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In anisotropic or bianisotropic waveguides, the standard coupled-mode theory fails due to the broken link
between the forward- and backward-propagating modes, which together form the dual mode sets that are crucial
in constructing coupled mode equations. We generalize the coupled-mode theory by treating the forward- and
backward-propagating modes on the same footing via a generalized eigenvalue problem that is exactly equivalent
to the waveguide Hamiltonian. The generalized eigenvalue problem is fully characterized by two operators, i.e.,
(L̄, B̄), wherein L̄ is a self-adjoint differential operator, while B̄ is a constant antisymmetric operator. From
the properties of L̄ and B̄, we establish the relation between the dual mode sets that are essential in constructing
coupled-mode equations in terms of forward- and backward-propagating modes. By perturbation, the generalized
coupled-mode equation can be derived in a natural way. Our generalized coupled-mode formalism (GCMF) can
be used to study the mode coupling in waveguides that may contain gain, loss, anisotropy, or bianisotropy. We
further illustrate how the generalized coupled theory can be used to study the modal coupling in anisotropy and
bianisotropy waveguides through a few concrete examples.
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I. INTRODUCTION

Coupled mode theory (CMT) is an indispensable tool to
analyze and design photonic devices, such as waveguides and
cavities [1–12], and has far-reaching implications and appli-
cations in many subfields of optics [1–3,8,9,13–23]. CMT is a
theoretical framework that treats each individual optical mode
with certain spatiotemporal distributions as a single object,
among which one mode could be coupled to another as the
control parameter of the optical system, such as refractive
indices or shapes of optical structures, varies. As a simple
model, CMT provides not only an intuitive picture of how
the photonic modes are hybridized, but also a quantitative
assessment of how the hybridization among those relevant
modes evolves. Especially, CMT in the waveguides has been a
great tool to study the modal properties of various waveguides
[1,2,24] as well as waveguide lattices [18,25]. In coupled
waveguide-cavity systems [3,26,27], the temporal CMT [28]
provides insight to design the ultrafast optical switch. Con-
sidering the recent development in metamaterials, man-made
anisotropic mediums can be created, leading to interesting
applications in controlling the flow and polarization of light
[29]. Therefore, there is a large need to study waveguides that
may contain anisotropy or bianisotropy.

In waveguide CMT, each mode characterized by the prop-
agation constant β and the corresponding mode profile can be
treated as a single object described as follows:

Hφ = βφ, (1)
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where H is the waveguide Hamiltonian. The construction
of a coupled-mode equation of waveguides under certain
perturbation H + � takes three steps. First, the field of the
perturbed waveguide is expanded as φnew = ∑

aiφi, where
all φi functions span a complete mode set associated with
Hamiltonian H, i.e., the space of the right eigenstates [φi];
second, Eq. (1) of the perturbed system can be revised as
a residual form R = (H + �)φnew − βφnew, which is further
tested against all the possible ψ j coined as the test functions
that span the space of the left eigenstates [ψ j] associated with
Hamiltonian H. Last, the link between the expansion func-
tions φi and the test functions ψ j can be built within a proper
inner product between φi and ψ j , such that the coupled-mode
equations can be constructed. The aforementioned procedure
in constructing CMT has been used extensively in computa-
tional electromagnetism, such as the method of moments [30]
and finite element method [31], which can be further proved
to be exactly equivalent to the variational principle [31–37].

There are two different types of inner products, i.e., Her-
mitian inner products and bi-orthogonal products [38–40],
both of which are heavily used in waveguide CMT. In the
scheme of Hermitian inner products, it turns out that the left
eigenstates ψ j can be obtained by performing the Hermitian
operation on the right eigenstates φi, implying the fact that
the waveguide Hamiltonian H is a Hermitian operator and
the integrated power flux flowing along propagation direction,
i.e., z axis, of the waveguide is conserved [32,41,42]. In
parallel, the left eigenstates ψ j in a biorthogonal product can
be obtained by performing the transpose operation and certain
operations in field components of the right eigenstates φi,
provided that the waveguide medium is reciprocal and the
reaction conservation is fulfilled [42,43]. In the waveguide
with gains and losses, the integrated power flux flowing along
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the waveguide is apparently not conserved, thus the modal
coupling model based on the biorthogonal product is proposed
by Xu et al. [43] to study PT -symmetric waveguides that
contain balanced gains and losses. Essentially, the general
coupled-mode theory (GCMT) [43] is a revision of CMT by
Haus [32], replacing the Hermitian inner product with the
biorthogonal product, wherein the reciprocity or the reaction
conservation still holds.

Physically, the expansion function φi can be taken as the
forward-propagating modes associated with the waveguide
Hamiltonian H, while the test function ψ j corresponds to
the time-reversal partner (backward-propagating modes) with
respect to φi in the scheme of Hermitian inner (biorthogonal)
product. In either Hermitian inner product or biorthogonal
product, the inner product between φi and ψ j yields a physical
quantity that is independent of the z coordinate, such that
the three-dimensional (3D) waveguide problem is reduced to
a 2D counterpart. Such dimensional reduction is necessary,
as it significantly reduces the computational load. In the
biorthogonal product, such dimensional reduction in CMT
works perfectly well for waveguides, in which the material
is isotropic or only contains the in-plane anisotropy. In con-
trast, dimensional reduction is in conflict with the definite
relation between the forward-propagating modes φi with the
backward-propagating modes ψ j , if the material tensor of a
waveguide contains terms that couple the transverse compo-
nents and longitudinal component. In a generic scenario, the
definite relation between forward- and backward-propagating
modes is lost. However, the coupled-mode equations in all
the available CMT in literature are essentially constructed by
testing Eq. (1) against all the possible ψ j , which is deduced
from the expansion functions φi [30–32,42,43] based on the
aforementioned relation. Importantly, it is the completeness of
the mode set [ψi] of test functions, i.e., all the possible ψ j , that
guarantees the equivalence to the variational principle. In this
regard, the completeness of [ψi] associated with the Hamil-
tonian H of the anisotropic/bianisotropic waveguides needs
to be restored to construct the coupled-mode equations. In
special cases, the forward- and backward-propagating modes
are related by symmetry operations [44]. In a generic waveg-
uide with bianisotropy, the relation between the forward-
and backward-propagating modes is lost, which indicates that
there is no definite relation between the expansion function φ j
and the test function ψ j . Hence, the procedures in constructing
the coupled-mode equations as given in literature [32] do not
apply here. Notably, our discussion here is different from
previous attempts on solving the modal coupling in homo-
geneous or partially filled bianisotropic metallic waveguide
[45–48], where the expansion functions φi are eigenmodes of
the rectangular metallic waveguides filled with homogeneous
isotropic achiral materials. The deficiency of this approach is
the slow convergence with respect to the number of expansion
functions, i.e., from a few tens at minimum to a few hundred,
as well as the special boundary conditions (perfect electric
conductor or perfect magnetic conductor) that are not applied
for dielectric waveguides.

In this paper, we aim to develop a generalized CMT
in photonic waveguide systems containing gains, losses,
anisotropy, and bianisotropy, which can account for the modal
coupling by including only a few relevant modes for both

microwave waveguides and optical dielectric waveguides.
We show that the standard CMT in those waveguides with
anisotropy/bianisotropy fails due to the broken link between
the forward- and backward-propagating modes. In our paper,
we start with a formal description of the generalized eigen-
value problem of the bianisotropic waveguide by putting the
forward- and backward-propagating modes on the same foot-
ing. Namely, the forward- and backward-propagating modes
are combined together to constitute the complete expansion
mode set [φi]. As for the reciprocal waveguide, it can be
proved that the test function mode set [ψi] and expansion
mode set [φi] can be related. As a consequence, the coupled-
mode equation can be constructed in a similar procedure as
discussed previously. We show that our GCMF captures all
the relevant features in the mode coupling in waveguides with
anisotropy/bianisotropy through a few concrete examples.

This paper is organized as follows. In Sec. II, we refor-
mulate the vectorial wave equation of the waveguide problem
into a generalized eigenvalue problem (L̄, B̄). We further
introduce the adjoint generalized eigenvalue problem (L̄a, B̄a)
under the biorthogonal product. In Sec. III, we examine the
relation between the two complementary waveguide systems,
i.e., (L̄, B̄) and (L̄a, B̄a), in reciprocal waveguides. The sym-
metry relations between the modes associated with (L̄, B̄) and
(L̄a, B̄a) can be summarized by the same-β argument and
the pairing-β argument. Based on the symmetry relations,
we provide the procedures of constructing CMT, in which
the forward- and backward-propagating modes are included
in the modal expansion set. In Sec. IV, we apply our theory
to study three examples, showing that our theory captures the
features of the modal coupling due to the broken link between
the forward- and backward-propagating modes. Section V
concludes the paper.

II. GENERALIZED EIGENVALUE PROBLEM
OF WAVEGUIDE

A. Generalized eigenvalue problem of original
waveguide system

Throughout the paper, bold symbols with bars represent
matrices or matrix operators, bold symbols correspond to vec-
tors or vector operators, and normal symbols denote scalars.
We consider a generic bianisotropic waveguide, in which the
constitutive relation can be given as follows [49]:

D = ε̄E + χ̄ehH,

B = μ̄H + χ̄heE, (2)

where D/B is electric displacement/magnetic induction,
E/H is electric/magnetic field, respectively, ε̄ = ε0ε̄r

(μ̄ = μ0μ̄r) is permittivity (permeability) tensor, χ̄eh =√
ε0μ0χ̄r,eh and χ̄he = √

ε0μ0χ̄r,he are magnetoelectric

coupling constants. Explicitly, ε̄r =
(

ε̄tt
r εtz

r
εzt

r εzz
r

)
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εxx
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r εxz

r
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, μ̄r =

(
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=
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,

χ̄r,he =
(

χ̄tt
r,he χtz

r,he
χzt

r,he χ zz
r,he

)
= i

(
χ xx

r,he χ
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r,he 0
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)
, and χ̄r,eh =
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(
χ̄tt

r,eh χtz
r,eh

χzt
r,eh χ zz

r,eh

)
= i

(
χ xx

r,eh χ
xy
r,eh 0

χ
yx
r,eh χ

yy
r,eh 0

0 0 0

)
. Considering an infinitely

long waveguide with translation symmetry along z, the
waveguide modes can be obtained by solving the Maxwell’s
equation with a time harmonic dependence eiωt , i.e.,
∇ × E = −iω(μ̄H + χ̄heE ), ∇ × H = iω(ε̄E + χ̄ehH ),
where i = √−1. With normalization, i.e., e = E and
h =

√
μ0

ε0
H , we reformulate Maxwell’s equations as follows:[∇ × +ik0χ̄r,he

]
e3d (x, y, z) + ik0μ̄rh3d (x, y, z) = 0,

(3)[∇ × −ik0χ̄r,eh

]
h3d (x, y, z) − ik0ε̄re3d (x, y, z) = 0,

where vacuum wave number k0 = ω
√

ε0μ0. By transla-
tion symmetry along z, the normalized electromagnetic

field can be separated as the transverse terms and
the longitudinal term, i.e., e3d (x, y, z) = e2d (x, y)e−iβz =
et

2d (x, y)e−iβz+ez
2d (x, y)e−iβz (h3d (x, y, z) = h2d (x, y)e−iβz =

ht
2d (x, y)e−iβz + hz

2d (x, y)e−iβz), where β is the propaga-
tion constant. Subsequently, Eqs. (3) can further be
reformulated into a four-component equation by elim-
inating the longitudinal terms ez

2d (x, y) and hz
2d (x, y)

via the expressions ez
2d (x, y) = ∇t ×ht

2d (x,y)−ik0ε
zt
r ·et

2d (x,y)
ik0εzz

r
and

hz
2d (x, y) = −∇t ×et

2d (x,y)+ik0μ
zt
r ·ht

2d (x,y)
ik0μzz

r
, leading to the following

equation given by

L̄φi = βiB̄φi, (4)

where

L̄ =
(

D1
D2

k0μzz
r

− k0ε̄
tt
r +k0ε

tz
r

εzt
r

εzz
r

−k0χ̄
tt
r,eh + iD1

μzt
r

μzz
r

+ iεtz
r

D2
εzz

r

iD1
εzt

r
εzz

r
+ iμtz

r
D2
μzz

r
+ k0χ̄

tt
r,he −D1

D2
k0εzz

r
+ k0μ̄

tt
r − k0μ

tz
r

μzt
r

μzz
r

)
, (5)

B̄ =
[0 0 0 −1

0 0 1 0
0 −1 0 0
1 0 0 0

]
, D1 =

(
∂
∂y

− ∂
∂x

)
, D2 = (− ∂

∂y
∂
∂x ), φ =

[ex, ey, hx, hy]T , and T is the transpose operation. Equation (4)
completely determines the series of waveguide modes labeled
by i, with the propagation constant βi = ni

e f f k0, where ni
eff is

the ith effective modal index.
It is a trivial step to reformulate the generalized eigenvalue

form in Eq. (4) to the Hamiltonian form given by Eq. (1), i.e.,
H = B̄−1L̄, as derived in our previous work [44]. The waveg-
uide Hamiltonian H gives a concise and complete description
of the waveguide [50], but involves complicated relations
among the elements that are hard to interpret. In contrast, the
generalized eigenvalue problem (L̄, B̄) shows a much more
transparent relation among the elements in (L̄, B̄). It is easy
to identify that B̄ is an antisymmetric matrix, i.e., B̄T = −B̄,
and some blocks in L̄ are symmetric matrices. Considering
the complementary properties between (L̄, B̄) and H, we
will use both of them, where appropriate, to describe the
waveguide system. The rationale behind will become clear in
the following discussions of this paper.

B. Left eigenvector ψT
j and biorthogonal product

Equation (4) defines the right eigenvectors of (L̄, B̄), i.e.,
the expansion function φi from the complete mode set [φi].
Similarly, the left eigenvector ψ is given by

L̄T
ψ j = β jB̄

T
ψ j, (6)

where ψ j has the same dimension as φi but spans the com-
plete mode set [ψ j] associated with the test function space.
Following Rumsey and Moiseyev [38,40], the biorthogonal
inner product between φi and ψ j is defined as the following
throughout the paper:

〈ψ j,φi〉 =
∫∫

ψT
j φidV , (7)

where φi/ψ j is the expansion/test function. In the following
part of this paper, the inner product defined in Eq. (7) is
referred to as the first-type inner product throughout the paper.
We further introduce the second-type inner product defined as
follows:

〈ψ j,φi〉σ̄ =
∫∫

ψT
j σ̄φidV , (8)

where the metric tensor σ̄ equals B̄. The second-type inner
product can be easily reduced to the first type if the metric
tensor σ̄ is an identity matrix, thus the first inner is coined
as the identity inner product, while the second inner product
is coined as the B-inner product. It will be shown that the
identity inner product is designed to work with the generalized
eigenvalue description defined by (L̄, B̄), while the B-inner
product works together with the Hamiltonian description of
waveguide defined by H.

C. Adjoint waveguide system

Provided the original waveguide described by Hφi = βiφi,
by definition the adjoint system Ha satisfies the following
relation:

〈ψ j,Hφi〉B̄ = 〈Haψ j,φi〉B̄, (9)

for any φi and ψ j under the B-inner product. The equivalent
generalized eigenvalue problem of adjoint system Ha can be
given as follows:

L̄a
ψ j = β jB̄

a
ψ j, (10)

where B̄a = B̄T = −B̄. Explicitly, right-hand side of Eq. (9)
is equal to

∫∫
[(B̄a)−1L̄a

ψ j]
T

B̄φidV , which can be reformu-

lated as
∫∫

ψT
j [L̄a]

T
[(B̄a)T ]

−1
B̄φidV . With the assistance of

[(B̄a)T ]
−1 = B̄−1, it is straightforward to prove that the adjoint

relation given by Eq. (9) can be translated into the following
relation:

〈ψ j, L̄φi〉 = 〈L̄a
ψ j,φi〉. (11)
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Equation (11) indicates that the adjoint relation between
(L̄, B̄) and (L̄a

, B̄a) can be simplified into the adjoint relation
between L̄ and L̄a. At present, the adjoint operator L̄a is in an
abstract form, and the concrete form of L̄a will be given in the
next section.

III. RECIPROCAL WAVEGUIDES

In Sec. II, we have discussed that the adjoint waveguide
system defined by (L̄a

,−B̄) can be related to the original
waveguide system via Eq. (11), wherein L̄a is implicit. In this

section, we continue to discuss the adjoint waveguide system
of (L̄, B̄) and give explicit form of L̄a by reciprocity. We
further study the orthogonal relation between the modes from
the two complete mode sets [φi] and [ψi].

A. Waveguide reciprocity and orthogonal relation

Considering the operator L̄ associated with the original
waveguide problem described by Eq. (5), the adjoint operator
L̄a can be readily given by the following form:

L̄a =
(

D1
D2

k0μ
a,zz
r

− k0ε̄
a,tt
r +k0ε

a,tz
r

εa,zt
r

ε
a,zz
r

−k0χ̄
a,tt
r,eh + iD1

μa,zt
r

μ
a,zz
r

+ iεa,tz
r

D2
ε

a,zz
r

iD1
εa,zt

r
εa,zz

r
+ iμa,tz

r
D2

μa,zz
r

+ k0χ̄
a,tt
r,he −D1

D2
k0ε

a,zz
r

+ k0μ̄
a,tt
r − k0μ

a,tz
r

μa,zt
r

μa,zz
r

)
, (12)

where the material tensors ε̄a
r , μ̄a

r , χ̄a,tt
r,he, χ̄a,tt

r,eh are to be
determined. According to the requirement imposed by the
adjoint relation, i.e., Eq. (11), it is straightforward to identify
the material tensors of the adjoint waveguides, i.e., ε̄a

r =
ε̄T

r , μ̄a
r = μ̄T

r , χ̄a,tt
r,he = −(χ̄tt

r,eh)T , and χ̄a,tt
r,eh = −(χ̄tt

r,he)T . As
for the reciprocal waveguide, the material tensors fulfill the
reciprocity conditions, which require ε̄r = (ε̄r )T , μ̄r = (μ̄r )T ,
χ̄r,he = −(χ̄r,eh)T . As a result, it is trivial to find out that the
following relation holds:

〈ψ j, L̄φi〉 = 〈L̄ψ j,φi〉, (13)

which reveals that L̄ is self-adjoint under the biorthogonal
product defined by Eq. (7). In contrast to the established
equivalence of adjointness of the matrix form H of the
Maxwell’s equations in Xu’s work [43] and Lorentz reci-
procity, where H is 3D operator, the operator L̄ is a 2D
differential operator. Interestingly, the self-adjointness of the
operator L̄ is also a necessary and sufficient condition to
material reciprocity. Thus, we refer Eq. (13) as the waveguide
reciprocity.

The waveguide reciprocity for reciprocal waveguides is
one of the important results of this paper, the relevance
of which we shall discuss in relation with the generalized
coupled-mode formalism in depth later. To this end, we first
examine the orthogonal relations of the waveguide modes.
Combining the original equation Eq. (4) and the adjoint
equation Eq. (10) in the form of

∫∫
[ψ j · (4) − (10) · φi]dxdy,

it is straightforward to derive the following equation [51–53]:

〈ψ j, L̄φi〉 − 〈L̄a
ψ j,φi〉 = (βi − β j )〈ψ j, B̄φi〉. (14)

Equation (14) is essentially corresponding to the Lorentz
reciprocity, where the source terms are set to be zero. Since
we are interested in the reciprocal waveguide, the waveguide
reciprocity requires that the term on the left hand vanishes,
leading to the orthogonal relation between φi and ψ j as
follows:

(βi − β j )
∫∫

ψT
j B̄φi dxdy = 0. (15)

For βi �= β j , the term
∫∫

ψT
j B̄φi dxdy has to vanish, i.e,∫∫

ψT
j B̄φi dxdy = 0. With proper normalization, the formula

Eq. (15) can be reformulated as follows:

〈ψ j,φi〉B̄ = δi j, (16)

where δi j is Kronecker δ function. Equation (16) is referred
to as the B-orthogonal relation [54] between the original field
φi and the adjoint field ψ j in this paper. By writing out all
the components of φi and ψ j explicitly, one finds out that∫∫

ψT
j B̄φi dxdy equals

∫∫
(et

i × ht
j − et

j × ht
i )z

dxdy, which
has the physical meaning of an unconjugated form of Poynting
vector along the propagation direction [55].

B. Symmetric modal relations between φi and ψi in
reciprocal waveguide

By definition of the adjoint operator, one can prove that the
two complementary waveguide modes described by (L̄a

, B̄a)
and (L̄, B̄) share the same eigenvalues β regardless of the self-
adjointness of L, which is called the same-β argument onward
in our paper, see proof in Appendix A. Explicitly, the same-β
argument is described by

L̄φi = βiB̄φi, (17a)

L̄a
ψi = βiB̄

a
ψi, (17b)

where the original field φi and the adjoint field ψi share the
same βi. As for reciprocal waveguide, i.e., L̄ = L̄a and B̄a =
−B̄, Eq. (17b) can be reformulated as

L̄ψi = −βiB̄ψi. (18)

In comparison with Eq. (17a), Eq. (18) gives a different eigen-
solution [−βi, ψi], apart from the eigensolution [βi,φi], both
of which are directly associated with (L̄, B̄). The two different
eigensolutions share the same absolute value of βi but with
different signs [56], which is called the pairing-β argument in
this paper. Notably, the pairing-β argument also applies to the
adjoint operator (L̄a

, B̄a) in reciprocal waveguides, meaning
that if [βi,ψi] is an eigensolution to (L̄a

, B̄a), see Eq. (17b),
there must be a different solution [−βi,φi] which fulfills
L̄a

φi = −βiB̄
a
φi.

Evident from the aforementioned discussions, there are
two modes ([βi,φi] and [−βi,ψi]) related with the original
waveguide defined by (L̄, B̄) for a given βi. Importantly,
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TABLE I. Symmetric relation of original field and adjoint field
in the reciprocal waveguides with βi > 0.

Mode with βi Mode with −βi

(L̄, B̄) [βi, φi] [−βi,ψi]
(L̄a

, B̄a
) [βi, ψi] [−βi,φi]

the two modal fields ([−βi,φi] and [βi,ψi]) are also the
solutions to (L̄a

, B̄a), but with the flipped sign of βi. The
inferred adjoint eigensolutions associated with (L̄a

, B̄a) from
the known solutions of (L̄, B̄) can be a great help to construct
coupled-mode equations in general bianisotropic waveguides.
Under a small perturbation to the original waveguide, the
perturbed eigensolution in the system can be expressed by
the unperturbed eigensolutions. For example, in an origi-
nal waveguide with 2 + 2 solutions, φ1, φ2, ψ3, and ψ4,
the approximate forward- and backward-propagating eigen-
solutions in the perturbed system are � = (a1φ1 + a2φ2 +
a3ψ1 + a4ψ2) and 	 = (b1φ1 + b2φ2 + b3ψ1 + b4ψ2) with
the propagating constants β and −β, respectively, where the
unknown coefficients a j and b j have no definite relations. It
is worth noting that the eigensolutions are vector fields in the
transverse plane without the phase term e−iβz, in contrast with
the full 3D fields (see Sec. II A for more details).

The symmetric modal relations, dictated by the same-
β argument and the pairing-β argument, are summarized
compactly in Table I for reciprocal waveguides. The estab-
lished symmetric relation in Table I is largely derived from
the mathematical terms, which can also be interpreted with
physical meanings. For a given βi, i.e., βi > 0 corresponding
to the forward-propagating mode, the pairing modes given by
[βi,φi] and [−βi,ψi] are essentially the forward-backward-
propagating waveguide modes. From pairing-β argument,
one immediately realizes that the forward- and backward-
propagating modes share the same absolute value of β. How-
ever, for a generic anisotropic/bianisotropic waveguide, there
is no sign to show that the mode profiles of forward- and
backward-propagating modes, i.e., φi and ψi, are necessarily
the same or can be correlated.

In a few special cases, the forward- and backward-
propagating modes can indeed be transformed into each
other via additional symmetries [44], as tabulated in Ta-
ble II, where the matrix form of the symmetry operation

σ̄ =
(1 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 −1

)
is introduced to describe the chiral

transformation. In the table, the three types of symmetry op-
eration, including chiral symmetry, time-reversal symmetry,
and parity symmetry, and corresponding material constraints
are listed, see detailed description in Appendix B. Once the

symmetry relation between the forward- and backward-
propagating modes is known, one is able to use the forward-
propagating modes as the complete mode set to expand
the field of the perturbed waveguide, and the backward-
propagating modes as the test function to construct the
coupled-mode equation rigorously. In Haus’s CMT [32], the
time-reversal operator T is used to infer ψi from φi, while
the revised CMT in Xu’s work [43] takes the advantage of
the chiral symmetry to infer ψi from φi. The single mode set
used in either Haus’s CMT or Xu’s work is the one spanned
by φi, i.e., [φi]. In generically bianisotropic waveguides,
the symmetric relation between the forward- and backward-
propagating modes vanishes, thus there is no simple way to
deduce the ψi from φi. In this scenario, one needs to combine
ψi and φi to form the complete mode set to construct CMT,
which will be discussed in the next section.

C. Generalized coupled-mode formalism by perturbation

By perturbation, we construct the generalized coupled-
mode equations that treat the forward-propagating modes and
the backward-propagating modes on the same footing. Under
a small perturbation on L̄#, i.e., L̄# = L̄ + �L̄, the eigen-
modes � associated with the perturbed waveguide (L̄#

, B̄)
can be expanded as the eigenmodes φi of the unperturbed
waveguide (L̄, B̄). Explicitly, the perturbed waveguide mode
is given by � = ∑

aiφi, where ai are the coefficients to be de-
termined, and the corresponding eigenvalue changes from the
original eigenvalue βi into unknown β. By perturbation, the
original system Eq. (4) can be written as perturbed eigenvalue
equation L̄#

� = βB̄�. It can be proven that the perturbed
operator L̄# and original operator L̄ also satisfy the waveguide
reciprocity. According to the definition of L̄#, the formula
〈ψ j, L̄�〉 can be written as 〈ψ j, [L̄# − �L̄]�〉. Substituting

〈ψ j, [L̄# − �L̄]�〉 into Eq. (13) and dividing it into two

parts, one can derive 〈ψ j, L̄#
�〉 − 〈L̄ψ j,�〉 = 〈ψ j,�L̄�〉.

Omitting the small perturbed term 〈ψ j,�L̄�〉 leads to the
reciprocal relation,

〈ψ j, L̄#
�〉 = 〈L̄ψ j,�〉, (19)

where ψ j is the adjoint modes associated with waveguide de-
fined by (L̄,−B̄). Importantly, the complete mode set in [ψ j]
can be deduced from the known solutions of φi, as evident
from the same-β argument and the pairing-β argument in our
previous discussions.

Similar to the procedure of building Eq. (14), the general-
ized coupled-mode formulation can be obtained as

〈ψ j, L̄#
�〉 − 〈L̄ψ j,�〉 = (β − β j )〈ψ j, B̄�〉, (20)

TABLE II. Symmetry relations of original field and adjoint field in the reciprocal waveguides.

Type Operator Symmetry relation Constraints

Chiral symmetry σ ψi(r) = σ̄φi(r) εzt
r = εtz

r = 0, μzt
r = μtz

r = 0 and χ̄ = 0
Time-reverse symmetry T ψi(r) = σ̄(φi(r))∗ ε̄r , μ̄r and χ̄ are real
Parity symmetry P ψi(r) = σ̄φi(−r) ε̄r (r) = ε̄r (−r), μ̄r (r) = μ̄r (−r) and χ̄(r) = −χ̄(−r)

195307-5



CHEN, XIONG, XU, AND CHEN PHYSICAL REVIEW B 99, 195307 (2019)

and by simplification its matrix form can be derived as
follows:

�a j[ki j + bi j − i(βi − β )pi j] = 0, (21)

where the boundary term bi j is given by bi j =
− i

εzz
r

∮
[εzt

r et
ih

t
j − (εtz

r )T et
jh

t
i ] · dl , and the normalzied

term pi j is pi j = −i
∫∫

z · (et
j × ht

i − et
i × ht

j ) dxdy.
The coupling coefficient ki j contains three terms, i.e.,
ki j = k1

i j + k2
i j + k3

i j . The first term k1
i j is conventional

perturbation contributed from transverse electric field,
k1

i j = ∫∫ − k0
εzz

r
et

j · (�εtz
r εzt

r + εtz
r �εzt

r + �εtz
r �εzt

r )et
idxdy. The

second term k2
i j stems from magnetoelectric coupling, i.e.,

k2
i j = ik0

∫∫
(et

j ·�χ̄tt
r,ehht

i + et
i · �χ̄tt

r,ehht
j ) dxdy, which could

be particularly useful to study the mode hybridization in
bianisotropic waveguides. The last term k3

i j is contributed
from the coupling between the transverse field components
and longitudinal field components, i.e., k3

i j = ∫∫ k0
εzz

r
[et

i ·
�εtz

r (εzt
r et

j + εzz
r ez

j ) + et
j · �εtz

r (εzt
r et

i + εzz
r ez

i )] dxdy.
Close examination shows that bi j in Eq. (21) vanishes, thus

the generalized coupled-mode equation of Eq. (21) can be
reduced as ∑

j

a j (β j pi j − iki j ) = β
∑

j

a j pi j, (22)

where β is the propagation constant and a j is the modal
expansion coefficient. The present coupled-mode equation
resembles the same matrix form as in Haus’s CMT, as well
as that in our own paper. However, it is worth emphasizing
that both the forward- and backward-propagating modes are
included in the mode expansion set in our formula Eq. (22).
We will refer to Eq. (22) as GCMF to be distinct from
previous coupled-mode equations, typically from Haus and
ours [32,43].

As an example, we give the explicit matrix form of GCMF
for two-mode hybridization, in which the definite relation
between the forward- and backward-propagating modes does
not exist under the perturbation. In this regard, there are
four modes, i.e., two forward-propagating modes (φ1,φ2)
and two backward-propagating modes (ψ1,ψ2), spanning the
complete expansion mode set. Meanwhile, reciprocity guaran-
tees that the mode set associated with the adjoint waveguide
system (L̄a

, B̄a) is the same as that of (L̄, B̄) due to the
fact that L̄a = L̄, and B̄a = −B̄. Therefore, the test function
can be simply chosen from the four modes φ1, φ2, ψ1, ψ2.
The eigenmode of the perturbed waveguide is given by � =
a1φ1 + a2φ2 + a3ψ1 + a4ψ2, in which the coefficients a j and
the propagation constant β can be determined by the following
coupled mode equation:

⎛
⎜⎝

β1 p11 − ik11 β2 p12 − ik12 β3 p13 − ik13 β4 p14 − ik14

β1 p21 − ik21 β2 p22 − ik22 β3 p23 − ik23 β4 p24 − ik24

β1 p31 − ik31 β2 p32 − ik32 β3 p33 − ik33 β4 p34 − ik34

β1 p41 − ik41 β2 p42 − ik42 β3 p43 − ik43 β4 p44 − ik44

⎞
⎟⎠

⎛
⎜⎝

a1

a2

a3

a4

⎞
⎟⎠ = β

⎛
⎜⎝

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

⎞
⎟⎠

⎛
⎜⎝

a1

a2

a3

a4

⎞
⎟⎠. (23)

IV. RESULTS AND DISCUSSIONS

In this section, we apply the generalized coupled mode
equation, i.e., Eq. (22), to study the modal coupling in
anisotropic and bianisotropic waveguide that may contain
gains and losses.

A. Anisotropic waveguide

In the first example, we study the anisotropic waveguide,
the cross section of which is an anisotropic dielectric ellipse
surrounded by a perfect electric conductor with long axis
a = λ0 and short axis b = 0.5λ0 [see waveguide structure
in Fig. 1(a)]. The dielectric tensor of waveguide core is

anisotropic, i.e., ε̄r =
(

1 0 εr

0 1 0
εr 0 0.8

)
. Without loss of general-

ity, the εzz
r is equal to 0.8 to ensure the single-mode operation,

where only the coupling between the forward- and backward-
propagating modes can exist. In Fig. 1(b), the dispersion of
waveguide, i.e., the real and imaginary part of the effective
refractive index (marked by red and black lines, respectively),
is calculated by full-wave finite element modeling using
commercial software package COMSOL MULTIPHYSICS
[57]. In the range εr = −0.7 ∼ −0.45 and 0.45 ∼ 0.7, the
waveguide has real eigenvalues, i.e., Im(neff ) = 0, shown
by the red line, while in the range εr = −0.45 ∼ 0.45 the
effective modal indices become complex, i.e., Im(neff ) �= 0.
The varied parameter εr at two junction points that separate

the three ranges in Fig. 1(b) are identical, which are known
as exceptional points (EPs). The phenomenon in waveguide
systems has been extensively studied in the last few years. In
a large scenario, the related research is coined PT -symmetric
photonics. In contrast to previous waveguide systems, which
usually contain balanced gains and losses, the PT -symmetry
breaking in our waveguide is counterintuitive due to the
fact that the waveguide here only contains anisotropy rather
than balanced gains and losses. The same sign of εxz

r and
εzx

r may be the reason for the imaginary eigenvalue, the
underlying physics behind this phenomenon is beyond the
scope of this paper. In the following, we will apply our
GCMF from perturbation to examine the modal coupling
in this waveguide. In particular, we select a limited region
between two purple dashed lines, i.e., the range εr = −0.5 ∼
−0.4, which contains an EP point, to compare neff predicted
by our approach GCMF against the full-wave simulation.
The selection of the region is not essential, GCMF can
be applied in other regions as long as the perturbation is
valid.

For simplicity, the dielectric tensor is rewritten as ε̄r =(
1 0 −0.5
0 1 0

−0.5 0 0.8

)
+ �ε

(
0 0 1
0 0 0
1 0 0

)
, where �ε is the strength

of the perturbation accounting for the magnitude of anisotropy
in the off-diagonal terms in ε̄r . The modal indices between
forward- and backward-propagating modes are symmetric
with respect to neff = 0 due to the pairing-β argument in
reciprocal waveguides, which also holds in this example.
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φ Re(Ex) φ Im(Ex)

ψ Re(Ex) ψ Im(Ex)

-1 1

φ

ψ

(d)

(c)

PEC

Anisotropic Medium

FIG. 1. (a) The schematic of elliptical waveguide with perfect electric conductor boundary with long axis a = λ0 and short axis b = 0.5λ0,
where λ0 is vacuum wavelength. (b) The real (red line) and imaginary (black line) part of effective modal indices, calculated from full-wave
simulation using finite element method, as a function of εr . The two purple dashed lines in (b) indicate the range of εr , where GCMT and GCMF
are applied. In (c) and (d), the real and imaginary parts of effective modal indices neff as a function of increased magnitude of anisotropy �ε for
forward/backward-propagating modes, calculated from GCMF (red open circles), GCMT [43], (blue open squares), and full-wave simulation
(gray line) are shown. In (e) and (f) [and (g) and (h)], the real/imaginary parts of Ex obtained from full-wave simulation is shown for the
modes φ [and ψ], respectively, at εr = −0.5 marked by solid circle in (b).

As can be seen from Figs. 1(c)–1(d), the dispersion ob-
tained from GCMF (red circles) shows excellent agreement
with the numerical results from the full-wave simulations, but
with a large discrepancy with that obtained from GCMT [43]
(blue squares).

The discrepancy stems from the broken link between
the forward- and backward-propagating modes, i.e., the chi-
ral symmetry, which has been used implicitly to construct
coupled-mode equations in Xu’s work. To display the broken
chiral symmetry, forward- and backward-propagation modes
calculated by full-wave simulation is shown in Figs. 1(e)–
1(h), where Figs. 1(e) and 1(f) plot the real/imaginary Ex part
of forward-propagating mode φ, and Figs. 1(g) and 1(h) plot
corresponding component of backward-propagating mode ψ ,
which are marked by black solid circles at εr = −0.5 in
Fig. 1(b). The opposite imaginary parts of Ex in Figs. 1(f)
and 1(h) clearly show the broken chiral symmetry. The same
conclusion can also be drawn from the simple analysis on the

relation between the field components and the propagation
constant as follows. Due to the presence of the off-diagonal
terms in the dielectric tensor, the transverse components et

of the electric field of the waveguide mode are coupled to
the longitudinal component ez. Notably, the intrinsic spin-
momentum locking of waveguide modes [58] gives rise to β-
dependent relation between transverse components et and lon-
gitudinal component ez. The relation between transversal and
longitudinal electromagnetic components can be written as
ez = (∇t ·ε̄tt

r )et +∇t ·εtz
r ez

iβεzz
r

− εzt
r et

εzz
r

, hz = ∇t ·ht

iβ . Supposing that the in-

plane electric fields et of forward- and backward-propagation
modes are identical, the longitudinal component is reduced
to ez = (∇t ·ε̄tt

r )et

iβεzz
r

when the constraints of chiral symmetry,

i.e., εzt
r = 0 and εtz

r = 0, are satisfied. However, ez of the
forward- and backward-propagating modes are not opposite,
if εzt

r and εtz
r exist. Evidently, the simple analysis as well as the

comparison in Fig. 1(e)-1(h) shows that the definite relation
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between forward- and backward-propagating modes is indeed
lost, which can potentially compromise the validity of the
CMT where only single-mode set is concerned.

B. Bianisotropic waveguide

In the second example, we consider a bianisotropic meta-
material waveguide, which can be realized by aligning electri-
cally small split-ring resonators along a particular direction,
see details in Xu’s paper [49]. In this reciprocal waveguide,
the geometric configuration is identical to a conventional
waveguide with high material index in the core surrounded
by air. In addition, the core layer contains bianisotropy, which
is described by Eq. (2) with εr = 4, μr = 1, and χ̄r,eh =
−(

χ̄r,he

)T =
(

0 i�χ 0
0 0 0
0 0 0

)
, where �χ is a positive number.

The purpose of studying this typical bianisotropic waveg-
uide is to illustrate the relevance of including the backward-
propagating modes in the modal expansion set to obtain the
correct modal hybridization, which will become clear shortly.

In this bianisotropic waveguide, there are two forward-
propagating modes, i.e., the x-polarized mode and y-polarized
mode. Due to the presence of �χ , the two components Dx

and By have changed from original electric displacement D
and magnetic field B, i.e., Dx = ε0(ε11ex + iχ12hy) and By =
μ0(−iχ12ex + μ22hy). So the x-polarized mode dominated by
Ex and Hy are strongly modified due to χ12. In contrast,
the y-polarized mode dominated by Ey and Hx will not be
affected at all, which is not shown here. We apply GCMF to
study the mode hybridization in Fig. 2(a), which shows the
effective modal index as function of �χ . The red symbols rep-
resenting modal indices calculated by GCMF match well with
the gray line obtained by full-wave simulations. Apparently,
the pairing-β argument still applies. And the absolute value
of modal index |neff| decreases for larger �χ , see detailed
explanation in Xu’s work [49].

Though the x-polarized mode and y-polarized mode are
completely decoupled as �χ varies, the forward-propagating
x-polarized mode and the backward-propagating mode are
coupled together. In the implementation of GCMF, the y-
polarized mode has been excluded, thus the complete modal
set in constructing GCMF contains two modes, which are the
forward- and backward-propagating x-polarized modes, i.e.,
φ1, ψ2. Under perturbation, the two hybridized modes can be
given by �1 = a11φ1 + a12ψ2, 	2 = a21φ1 + a22ψ2, where
the cross modal coefficient a12 (a21) refers to the contribution
from backward- (forward-) propagating mode ψ2 (φ1) to the
newly hybridized forward (backward) propagating mode �1

(	2). Figure 2(b) shows the normalized modal coefficients
obtained from GCMF in the modal hybridization between the
forward- and backward-propagating x-polarized mode. The
modal coefficients ai j are complex numbers, here only the
absolute values of ai j are shown. Apparently, the diagonal
terms a11 and a22 are dominating, while the off-diagonal terms
a12 and a21, up to 4%, are not negligible, see Fig. 2(b). The
non-negligible value of a12 indeed confirms our expectation
that the backward-propagating mode will contribute to the
forward-propagating mode in the modal hybridization under
perturbation of �χ , and vice versa.

FIG. 2. Effective modal indices neff as function of the magneto-
electric coupling (�χ ) that accounts for the bianisotropy. The cross
section of the waveguide is elliptical, with long (short) axis a =
0.25λ0 (b = 0.2λ0). In (a), the neff of forward/backward-propagating
x-polarized mode is denoted by black/red solid circles. The gray
solid lines are calculated from full-wave simulations. (b) shows
modal coefficients of the hybridized mode upon a small perturbation,
as �χ varies. The real part of x component of forward/backward
normalized electric field is shown in (c) and (d), and the vector plots
of the real part of in-plane electric field are also shown in (c) and
(d) indicated by the arrows, the length of which is proportional to
the magnitude of the vector field. (e), (f) show the imaginary part of
field, and the other setting is same to (c) and (d). In (c)–(f), the field
profiles are obtained from COMSOL at �χ = 0.4.

Figures 2(c)–2(f) show the broken chiral symmetry, il-
lustrating that GCMT could not apply to this example. In
Figs. 2(c) and 2(e), the real/imaginary part of ex component
and the transversal field vector et for forward-propagating
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FIG. 3. Effective mode indices neff versus perturbation �ε using GCMF, GCMT, and full-wave simulation. The structure is a double
elliptical waveguide with long axis a = 0.3λ0, short axis b = 0.1λ0, and the center distance d = 0.75λ0. The red/blue/gray markers represent
the results from GCMF/GCMT/full wave simulations, respectively. The (a), (b) and (c), (d) represent forward/backward-propagating modes
neff, respectively. (a), (c) and (b), (d) represent real/imaginary parts of neff, respectively. The normalized Re(ex ) at �ε = 0.03 calculated by
GCMF are shown in (e)–(h), where (e), (f) for Re(ex ) of forward-propagating mode 1/2, and (g),(h) for Re(ex ) of backward-propagating mode
1/2.

field, which are obtained from COMSOL, are plotted. And
in Figs. 2(d) and 2(f), the corresponding field of backward-
propagating mode is shown. Similarly, the real parts and the
opposite imaginary parts of ex evidently show the broken chi-
ral symmetry. As investigated in our previous work [44], the
forward- and backward-propagating modes are time-reversal
pairs, which can also be seen from Figs. 2(c)–2(f). Once the
coupled-mode equation is implemented in the Hermitian inner
product, the expansion modal set shall contain only one mode,
which is enough due to the time-reversal symmetry. In the
next section, we will continue to study waveguides containing
gains, losses, as well as bianisotropy, in which both the chiral
symmetry and the time reversal symmetry are broken. In those
generically bianisotropic waveguides, the formal construction
of the coupled-mode equations is to simultaneously include

the forward- and backward-propagating modes in the modal
expansion set.

C. Bianisotropic waveguide with PT -symmetric
gains and losses

The third example is a PT -symmetry optical system with
balanced gains and losses, as well as bianisotropy. The struc-
ture contains two identical single-mode elliptical waveguides
surrounded by the air cladding, see Fig. 3. The material in the
left elliptical guide is εr = 4 + i�ε, χ xx

r,eh = −χ xx
r,he = 1, and

in the right elliptical guide is εr = 4 − i�ε, χ xx
r,eh = −χ xx

r,he =
−1. The magnetoelectric coupling terms χ in the two elliptical
waveguides are opposite to make this system to exhibit PT
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symmetry, i.e., PT L̄(PT )−1 = L̄ (see detail in Xiong’s work
[44]).

The unperturbed system has two supermodes, an odd mode
and an even mode, which are hybridized by two identical
modes from two single-mode waveguides. These two modes
are coupled by the gain/loss perturbation i�ε, which is a
parameter to measure the non-Hermiticity of this system
[59]. As the parameter �ε increases, the system undergoes
a transition from a completely real spectrum into a complex
spectrum, which is known as PT -symmetry breaking [60,61].
In Figs. 3(a) and 3(b), the neffs of two modes obtained from
GCMF are real numbers representing exact PT symmetry
before the EP �ε = 0.024, while neffs of two modes become
the complex conjugate pair after the exceptional point. In
Figs. 3(c) and 3(d), the backward-propagating modes show
exactly the same phenomenon.

As the PT -symmetry breaking occurs, two conjugated
modes (two forward-propagating modes or two backward-
propagating modes) can be obtained from one another un-
der the subsequent P (r → −r) and T (complex conjugate)
operations. In Figs 3(c)–3(f), φ1 and φ2 are two forward-
propagating modes which satisfy relation φ1(r) = φ∗

2(−r).
And in Figs. 3(g)–3(h), the backward-propagating modes ψ1
and ψ2 satisfy the same symmetry, i.e., ψ1(r) = ψ∗

2(−r).
No matter whether the PT symmetry is broken or not,

the chiral relation between the forward- and backward-
propagating modes is always broken due to the existence of
χ̄r,eh and χ̄r,he. In Figs. 3(a)–3(d), the blue square symbols
representing effective mode indices given by GCMT show a
large discrepancy with the gray line calculated by COMSOL.
It is clear that in this case, GCMT based on chiral symmetry
fails to capture the major feature of bianisotropic waveguides.
The red circular symbols in the same figures calculated by
our GCMF match excellently well with the results from
full-wave simulations. In this extreme circumstance, where
both the bianisotropy and gain/loss exist in waveguide, the
traditional coupled-mode theories such as CCMT and GCMT
all fail due to the broken link between forward- and backward-
propagating modes.

V. CONCLUSION

In conclusion, we developed a generalized coupled-mode
formulation to study the mode hybridization in reciprocal
waveguides, in which the anisotropy and the bianisotropy play
an essential role. In our description, the waveguide problem is
reformulated as a generalized eigenvalue problem as the orig-
inal system, accompanied by the its adjoint generalized eigen-
value problem as its dual partner. The two complementary
systems together define the dual mode sets, which are needed
in constructing the GCMF. In reciprocal waveguides, we find
out that the symmetry relations between the dual mode sets are
dictated by the same-β argument and the pairing-β argument,
which turns out to be intimately related with the forward- and
backward-propagating modes. Accordingly, GCMF that can
be reduced to the existing coupled-mode schemes, is realized
by treating the forward- and backward-propagating modes on
the same footing in the modal expansion set. Importantly,
the GCMF developed here handles the modal coupling in
anisotropic and bianisotropic waveguides, where the existing

coupled-mode schemes fail. We illustrate the capability of our
GCMF through three examples, i.e., anisotropic waveguide,
bianisotropic waveguides, and bianisotropic waveguides with
balanced gains and losses. The three examples unambiguously
show the feasibility and the strength of our theory in studying
the mode hybridization in waveguides with the broken link
between the forward- and backward-propagating modes.
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APPENDIX A: THE PROOF OF SAME-β ARGUMENT

We consider the dual waveguide systems described by the
two equations,

L̄�1 = β1B̄�1, (A1)

L̄a
	2 = β2B̄a

	2. (A2)

To find the relation between eigenvalue β1 and β2, the
biorthogonal basis [φi], [ψ j] is used as a basis to represent
the above differential operator. The matrix elements of the
operator in the [φi], [ψ j] basis are easily obtained by applying
the standard Galerkin moment method as follows:

¯̄Li j = ∫∫
ψT

i L̄φ j dxdy, (A3)

¯̄La
i j = ∫∫

φi
T L̄a

ψ j dxdy, (A4)

¯̄Bi j = ∫∫
ψi

T B̄φ j dxdy, (A5)

¯̄Ba
i j = ∫∫

φi
T B̄a

ψ j dxdy, (A6)

where ¯̄L, ¯̄La, ¯̄B, ¯̄Ba are matrix representation. Transposing
adjoint relation Eq. (11), one could derive∫∫

φT
i L̄T

ψ j dxdy =
∫∫

φT
i L̄a

ψ j dxdy. (A7)

Due to that ¯̄Li j is a scalar, one can transpose it without
changing value,

¯̄Li j =
∫∫

φ j
T L̄T

ψi dxdy, (A8)

and subsequently we shall obtain

¯̄L ji =
∫∫

φi
T L̄T

ψ j dxdy. (A9)

Identifying the three equations, i.e., Eqs. (A9), (A2), and (A7),
one obtains

¯̄L ji = ¯̄La
i j, (A10)

which gives rise to the symmetric relation as

¯̄La = ( ¯̄L)T . (A11)
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FIG. 4. The symmetry relations between the forward- and
backward-propagating modes. A represents a point on the reference
plane of the cross section for the forward-propagating mode, and
A′ represents the corresponding point on the reference plane for
the backward-propagating mode. In (a) and (b), A and A′ share the
same coordinates in x-y plane [r(x, y) = r′(x, y)], while in (c), A
and A′ are symmetric about the center [r(x, y) = −r′(x, y)]. E and
H stands for the transverse component of electromagnetic field,
and asterisk ∗ stands for the operation of complex conjugate. The
middle mirror represents the symmetry plane of the forward- and
backward-propagating modes.

As for B̄, one easily derives

¯̄Ba = ( ¯̄B)T = − ¯̄B. (A12)

Reformulating Eqs. (A1) and (A2) into matrix forms, one
immediately obtains

¯̄L�1 = β1
¯̄B�1, (A13)

¯̄La	2 = β2
¯̄Ba	2. (A14)

The eigenvalue equations of Eqs. (A13) and (A14) are | ¯̄L −
β1

¯̄B| = 0 and |( ¯̄L)T + β2
¯̄B| = 0, which are essentially the

same via a transpose operation. Therefore, we derive the
same-β argument, i.e., β1 = β2, which states that the original
and adjoint waveguide systems share the same propagation
constants β.

APPENDIX B: SYMMETRY OF FORWARD AND
BACKWARD PROPAGATING MODES

Time-reversal symmetry, chiral symmetry, and parity sym-
metry are usually used to connect the backward- and forward-
propagating modes which are shown in Fig. 4. Rightward and
leftward directions of vector β represent the forward- and
backward-propagating modes, respectively, and their opposite
directions of β indicate the pairing-β argument which is
always satisfied in reciprocal medium. In Figs. 4(a)–4(b),
the points A and A′ share the same coordinates in the plane
(x-y plane) perpendicular to the propagation direction, i.e.,
rA(x, y) = rA′ (x, y), while in Fig. 4(c) they are centrosymmet-
ric about the central point o of cross section, i.e., rA(x, y) =
−rA′ (x, y).

Chiral symmetry can be used for the cases where the
material tensors of the waveguide have no off-diagonal terms,
see material constraints in Table II. Figure 4(a) shows the
chiral symmetry visually where the transversal electric fields
are similar and the transversal magnetic fields are opposite.
Time-reversal symmetry is satisfied when the material con-
tains no loss or gain, i.e., the material tensor is a real number,
and it is shown in Fig. 4(b), where the electromagnetic fields
satisfy the relation E+ = (E−)∗ and H+ = −(H−)∗. As the
distribution of refractive index of the waveguide satisfies the
condition ε̄r (x, y, z) = ε̄r (−x,−y, z), parity symmetry shown
in Fig. 4(c) is valid, where the electromagnetic fields satisfy
the relation E+(r) = E−(−r), H+(r) = −H−(−r). Detailed
discussions can be found in our previous work [44]. These
symmetry relations can be used in the existing coupled-
mode schemes to simplify the calculation. For example, the
time-reversal/chiral symmetry is an implicit assumption in
CMT/GCMT for obtaining the testing modal functions.
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