].

APPENDIX B: RANDOM-PHASE APPROXIMATION
CORRECTIONS TO THE SPIN CORRELATION FUNCTION

In this section, we compute the random-phase approxima-
tion (RPA) correction to the σ x mode, which describes valence
fluctuations on the impurity site. In terms of the fermionic
representation introduced in Eq. (39) the bare �xx propagator
reads

�̂0
xx(t, t ′) = −iTr[σ xĜψ (t, t ′)σ xĜψ (t ′, t )],

where Ĝψ is the Hartree-Fock ψ fermion Green’s function in
Eq. (A9). As shown in Fig. 2(c) Dyson’s equation reads

�̂xx = �̂0
xx + �̂0

xx · �̂xx · �̂xx,

where we adopt the notation introduced in Eq. (A1). At the
RPA level the bosonic self-energy reads

�̂xx = χ̂T T , (B1)

with

χT T (t, t ′) = −i〈TC (δT (t )δT (t ′))〉,
where δT = T − 〈T 〉st and T is the hybridization operator
in Eq. (4). Within the WBL, introduced in Eq. (34), the
evaluation of the bosonic self-energy (B1) is considerably
simplified. We find

χ<
T T (ω) = −i

1

π〈σ x〉2
st

∫
dε[G<

f (ε + ω)�>
f (ε)

+�<
f (ε + ω)G>

f (ε)]

− i
2

π〈σ x〉2
st

∫
dε�<

f (ε + ω)�>
f (ε)

× Re
[
GR

f (ε + ω)GR
f (ε)

]
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and

χR
T T (ω) = −i

1

π〈σ x〉2
st

∫
dε�<

f (ε)

× [
GR

f (ε + ω) + GA
f (ε − ω)

]
− i

2�R

π〈σ x〉2
st

∫
dε�<

f (ε)

× [
GR

f (ε + ω)GR
f (ε) − GA

f (ε − ω)GA
f (ε)

]
.

APPENDIX C: TRANSIENT DYNAMICS OF THE
EFFECTIVE RESONANT LEVEL MODEL

The dynamics of the spin degree of freedom is influenced
by the time-dependent expectation value of the hybridization
equation (48). By assuming a slowly varying electrochemical
potential (46), we compute Eq. (48) to the first order in the
gradient expansion (49). To this aim we define the Wigner
transform of the fσ pseudofermion Green’s function:

GR(A)
f σ (t, ε) =

∫
dτeiετ GR(A)

f σ

(
t + τ

2
, t − τ

2

)
,

which satisfies Dyson’s equation:[
ε − �

R(A)
f σ (t, ε)

]
� GR(A)

f σ (t, ε) = 1,

where � denotes the Moyal product introduced in the main
text. The solution of Dyson’s equation up to first order is

GR(A)
f σ (t, ε) = 1

ε − �
R(A)
f σ (t, ε)

,

where in the WBL the time-dependent self-energy is
�

R(A)
f σ (t, ε) = ∓2i�0〈σ x(t )〉2. Instead, the lesser self-energy is

given by

�<
f σ (t, ε) = 2i�0〈σ x(t )〉2 − 2�0

π

∫
dτ

eiετ

τ

× cos γ (t, τ )
〈
σ x

(
t + τ

2

)〉〈
σ x

(
t − τ

2

)〉
� 4�0i〈σ x(t )〉2 fneq(t, ε), (C1)

where γ (t, τ ) = ∫ t+τ/2
t−τ/2 μL(x)dx and the nonequilibrium dis-

tribution reads

fneq(t, ε) = 1

2
+ i

2π

∫
dτ

eiετ

τ
cos γ (t, τ ).

In the last line of Eq. (C1), we assume that the dependence of
〈σ x(t )〉 on the relative time τ is negligible.

In the following, we report the zeroth- and first-order
contributions to the gradient expansion of 〈T (t )〉.

(a) Zeroth order. The zeroth-order contribution, the first
term in Eq. (49), reads

〈T (t )〉(0) = 4

〈σ x(t )〉
∫

dεA f (t, ε)ε fneq(t, ε),

where the fσ pseudofermion time-dependent spectral function
is

A f (t, ε) = 1

π

�(t )

ε2 + �(t )2
,

with �(t ) = 2�0〈σ x(t )〉2.
(b) First order. The first-order correction to the quasistatic

approximation is the second term of Eq. (49), which reads

〈T (t )〉(1) = 1

π〈σ x(t )〉 Im
∫

dε
{
i
[
∂ε�

<
f (t, ε)∂t�

A
f (t, ε)

+ ∂t�
<
f (t, ε)

]
GA

f (t, ε)2
}
.

After straightforward calculations we obtain

〈T (t )〉(1) = − 2�(t )

π〈σ x(t )〉
∫

dε

(
Im

[
GA

f (t, ε)2
]
∂t fneq(t, ε)

+ 2
∂t 〈σ x(t )〉
〈σ x(t )〉

{
fneq(t, ε)Im

[
GA

f (t, ε)2
]

+ ∂ε fneq(t, ε)�(t )Re
[
GA

f (t, ε)2
]})

.

Since ∂t 〈σ x(t )〉 = U 〈σ y(t )〉/2, the latter contribution mod-
ifies the Heisenberg equation (47) by introducing a finite
relaxation in the evolution of the 〈σ y(t )〉 component.
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