
PHYSICAL REVIEW B 99, 195403 (2019)

Rapid adiabatic gating for capacitively coupled quantum dot hybrid qubits without barrier control
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We theoretically examine the capacitive coupling between two quantum dot hybrid qubits, each consisting of
three electrons in a double quantum dot, as a function of the energy detuning of the double dot potentials. We
show that a shaped detuning pulse can produce a two-qubit maximally entangling operation in ∼50 ns without
having to simultaneously change tunnel couplings. Simulations of the entangling operation in the presence of
experimentally realistic charge noise yield two-qubit fidelities over 90%.
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I. INTRODUCTION

Spin qubits in semiconductor quantum dots are attractive
building blocks for quantum computers due to their small
size and potential scalability. Single-spin qubits are a simple
design in which single-electron spin states are used as the
logical basis for computation [1]. These spin qubits have
been realized experimentally in both one-qubit and two-qubit
exchange-coupled settings [2–4]. Singlet-triplet qubits are
another common type of spin qubit, where the logical basis
is formed by singlet and triplet spin states [5,6]. Capaci-
tive coupling is an attractive choice for two-qubit operations
in singlet-triplet systems, due to the relatively simple ex-
perimental implementation and lack of leakage. Two-qubit
entangling gates in these systems have been discussed the-
oretically [7–10] and recently demonstrated experimentally
[11,12]. Typical gate times for capacitively coupled singlet-
triplet qubits are on the order of hundreds of nanoseconds,
making them generally susceptible to low-frequency charge
noise unless special measures are taken [13]. A more recent
type of spin qubit is the so-called hybrid qubit, which is
encoded in the total spin state of three electrons in a double
quantum dot, which allows for fully electrical control [14]. In
that setting, capacitively coupled two-qubit gates are predicted
to be shorter than typical entangling gates for singlet-triplet
qubits [15].

In this paper, we examine adiabatic gates between strictly
capacitively coupled hybrid qubits within the two-qubit logi-
cal subspace. This is a different situation than in Refs. [15,16],
which permitted tunneling between qubits and considered
diabatic gates. By setting the exchange interactions between
qubits to zero in our case, the number of possible leakage
states is reduced, typically leading to leakage errors signif-
icantly smaller than in Refs. [15,16]. The chargelike char-
acter of the hybrid qubit at small detunings gives rise to a
large coupling strength while the spinlike character at large
detunings effectively turns off the interaction between qubits,
and recently Ref. [17] has shown that adiabatic pulses in the
detuning can be used to perform entangling gates. Our work
differs from Ref. [17] in two ways: (i) Ref. [17] considers
simple sinusoidal ramp shapes, whereas we allow for shaped
pulses of the detuning, and (ii) Ref. [17] allows different

detunings for each qubit and/or simultaneous control over
the tunnel couplings, whereas we restrict to only symmetric
detuning control.

By choosing an optimal pulse shape for the detuning, we
show that two-qubit entangling operations can be performed
in under 50 ns while maintaining adiabaticity. We then show
that these short gate times give rise to qubits that are naturally
robust against realistic charge noise, giving fidelities over
90%. This performance is comparable to the results obtained
by Ref. [17] with an alternate approach.

II. MODEL

A single hybrid qubit consists of three electrons in a double
quantum dot (DQD). For a system of two hybrid qubits, each
DQD confines the three electrons in the lowest two valley
states of each dot. The first and second qubits are, respectively,
centered at positions ±R with respect to the origin, giving a
total separation of 2R. Each quantum well of a single DQD is
centered at ±a with respect to the center of the DQD.

We consider states with spin S = 1/2 and Sz = −1/2.
The possible spin states can be written as |·S〉, |·T 〉, |S·〉,
and |T ·〉, where |·S〉 = |↓〉|S〉, |·T 〉 =

√
1
3 |↓〉|T0〉 −

√
2
3 |↑〉

|T−〉, |S·〉 = |S〉 |↓〉, and |T ·〉 =
√

1
3 |T0〉 |↓〉 −

√
2
3 |T−〉 |↑〉.

The singlet, unpolarized triplet, and polarized triplet states
are, respectively, represented by |S〉 , |T0〉, and |T−〉. In this
notation, |·S〉 and |·T 〉 lie in a (1, 2) configuration, while |S·〉
and |T ·〉 lie in a (2, 1) configuration. Depending on which
direction the double well is biased, either |·T 〉 or |T ·〉 is
a high-energy state and can be neglected. In the basis of
the remaining low-energy states (either {|·S〉 , |·T 〉 , |S·〉} or
{|S·〉 , |T ·〉 , |·S〉}), the Hamiltonian for the ith qubit is given
by [18],

Hi =

⎛
⎜⎝

− εi
2 0 �

(i)
1

0 − εi
2 + E (i)

ST �
(i)
2

�
(i)
1 �

(i)
2

εi
2

⎞
⎟⎠, (1)

where εi is the detuning (i.e., the energy difference between
the two wells) of the ith qubit, and E (i)

ST is the singlet-triplet
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energy splitting of two-spin states in a single well of the ith
qubit. Given that typical fitted values for EST are significantly
smaller than the orbital splitting in this reduced Hilbert space
approximation [19], we assume that the singlet-triplet spin
states of a single well occupy different valleys, rather than
different orbitals. �

(i)
1 represents the |·S〉 ↔ |S·〉 transition

for the ith qubit and �
(i)
2 represents the |·T 〉 ↔ |S·〉 or

|T ·〉 ↔ |·S〉 transition for the ith qubit. A |·S〉 ↔ |·T 〉 or
|S·〉 ↔ |T ·〉 transition is not allowed, since these states
occupy different valleys.

Assuming the confining potential is parabolic around the
minimum of each well, the lowest two electronic wave func-
tions can then be approximated by the valley-state wave
functions given in Ref. [20]. Essentially, the single-particle
basis orbitals have a harmonic ground-state envelope with
an additional phase factor that distinguishes between valleys.
We use the Hund-Mulliken approximation (or, equivalently,
a heavily truncated configuration-interaction approach), in
which the Hamiltonian is expanded using these noninteracting
orbitals, keeping only the lowest orbitals of each dot, which
is a standard method for quantum dot systems [21–23]. It
is important to note that the harmonic orbitals are simply
the basis we expand in, and are not the exact orbitals that
include the effects of electron-electron interactions in their
shape. Rather, the electron-electron interactions are accounted
for through a set of two-electron Coulomb integrals included
in the Hamiltonian. While we consider only the lowest orbitals
of each dot, there are also nonvanishing matrix elements,
which couple ground harmonic orbitals to excited harmonic
orbitals. In Sec. III, we show that, for experimentally realistic
parameters, these matrix elements are negligible on the en-
ergy scales we consider, thereby allowing the Hund-Mulliken
approximation to be valid.

Assuming the barrier between qubits is high enough that
interqubit tunneling is negligible and the interaction between
qubits is purely capacitive, we can incorporate the two-qubit
interaction through a set of two-electron Coulomb integrals.
There are three terms, corresponding to the three possible
types of overall charge configurations: (2, 1, 1, 2), (1, 2, 2, 1),
or (1, 2, 1, 2)/(2, 1, 2, 1), assuming identical double wells,
where (i, j, k, l ) denotes the charge configuration (i, j) of
the first qubit and (k, l ) of the second qubit. In general,
(1, 2, 1, 2) and (2, 1, 2, 1) charge configurations may not be
completely equivalent due to asymmetry in the DQDs, but
this will not qualitatively change the results. So, for the sake
of simplicity, we focus on the symmetric case. Then the
spatial distribution of the three charge configurations leads to
three unique Coulomb interactions, which provides a nonzero
energy difference between two-qubit states in separate charge
configurations. The charge configuration of a low-energy
eigenstate is a detuning-dependent mixture of the three types
of overall charge configurations, and hence the detuning pro-
vides a means of controlling the interqubit interaction energy.

Each well must contain at least one electron, i.e., four
of the six total electrons must be in a (1, 1, 1, 1) charge
configuration. The two leftover electrons can reside in any two
unique wells, giving total charge configurations of (1, 2, 2, 1),
(2, 1, 1, 2), or (2, 1, 2, 1)/(1, 2, 1, 2). Since it is the two left-
over electrons, which allow the different charge configurations
to be distinguished, we can effectively ignore the interaction

FIG. 1. Schematic of two DQDs separated by a distance 2R, each
with interdot distance 2a. The potential of the first (second) qubit is
centered at −R (+R). The detuning parameter εi is positive for both
qubits and corresponds to a raising of the left well of the first qubit
by ε1 and a raising of the right well of the second qubit by ε2.

due to the four electrons in the (1, 1, 1, 1) configuration.
Therefore, we need only consider Coulomb integrals for
electrons in the configurations (1, 0, 0, 1), (0, 1, 1, 0), or
(1, 0, 1, 0)/(0, 1, 0, 1), which we denote, respectively, by
Vf ,Vn,Vm, i.e., far, near, and medium interactions. Since the
direct Coulomb integral between valley-state wave functions
centered at positions r1 and r2 simplifies to a direct Coulomb
integral between ground-state harmonic wave functions
centered at r1 and r2, the interaction terms are given by,

Vf = 〈φ−R−aφ+R+a|C|φ−R−aφ+R+a〉,
Vm = 〈φ−R−aφ+R−a|C|φ−R−aφ+R−a〉,
Vn = 〈φ−R+aφ+R−a|C|φ−R+aφ+R−a〉, (2)

where the general integral, 〈φRiφRk |C|φRj φRl 〉, is presented in
Appendix B.

Tuning the quantum dots so that the low-energy basis
states of the first and second qubits are, respectively, given
by {|·S〉 , |·T 〉 , |S·〉} and {|S·〉 , |T ·〉 , |·S〉} (i.e., raising the
energy of the left well of the left qubit and the right well
of the right qubit), allows for a majority of the first and
second qubit’s states to lie respectively in the (1, 2) and (2, 1)
charge configurations. This gives the largest number of near
interactions, and hence the strongest coupling between qubits.
With this convention, the detuning of both qubits is positive. A
picture of the potential is shown in Fig. 1 for clarity. Summing
the single-qubit Hamiltonians and including an interaction
term, the two-qubit Hamiltonian is given as,

H = H1 ⊗ I + I ⊗ H2 + Hint. (3)

Assuming the two-qubit basis is a Kronecker prod-
uct of the single-qubit basis, the interaction Hamiltonian
from the direct Coulomb coupling is given by Hint =
diag(Vn,Vn,Vm,Vn,Vn,Vn,Vm,Vm,Vf ) (see Appendix A).

III. EFFECTIVE HAMILTONIAN

We form the effective Hamiltonian by restricting the
evolution to the four lowest-energy states. The effective
Hamiltonian in this subspace can be written in the basis
of detuning-dependent instantaneous eigenstates as Heff =
diag(E1, E2, E3, E4), where En is the nth smallest eigenvalue
of the full Hamiltonian. In terms of the SU (4) generators, we
can also write

Heff = JZIσZI + JZZσZZ + JIZσIZ , (4)
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up to a constant term, where σi j ≡ σi ⊗ σ j , JIZ =
1/4(E1 − E2 + E3 − E4), JZI = 1/4(E1 + E2 − E3 − E4),
and JZZ = 1/4(E1 − E2 − E3 + E4). As long as the detuning
is changed adiabatically, no transitions between adiabatic
eigenstates are induced. Local rotations about the Z axis are
induced by JZI and JIZ , while JZZ generates entanglement.
Analytical expressions in terms of the Schrieffer-Wolff
approximation are sometimes useful, but we are interested
in the small-detuning regime where JZZ is large, and a
perturbative form of Heff is not valid; we therefore simply
diagonalize the full 9 × 9 Hamiltonian numerically.

Matching typical silicon-based single-qubit experiments
for hybrid qubits, we take an effective electron mass of 0.2m0

(m0 is the electron rest mass), a dielectric constant of κ =
11.7ε0, a confinement energy of h̄ω = 0.38 meV (giving a
Bohr radius of roughly 31 nm), and an interdot distance of
2a = 135 nm [19]. We choose energy splittings and tunnel
couplings of E (1)

ST = 52 μeV, E (2)
ST = 47 μeV, �

(i)
1 = 0.64 ×

E (i)
ST , and �

(i)
2 = 0.58 × E (i)

ST , which minimizes the effect of
charge noise on the single qubit terms, JIZ and JZI [17].
The interqubit distance is taken arbitrarily to be 2R = 8a ≈
543 nm, which is similar in scale to non-capacitively coupled
two-qubit silicon devices [3]. The Coulomb interaction terms
are then Vf = 181 μeV,Vm = 227 μeV, and Vn = 303 μeV.

It should be noted that the 9 × 9 Hamiltonian implicitly
assumes that only the lowest orbital can be populated. In
general, there may be orbital excitations as well. Matrix
elements, which couple the 9 × 9 Hamiltonian to these higher-
energy terms can be shifted into the 9 × 9 Hamiltonian and
treated perturbatively using the Schreiffer-Wolff transforma-
tion [14,24,25]. The nth-order perturbation term will go like
t n+1/(�U )n, where t is the transition rate to the higher-energy
states and �U is the energy gap between the high-energy
states and low-energy states. Since the transition rate is related
to the movement of an electron into an excited orbital within
a single well, it is approximated by the Coulomb integral
〈φRiφRj |C|φRk φ̃Rl 〉 ≈ 0.1 μeV, where φ̃Rm denotes an orbital
excitation centered at Rm, and Ri, Rj, Rk , and Rl are assigned
the same numeric value (see Appendix B). Assuming �U ∼
h̄ω = 0.38 meV, the largest of the perturbative terms will be
approximately 50 peV, which is more than an order of magni-
tude smaller than the minimum value of JZZ we consider [see
Fig. 2(a)]. Under these assumptions, the 9 × 9 Hamiltonian
accurately approximates the total Hilbert space.

Figure 2(b) shows the effect of the detuning on the effective
coupling strength, where we set ε1 = ε2 = ε for simplicity.
Note that it is not the Coulomb energy itself that is directly
relevant, but the energy difference between eigenstates. At
large detunings, the four low-energy eigenstates making up
the effective Hamiltonian are all roughly in (1, 2, 2, 1) charge
configurations. The energy difference between low-energy
eigenstates due to the Coulomb interaction will be 0 since
all eigenstates are in the same charge configuration, effec-
tively giving JZZ = 0. At small detunings, the low-energy
eigenstates will be mixtures of (1, 2, 2, 1), (2, 1, 1, 2), and
(1, 2, 1, 2) configurations. The low-energy eigenstates will
then have a nonzero energy difference due to the Coulomb
interaction. While the Coulomb interactions Vn, Vm, and Vf

are all on the same order of magnitude, it is the energy

FIG. 2. (a) Semilog plot of the magnitude of the coupling term,
JZZ , with ε1 = ε2 = ε, as a function of detuning. (b) The spectrum of
the Hamiltonian assuming ε1 = ε2 = ε . At large detunings, the four
lowest-energy levels (the logical subspace) are approximately paral-
lel, signifying a coupling close to zero. As the detuning decreases, the
logical subspace approaches the leakage space, causing an increased
interaction.

differences between eigenstates, which change by several
orders of magnitude.

The effect of any imperfections leading to nonidentical
double wells is a slight shift in the value of the coupling,
but the behavior is qualitatively unchanged. For example,
if the difference in Coulomb interaction between electrons
in a (2, 1, 2, 1) configuration and (1, 2, 1, 2) configuration
is equal to 4 μeV, corresponding to, e.g., an imperfection
causing intradot distances to differ by 5 nm, then the shift
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FIG. 3. An example of the total pulse. The detuning is lowered
from εinit to εwait over a time tramp. It is held at this point for a time twait,
before being raised back to εinit over a time tramp. Here, α/h̄ = 79.0,
tramp = 8.0 ns, twait = 2.9 ns, εinit = 200 μeV, and εwait = 145 μeV.

in coupling, �JZZ , would be perturbed by between 65 neV
around ε = 100 μeV and 0.4 neV around ε = 200 μeV.

IV. ADIABATIC RAMP

Both qubits are typically parked at an idle position at large
detuning where the interaction is negligible, which we denote
by εinit. The two logical states of each qubit are defined as the
lowest two eigenstates at that detuning. In order to perform
an entangling operation, we adiabatically lower the detuning
over a time tramp to a strongly interacting detuning εwait where
the qubits are held for a time twait. The detuning is then
adiabatically returned back to εinit. Thus, at the end of the
pulse, minimal population has been transferred, and the qubits
have picked up a nonlocal state-dependent phase.

We set εinit = 200 μeV, so that the coupling is approxi-
mately 0 at the beginning and end of the ramp. As seen in
Fig. 3, an avoided crossing between the logical subspace and
leakage space occurs roughly around ε = 130 μeV. Choosing
a value of εwait below this point will require a long ramp time
in order for the adiabatic approximation to be satisfied. For
this reason, we restrict ourselves to εwait � 130 μeV.

Given that the coupling increases quickly as the detuning
approaches the avoided crossing, it is useful to choose a
pulse such that ε̇ decreases as ε → εwait. This ensures that
the detuning will vary quickly when the gap between the
logical and leakage space is large, and will vary slowly as the
gap shrinks, minimizing nonadiabatic population loss into the
leakage space. Such a pulse can be found as the numerical
solution to the differential equation,

ε̇(t ) = 1
α

[�E (ε)]2, ε(0) = εinit, t ∈ [0, tramp], (5)

where �E (ε) is the detuning-dependent energy difference
between the fourth and fifth adiabatic eigenstates, α is an
arbitrary scaling factor, which allows for control over the

ramp time, and tramp is defined via ε(tramp) = εwait [26]. The
detuning is swept back to its initial value via the time-reversed
ramp shape. An example pulse shape is shown in Fig. 3.

This pulse shape is motivated by the Landau-Zener for-
mula, which states that nonadiabatic transitions between the
highest-lying eigenstate in the logical basis, ψ4, and the
lowest-lying eigenstate in the leakage space, ψ5, are sup-
pressed to first order when [27]

P =
∫ tramp

0
ei�EtV dt  1, (6)

where V is the coupling between states given by i〈ψ4|ψ̇5〉,
which is equivalent to i 〈ψ4| Ḣ |ψ5〉 /�E . Setting P  1 is
then loosely equivalent to setting |V |  |�E |, which is true
when 〈ψ4| Ḣ |ψ5〉  (�E )2. This can also be written as
〈ψ4| ∂εH |ψ5〉 /α  1, where α is defined as in Eq. (5). We
note that the factor 〈ψ4| ∂εH |ψ5〉 can be dropped, since it is
of order unity and does not significantly impact the inequality.
This is known as the local adiabatic approach [26,28,29].

In the noise-free, adiabatic approximation, the ideal evolu-
tion operator is

Ũθ = exp

[
−i

∫ twait+2tramp

0
dtHeff/h̄

]
, (7)

where, for a given ramp time, the wait time is chosen such
that the nonlocal phase acquired over the duration of the pulse
is the desired angle, θ = ∫ twait+2tramp

0 dtJZZ/h̄. For a realistic
simulation of the two-qubit operations, we can also consider
the effects of noise on the qubits. The effects of charge noise
on the qubits are modeled by random static perturbations
in the detuning drawn from a Gaussian distribution with an
experimentally measured standard deviation of σ = 4.4 μeV
[30], i.e., εi(t ) → ε(t ) + δεi, with δεi independent of time and
unique for each qubit. In addition, finite ramp times contribute
nonadiabatic leakage. Thus, to obtain the actual evolution,
when targeting a nonlocal phase θ , we numerically solve
Schrödinger’s equation for the full 9 × 9 Hamiltonian, using
the ODEINT package available in SCIPY [31]. Note that we
use the predetermined value of twait found from Eq. (7). This
gives the full evolution operator, which includes the effects
of charge noise as well as leakage. We then project the full
evolution operator onto the lowest four eigenstates of the
full Hamiltonian at ε = εinit (i.e., the logical basis) to get the
effective (nonunitary) evolution operator, Uθ .

To target a maximally entangling operation, we choose
θ = π/4 so that the operation is locally equivalent to
exp [−iπσZZ/4]. Note that this is sufficient, along with local
rotations, to form a universal gate set. The fidelity between
the noisy and noise-free evolution operators, F (Uπ/4, Ũπ/4),
is calculated using the two-qubit fidelity defined in Ref. [32],

F (U1,U2) = 1

16

⎛
⎝4 + 1

5

∑
i, j∈{I,X,Y,Z}

tr(U1σi jU
†
1 U2σi jU

†
2 )

⎞
⎠,

(8)

averaged over 500 noise realizations.
The choice of α (thus, tramp) is arbitrary. Increasing the

value of α serves to increase the ramp time, thus reducing
errors due to leakage. Errors due to charge noise can be
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suppressed by considering the Hamiltonian in the adiabatic
frame, Eq. (4). The effect of charge noise on the terms in
the Hamiltonian can be quantified by ∂JZZ/∂ε, ∂JIZ/∂ε, and
∂JZI/∂ε, which are all on the same order of magnitude.
Fluctuations in these terms can be suppressed by interweaving
applications of specific single-qubit operations in between
applications of the noisy two-qubit operation. Specifically, JIZ

and JZI fluctuations can be suppressed completely with the
sequence,

Ucorrected(π/4) = Uπ/8σXXUπ/8σXX , (9)

where σXX is a local π rotation about σX on both qubits.
Note that while σXX is a two-qubit operation, it describes two
single-qubit operations being performed simultaneously, and
is nonentangling. Assuming essentially instantaneous single-
qubit operations relative to the two-qubit gate times and neg-
ligible infidelities, we again numerically characterize the full
evolution operator as before, except that now the Schrödinger
equation is solved for a pulse, which is raised and lowered
twice, with a nonlocal phase of π/8 accumulating over each
pulse. It should also be noted that the second application of
σXX is not necessary for error correction and does not affect
the entangling power of the final operation. It simply adjusts
the local part of the evolution to make the final operation
equal to Uπ/4. If local rotation errors are a concern, one
could leave out the second application of σXX . Then, since
the local operations have already been realized with fidelities
above 99% [30], one might expect the corrected two-qubit
gate fidelities we report to be lowered by at most 2% and even
less if the local operations are improved. However, any more
elaborate pulse sequences that involve a larger number of local
operations may introduce more error than they correct. The
fidelity F (Ucorrected, Ũπ/4) versus ramp time is shown in Fig. 4.

Optimizing over εwait, we found that the largest fidelity
over all values of tramp was produced at approximately εwait =
145 μeV, which is the value we use in the plot. For the
simple uncorrected operation, we achieve a maximum fidelity
of approximately 87.8% at tramp = 5.3 ns. For the corrected
operation, we achieve a maximum fidelity of approximately
94.3% at tramp = 4.3 ns.

Sub-ns ramp times have low fidelity, due to large adiabatic
errors close to 25% and 50% for the uncorrected and corrected
operations, respectively. Increasing the ramp time quickly
lowers errors due to nonadiabaticity below 1%, which is
negligible compared to the errors due to charge noise. After
errors due to nonadiabaticity become negligible, the fidelity
remains roughly constant, rather than quickly becoming sup-
pressed as the ramp time increases, as one would expect. The
nonlocal phase, θ , can be split into the phase acquired over
the ramping times when t ∈ [0, tramp] ∪ [tramp + twait, 2tramp +
twait], and the phase acquired over the waiting time when t ∈
[tramp, tramp + twait], which we denote, respectively, by θramp

and θwait. As tramp increases, θramp also increases. Since θramp +
θwait = θ , θwait must decrease as θramp grows, meaning that as
the ramp time increases, the wait time decreases. Thus, the
total gate time is roughly constant just beyond the first few
points for both lines.

For the uncorrected operation, a sharp drop in fidelity is
seen around 10 ns. At this point, the nonlocal phase acquired
by ramping up and immediately down (i.e., twait = 0) is larger

FIG. 4. Fidelity of the effective evolution operator versus ramp
time, for both the corrected and uncorrected sequences, at εwait =
145 μeV. twait is chosen at each point so that the noisy and noise-free
operations in the logical subspace are locally equivalent to Utarget.

than π/4. Regardless of the choice of twait, the nonlocal phase
acquired by the evolution operator will be larger than π/4.
Since the evolution operator is periodic in θ , we must then
choose twait so that θ = π/4 + 2π , leading to twait close to
80 ns, which is more than double the wait time required for
smaller ramp times. The overall longer gate times lead to
lower fidelities due to charge noise. A similar effect is also
seen in the fidelity of the corrected operation.

This is comparable to the performance of Ref. [17], which
uses a similar model, but a slightly different scheme. Rather
than choosing the form of the ramp function to minimize
nonadiabatic errors, Ref. [17] considers a sine-squared ramp
for experimental simplicity and numerically optimizes simul-
taneous detuning and tunneling pulses, leading to a maximum
fidelity around 90%.

V. CONCLUSION

We have shown that the Coulomb interaction between two
hybrid qubits leads to a significant coupling strength within
the logical subspace. Adjustment of the individual detunings
allows for control over the charge configurations of the in-
dividual qubits, and hence the overall coupling strength. We
have shown that this controllability allows for fast entangling
operations to be performed in less than 50 ns.

By carefully choosing the detuning pulse shape and us-
ing known single-qubit error-correcting sequences, we have
shown that fidelities over 90% can be achieved in the pres-
ence of realistic charge noise values, without changing tunnel
couplings. Further increase in fidelity at the same noise levels
would require going through a narrow avoided crossing in
the energy eigenstates to access stronger couplings but while
maintaining adiabaticity. This suggests the necessity of some
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sort of shortcut-to-adiabaticity driving protocol, with full
optimization on the detuning pulse shape simultaneous with
tunnel coupling control, similar to the analysis in Ref. [17]
but with less restriction on the allowed pulse shapes, in order
to further improve the fidelity.
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APPENDIX A: TWO-QUBIT HAMILTONIAN

For completeness, we present the two-qubit Hamiltonian
given by Eq. (3) in the main text. The full matrix is given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0 0 �
(2)
1 0 0 0 �

(1)
1 0 0

0 E1 �
(2)
2 0 0 0 0 �

(1)
1 0

�
(2)
1 �

(2)
2 E2 0 0 0 0 0 �

(1)
1

0 0 0 E3 0 �
(2)
1 �

(1)
2 0 0

0 0 0 0 E4 �
(2)
2 0 �

(1)
2 0

0 0 0 �
(2)
1 �
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, (A1)

where

E0 = Vn − ε1

2
− ε2

2
(A2)

E1 = E (2)
ST + Vn − ε1

2
− ε2

2
(A3)

E2 = Vm − ε1

2
+ ε2

2
(A4)

E3 = E (1)
ST + Vn − ε1

2
− ε2

2
(A5)

E4 = E (1)
ST + E (2)

ST + Vn − ε1

2
− ε2

2
(A6)

E5 = E (1)
ST + Vm − ε1

2
+ ε2

2
(A7)

E6 = Vm + ε1

2
− ε2

2
(A8)

E7 = E (2)
ST + Vm + ε1

2
− ε2

2
(A9)

E8 = Vf + ε1

2
+ ε2

2
. (A10)

APPENDIX B: TWO-ELECTRON COULOMB INTEGRALS

The general two-electron Coulomb integral between ground-state harmonic wave functions is given in Ref. [33] as,

〈
φRiφRk

∣∣C∣∣φRj φRl

〉 = e2

4πκ

√
π

2

1

aB
exp

[
− 1

4a2
B

((Ri − Rj )
2 + (Rk − Rl )

2)

]

× exp

[
− 1

16a2
B

(Ri + Rj − Rk − Rl )
2

]
I0

[
1

16a2
B

(Ri + Rj − Rk − Rl )
2

]
, (B1)

where I0 is the zeroth-order modified Bessel function of the first kind, aB is the effective Bohr radius, κ is the effective dielectric
constant, and Rm is the distance from the center of the two DQDs to the center of the respective electron’s wave function.

We are also interested in evaluating terms, which involve the interchange of electrons between different orbitals, such as
〈φRiφRk |C|φRj φ̃Rl 〉, where φ̃Rm denotes an orbital excitation centered at Rm. This integral can be evaluated by noting that φ̃Rm =√

2aB∂φRm/∂Rm. Using this relationship in 〈φRiφRk |C|φRj φ̃Rl 〉 and noting that the integral is with respect to the spatial coordinates
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of the wave functions, independent of Rm, the derivative can be pulled out of the integral, giving,〈
φRiφRk

∣∣C∣∣φRj φ̃Rl

〉 =
√

2aB
∂

∂Rl

〈
φRiφRk

∣∣C∣∣φRj φRl

〉
, (B2)

where the integral on the right-hand side is given by Eq. (B1).
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