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Charge equilibration between quantum Hall edge states can be studied to reveal the geometric structure of
edge channels not only in the integer quantum Hall (IQH) regime but also in the fractional quantum Hall (FQH)
regime, particularly for hole-conjugate states. Here we report on a systematic study of charge equilibration in
both IQH and FQH regimes by using a generalized Hall bar, in which a quantum Hall state is nested in another
quantum Hall state with different Landau filling factors. This provides a feasible way to evaluate equilibration in
various conditions even in the presence of scattering in the bulk region. The validity of the analysis is tested in the
IQH regime by confirming consistency with previous works. In the FQH regime, we find that the equilibration
length for counterpropagating δν = 1 and δν = −1/3 channels along a hole-conjugate state at Landau filling
factor ν = 2/3 is much shorter than that for copropagating δν = 1 and δν = 1/3 channels along a particle state
at ν = 4/3. The difference can be associated with the distinct geometric structures of the edge channels. Our
analysis with generalized Hall-bar devices would be useful in studying edge equilibration and edge structures.
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I. INTRODUCTION

Edge channels formed along a boundary of a quantum
Hall (QH) system dominate the transport characteristics in
integer quantum Hall (IQH) and fractional quantum Hall
(FQH) regimes [1–4]. Carrier scattering between edge chan-
nels may involve charge transfer between the channels. While
the scattering without charge transfer was recently discussed
with energy transfer and Tomonaga-Luttinger physics [5–11],
the scattering with charge transfer is a long-standing cru-
cial problem in justifying the edge channel picture. Charge
transfer is basically prohibited in an ideal system but is
actually allowed in the presence of the impurity potential.
Well-defined quantized Hall conductance is associated with
significantly suppressed scattering between counterpropagat-
ing edge channels along opposite sides of a large QH system
[12,13]. If multiple edge channels are formed along one side
of the QH system, scattering between them equilibrates the
channels, which is referred to as edge equilibration [14,15].
Edge equilibration in the IQH regime is well understood with
the edge potential profile for copropagating edge channels,
where the spatial distance between the channels determines
the degree of equilibration [16].

In contrast, edge equilibration in the FQH regime remains
veiled [17,18]. For example, a FQH state at Landau filling
factor ν = 2/3 is believed to have a complex edge structure,
where the local filling factor changes nonmonotonically from
0 to 1 across an integer edge state with the difference δν = 1
and then back to 2/3 across a fractional edge state with
the difference δν = −1/3, as proposed by MacDonald [19].
This suggests that edge equilibration takes place between
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counterpropagating channels for integer particles (δν = 1)
and fractional holes (δν = −1/3). While such edge channels
were not identified for a long time, possibly due to full equi-
libration with significant scattering [20,21], Grivnin et al. re-
cently reported a feature of edge equilibration between integer
(1) and fractional (−1/3) channels for the 2/3 state in a short
FQH system [22]. The measurement relies on the absence of
scattering in the bulk FQH state, which can be justified by in-
vestigating the temperature dependence of thermally activated
bulk transport in a high-mobility sample. If the scattering in
the bulk, which is referred to as bulk equilibration, exists, it
can disturb the analysis of edge equilibration. Therefore, it
would be better to evaluate both edge and bulk equilibrations
simultaneously to confirm the absence of bulk equilibration
as well as to study the edge equilibration at various conditions
even in the presence of bulk equilibration. Moreover, the FQH
regime provides a diversity of edge structures [19,23–25].
For example, a quantum Hall state at ν = 4/3 is expected
to have copropagating channels for integer particles (δν = 1)
and fractional particles (δν = 1/3). The edge equilibration
can be studied systematically for various cases, which might
clarify the roles of particles and holes in the FQH physics as
well as numerous equilibration phenomena.

In this paper, we study charge equilibration associated with
interchannel charge transfer by employing a generalized Hall
bar, in which Hall-bar-shaped circulating edge channels are
formed between an inner quantum Hall state and an outer
quantum Hall state with different filling factors. The inner
and outer states are defined with a Hall-bar-shaped gate and a
uniform magnetic field. This allows us to address equilibration
problems in various IQH and FQH states, especially for the
enigmatic hole-conjugate states. First, our analysis of both
edge and bulk equilibrations is tested in the IQH regime, and
we find consistency with previous works. Next, we investigate
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edge and bulk equilibrations in the FQH regime. We find
that the length for edge equilibration is significantly shorter
for counterpropagating δν = 1 and δν = −1/3 channels at
ν = 2/3 compared to copropagating δν = 1 and δν = 1/3
channels at ν = 4/3. The scheme can be applied to study
edge equilibration for investigating edge structures of hole-
conjugate FQH states.

II. EQUILIBRATION IN A GENERALIZED HALL BAR

In general, edge equilibration between inner and outer edge
channels, Ci and Co, respectively, can be studied by preparing
a scattering region of length �, as schematically shown in
Fig. 1(a) for a copropagating configuration and Fig. 1(b) for a
counterpropagating one. The two channels must be separated
in other regions, for example, by spatially modulating the
carrier density as shown (yellow region). This allows us to
supply independent voltages (V S

o/i) and measure the outcomes
(V M

o/i). Here we note that bulk equilibration might appear
between the right- and left-going parts of channel Ci, which
influences the evaluation of the edge equilibration. This bulk
equilibration must be taken into account in the estimation
of edge equilibration; otherwise, it underestimates the edge
equilibration. Scattering between Ci and Co in the upper and
lower regions should be negligible compared to the main issue
of edge equilibration with the shortest interchannel distance.
Scattering is absent on the left side of Co if no other channels
are formed. We propose and demonstrate a generalized Hall
bar for evaluating both edge and bulk equilibrations.

A generalized Hall bar is defined as shown in Fig. 1(c),
where an inner quantum Hall state at filling factor νG is
formed inside the outer quantum Hall state at νB by applying
gate voltage Vg on a gate shaped into a standard six-terminal
Hall bar (yellow region). Both νG and νB can be tuned with
perpendicular magnetic field B and Vg. If νG and νB are set at
different QH states, as shown for νG = 2 and νB = 1, the cir-
culating edge channel Ci appears along the boundary between
the inner and outer QH regions. An electrical connection to
Ci can be made with Corbino-type contacts, each of which
is formed by etching the heterostructure and patterning an
Ohmic contact to edge channel Co along the perimeter of the
etched region. With this edge configuration, the conductance
between contacts �1 and �6 of the generalized Hall bar is
sensitive to the edge equilibration between channels Ci and
Co in the IQH regime. The longitudinal voltage Vxx between
contacts �2 and �3 is sensitive to the bulk equilibration for
the inner QH state with channel Ci. Therefore, both edge and
bulk equilibrations can be studied with this device.

Previously, edge equilibration was extensively studied in
a single-equilibration region by using a single cross gate
[26–31], double series gates [32–37], and nonideal electric
contacts [38], all of which rely on the absence of scattering
in the bulk region. This may be sufficient for studying IQH
states but may not be suitable for FQH states with finite bulk
scattering.

We have fabricated such generalized Hall-bar devices
on a standard GaAs/AlGaAs heterostructure with a two-
dimensional electron gas (2DEG) located 110 nm below the
surface with an electron density of 1.7 × 1011 cm−2 and low-
temperature mobility of 460 m2/V s. The generalized Hall bar
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FIG. 1. Edge equilibration between (a) copropagating, and
(b) counterpropagating inner and outer channels, Ci and Co, in an
interaction region of length �. Bulk equilibration between the right-
and left-going parts of Ci may coexist with edge equilibration.
(c) Schematic sketch of a generalized Hall bar, which is composed of
six quasi-Corbino-type Ohmic contacts, �1–�6, with etched trenches
and a Hall-bar-shaped metal gate. The drawn edge channels are
formed at νG (= 2) > νB (= 1), where closed edge channel(s) Ci

formed underneath the gate is coupled to the outer channel(s) Co

by edge equilibration. The measurement setup is also drawn. (d) An
optical image for the central part of the device. Relevant length scales
for the metal gate are labeled.

is designed with widths � = 10, 50, and 100 μm and total
length Lt = 510 μm, as shown in an optical micrograph in
Fig. 1(d) for an � = 100 μm device. The effective length
for the bulk equilibration is Leff = L1 + L2 + L3 = Lt − 2�.
All Ohmic contacts have a resistance of around 200 �. We
employed a constant-voltage drive, where a low-frequency
(37 Hz) ac voltage of amplitude VAC = 30 μV was applied
between the source contact �1 and the drain contact �6,
as shown in Fig. 1(c). The two-terminal conductance G =
IAC/VAC as well as the longitudinal and transverse voltages,
Vxx and Vxy, respectively, were measured using a standard
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FIG. 2. (a) Color plot of Vxx measured as a function of gate voltage Vg and magnetic field B for the � = 100 μm device. Dashed lines
indicate the filling factor νB for the ungated region and νG for the gated region. The data around νB = νG showing too small G < 0.1e2/h to
measure Vxx are grayed out. Representative edge channel structures at several conditions marked by open and solid symbols are sketched in
(b)–(g). (b) Edge structure at νG = 1 and νB = 2, where the transport is dominated by the spin-down edge channel from the spin-resolved
second-lowest Landau level. (c) Edge structure at νG = 2 and νB = 1, where a closed channel formed underneath the gate coupled to the outer
channel through edge equilibration, marked by short bars. (d) Counterpropagating δν = 1 and δν = −1/3 and (e) copropagating δν = 1 and
δν = 1/3 edge channels are formed for equilibration at νG = 2/3 and νG = 4/3, respectively, in νB = 1. (f) Edge structure at νG = 1/3 and
νB = 2/3, where complicated edge equilibration between two δν = −1/3 and one δν = 1 channels is involved. (g) Edge structure at νG = 1
and νB = 2/3, where a sole δν = −1/3 hole channel from the 2/3 state contributes to the transport.

lock-in technique. The measurements were taken in a dilution
refrigerator at a base temperature of 20 mK and in a magnetic
field up to 12 T.

Figure 2(a) shows a color plot of Vxx measured as a
function of Vg and B for the � = 100 μm device. Vanishing
Vxx (white region) seen in the high field suggests negligible
bulk equilibration in both the inner and outer QH states. The
observed pattern in Vxx can be understood with variations of
νB shown by the horizontal dashed lines and νG shown by
inclined dashed lines. In some regions near Vg = 0 V, where
νB = νG, G was too small (< 0.1e2/h), and the color plot is
grayed out. In these regions, a QH region with uniform filling
forms over the entire 2DEG, so that there is no edge channel
connecting different Ohmic contacts. At large negative gate
voltage Vg < −0.21 V where the gated region is completely
depleted with νG = 0, the system reduces to a conventional
anti-Hall bar with no electrons inside [39–41]. For Vg > 0 V,
on the other hand, Vg of up to 0.4 V can be applied without
a measurable gate leakage, where νG reaches more than two
times νB.

Representative channel configurations based on the hi-
erarchical edge structure are illustrated in Figs. 2(b)–2(g).
The simplest case for IQH states is shown in Fig. 2(b) for

νG = 1 and νB = 2, where the transport is dominated by the
edge channel for spin-down electrons from the spin-resolved
second-lowest Landau level (LL). Vanishing Vxx at this con-
dition, marked by the open square in Fig. 2(a), and quantized
Hall conductance −e2/h (not shown) ensure no bulk equili-
bration for νG = 1 and νB = 2. Another configuration shown
in Fig. 2(c) for νG = 2 and νB = 1 involves a closed loop of
the inner edge channel from the second-lowest LL in the shape
of a Hall bar, which is attached with edge equilibration to the
outer edge channel that is connected to each Ohmic contact
from the lowest LL, as seen in the data marked by the solid
square in Fig. 2(a). Similar configurations can be seen at any
integer νG greater than integer νB, where we can investigate
both edge and bulk equilibrations for IQH regimes, as will be
discussed in Sec. IV A, with the model described in Sec. III.

Edge equilibration for a FQH state can be studied by
defining the FQH state with νG inside the host IQH state at νB.
Figure 2(d) shows the configuration for studying edge equili-
bration between counterpropagating δν = 1 and δν = −1/3
channels at νG = 2/3 and νB = 1. This can be compared
to the edge equilibration between copropagating δν = 1 and
δν = 1/3 channels at νG = 4/3 and νB = 1, as illustrated in
Fig. 2(e). Conveniently, the comparison can be made at the
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same B as shown by the conditions marked by the open and
solid circles in Fig. 2(a). We study such equilibration in Sec.
IV B.

Edge equilibration may appear in other regions. Figure 2(g)
shows the configuration at νG = 1 and νB = 2/3, where coun-
terpropagating channels are equilibrated around the Ohmic
contact. Note that this is totally different from the situation
in Fig. 2(b) where the two copropagating channels are already
equilibrated as they come out from the same Ohmic contact.
Nevertheless, measurement in Fig. 2(g) provides transport
through a hole-conjugate edge channel. We observed van-
ishing Vxx at this condition, marked by the solid triangle in
Fig. 2(a), and clear quantized Hall conductance of (1/3)e2/h
(not shown), which indicates full edge equilibration and negli-
gible bulk equilibration. This clearly demonstrates the reality
of an isolated fractional hole edge channel of the νB = 2/3
state nested in νG = 1. This isolated channel is discussed in
Sec. IV C.

More complicated edge equilibration can be studied with
νG = 1/3 and νB = 2/3 at the open triangle in Fig. 2(a),
which is shown in Fig. 2(f). There should be three channels,
two fractional hole channels and an integer channel, at the
boundary of the QH states. This is also discussed in Sec. IV C.

III. MODELING EDGE AND BULK EQUILIBRATION

Before moving to the data analysis, we present a model
for edge and bulk equilibrations in the generalized Hall bar.
We consider the fully incoherent regime by neglecting in-
terference effects [42–44] and provide a way to evaluate the
degree of equilibration from the measurement of G, Vxx, and
Vxy. Figure 3(a) shows a typical edge channel configuration,
as we see in Figs. 2(c), 2(d) and 2(e). Here the outer and
inner edge channels have Hall conductance noe2/h and nie2/h,
respectively, where no and ni can either be an integer (1,
2, 3, . . . ), a fraction (1/3), or a negative fraction (−1/3)
for a hole-conjugate state. The following argument can be
applied to both co- and counterpropagating channels with this
definition and can be adapted to other configurations seen in
Figs. 2(b), 2(f), and 2(g).

Scattering between two parallel channels with conductance
n1e2/h and n2e2/h can be modeled with interchannel scat-
tering conductance of ge2/h per unit length, as shown in
Fig. 3(b). The voltages V (x)

1 and V (x)
2 of the two channels

change along the x axis with

d

dx

(
V1

V2

)
=

(−g/n1 g/n1

g/n2 −g/n2

)(
V1

V2

)
(1)

under the current conservation. This provides a relation be-
tween voltages V (0/x)

1/2 of channels 1 and 2 at two locations
separated by x.

For n1 + n2 �= 0 (n1 and/or n2 can be negative), we ob-
tained the relation(

V (x)
1

V (x)
2

)
=

(
1 − η2ξ η2ξ

η1ξ 1 − η1ξ

)(
V (0)

1
V (0)

2

)
, (2)

where we defined η1 = n1/(n1 + n2), η2 = n2/(n1 + n2), and
ξ = 1 − e−λx with λ = g/n1 + g/n2. This describes the volt-
age change in the equilibration. As λ as well as ξ can be
positive or negative depending on the signs of n1 and n2, it

ν

ν

FIG. 3. A model for edge and bulk equilibration. (a) Edge chan-
nels in a generalized Hall bar, where edge and bulk equilibrations
are marked by dashed lines. The edge and bulk equilibrations are
characterized by P and P′, respectively. (b) Parallel channels with
conductance n1e2/h and n2e2/h along the x axis. Uniform scattering
conductivity ge2/h per unit length can be used to relate voltages
V (0/x)

1/2 along the channel. The calculated color plots of (c) conduc-
tance G(P, P′) normalized by e2/3h between the source (S) and drain
(D) contacts and (d) voltage Vxx normalized by source voltage VAC

are shown as a function of the edge equilibration rate P and the bulk
equilibration rate P′ for no = 1 and ni = −1/3.

is convenient to introduce the equilibration rate

P = 1 − e−|λ|x, (3)

which changes from 0 for no equilibration (x = 0) to 1 for
full equilibration (x = ∞). These relations are used to char-
acterize the edge equilibration in Fig. 3(a) with no = n1 and
ni = n2.

The solution for n1 + n2 = 0 can be written as(
V (x)

1
V (x)

2

)
=

1

1 − ξ ′

(
1 − 2ξ ′ ξ ′

−ξ ′ 1

)(
V (0)

1
V (0)

2

)
, (4)

with ξ ′ = g/(g + n1/x), where n1 (= −n2) can be positive or
negative. We use this relation for characterizing bulk equili-
bration between counterpropagating ni (= n1) and −ni (= n2)
channels in Fig. 3(a) by introducing the bulk equilibration rate

P′ = g/(g + |ni|/x), (5)

which also changes from 0 for no bulk equilibration (x = 0)
to 1 for full bulk equilibration (x = ∞).

Equations (2) and (4) are used to relate the voltages at
specific points, V1, V ′

1 , V2, etc., in Fig. 3(a). The edge equi-
libration is assumed to be identical for all six terminals. For
the bulk equilibration, scattering in the arms of Ci for the
voltage probes is effectively absent, as long as no current flows
through the voltage probes. Then, the bulk equilibration takes
place in the main channel of effective length Leff = Lt − 2�.
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With equilibration rates P and P′, we obtained two-terminal
conductance G, longitudinal voltage Vxx, and transverse volt-
age Vxy as

G(P, P′) = e2

h

noniζ (1 − ζ ′)
no + ni + (1 − 2ζ ′)[no(1 − ζ ) + ni]

, (6a)

Vxx(P, P′) = noζ ζ ′VAC

no + ni + (1 − 2ζ ′)[no(1 − ζ ) + ni]

L2

Leff
, (6b)

Vxy(P, P′) = noζ (1 − ζ ′)VAC

no + ni + (1 − 2ζ ′)[no(1 − ζ ) + ni]
, (6c)

where ζ is a function of P with ζ = P for λ > 0 and ζ =
−P/(1 − P) for λ < 0 and ζ ′ is a function of P′ with ζ ′ = P′
for ni > 0 and ζ ′ = −P′/(1 − 2P′) for ni < 0.

We used these equations to evaluate P and P′ from the mea-
sured values. While G and Vxx are used in the following evalu-
ation, consistency with Vxy is also confirmed. Figures 3(c) and
3(d) show how G(P, P′) and Vxx(P, P′), respectively, change
with P and P′ for no = 1 and ni = −1/3, which is the case
for νG = 2/3 and νB = 1 in Fig. 2(d). In the evaluation of
edge equilibration for this case, a large sample with P = 1 and
P′ = 0 exhibits maximum conductance Gmax = (1/3)(e2/h).
For a small sample with a short �, the conductance decreases
with either the reduction of edge equilibration (P < 1) or
enhancement of bulk equilibration (P′ > 0). Therefore, one
has to evaluate both P and P′. This is particularly important
in the evaluation of a short equilibration length in the hole-
conjugate state.

IV. ANALYSIS AND DISCUSSION

A. Integer QH regime

We start from equilibration in the IQH regime with νB = 4
at B = 1.7 T to test the scheme. Figures 4(a)–4(c) show the
gate voltage Vg dependence of G, Vxx, and Vxy for the � =
100 μm device. The corresponding νG is shown in the top
scale. While more than two edge channels are involved in
the system, we use the two-channel model of Eqs. (6a)–(6c)
by regarding the system as being composed of two bundles
of edge channels acting as two channels with conductance
noe2/h and nie2/h, with no, ni > 1.

For Vg < 0 V with νG < νB, quantized transport is clearly
seen as a series of conductance plateaus in Fig. 4(a), vanishing
Vxx in Fig. 4(b), and maximum |Vxy| (� VAC) in Fig. 4(c) under
our constant-voltage (VAC) drive. Negative Vxy is associated
with the lower electron density underneath the gate region
compared to the outside bulk region. Here a bundle of ni

(= νB − νG) channels from energetically higher lying Landau
levels contributes the transport, while the other bundle of
no (= νG) channels from lower-lying Landau levels is fully
reflected to the Ohmic contact, as seen in Fig. 2(b). As the two
bundles coming out from the same Ohmic contact are always
equilibrated, we can evaluate only the bulk equilibration rate
P′, which is plotted in Fig. 4(e).

Similar quantized transport is also seen at Vg > 0 V with
νG > νB, where plateaus in G, vanishing Vxx, and positive
plateaus in Vxy are resolved. In this situation, the edge and bulk
equilibrations can be evaluated for the two bundles of no (�
νB) and ni (� νG − νB) channels, as seen in Fig. 2(c). Finite

ν 
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ν 

ν 
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ν 
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ν ν

μ
μ

μ

ν

ν

ν ν

μ
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FIG. 4. Gate voltage Vg dependence of (a) G, (b) Vxx, (c) Vxy,
and (d) P and (e) P′ at νB = 4 for the � = 100 μm device. The
corresponding filling factor νG is shown in the top scale. Reference
levels with P = 1 and P′ = 0 are marked as horizontal bars. (f) The
� dependence of P and P′ at νG = 5 and νB = 4. The solid red line
in P shows a fit to Eq. (3) for extracting the equilibration length �e.
The blue dashed line in P′ is a guided for the eye. (g) Vg dependence
of �e. (h) Landau levels gained by the edge potential for νG = 5 and
νB = 4 in the left panel and νG = 6 and νB = 4 in the right panel.
The distance a between the outer bundle with no (= νB) and the inner
bundle with ni (= νG − νB) is shorter for larger νG.

G indicates the presence of edge equilibration, and nonzero
Vxx shows the presence of bulk equilibration. As a reference,
maximum G and Vxy values for P = 1 and P′ = 0 are shown
by horizontal bars in Figs. 4(a) and 4(c). The deviations from
these values should be discussed with P and P′, which are
obtained by using Eqs. (6a)–(6c), as shown in Figs. 4(d) and
4(e), respectively.

The bulk equilibration P′ is minimized at integer νG with
a well-defined IQH state in the gated region and increases
significantly at noninteger νG with a conductive bulk region.
The minimum P′ values at νG = 3 and 5 are slightly higher
than those at νG � 2 and νG � 6, which might be attributed
to the small Zeeman gap of νG = 3 and 5 IQH states.

The edge equilibration in the IQH regime can be under-
stood with the edge potential profile, as shown in Fig. 4(h)
for Vg > 0 V. Spin-conserving scattering between the ν = 5
channel and the ν = 3 channel should dominate the edge
equilibration. Since the scattering rate should increase with
decreasing spatial distance a between the two channels, larger
P is expected with smaller a. In our situation, this distance
decreases with increasing Vg as the edge potential becomes
steeper with increasing gate-induced charge. This explains the
observed increase in P with Vg in Fig. 4(d).
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Similar results were obtained with other devices with � =
50 and 10 μm. Figure 4(f) shows the � dependence of P and
P′ for νG = 5 and νB = 4. While the data points are scattered,
possibly with sample-specific characteristics, the edge equi-
libration length �e defined as 1/|λ| is estimated to be about
100 μm by fitting P to Eq. (3) [45]. This �e estimated from
several devices decreases with increasing νG, as shown in Fig.
4(g). It should be noted that P′ significantly increases with
decreasing � in Fig. 4(f). If the bulk equilibration were not
considered in the analysis, the measured G would have been
analyzed with P′ = 0 in Eqs. (6a)–(6c). This overestimates
�e to ∼140 μm, 40% higher than the data in Fig. 4(f). This
clearly demonstrates the importance of evaluating both P
and P′, which could be more crucial for the following FQH
regimes.

B. Fractional QH regime

Next, we study equilibration at νB = 1 at B = 6.5 T, where
we can study the edge equilibration between counterpropagat-
ing δν = 1 and δν = −1/3 channels for the hole-conjugate
fractional state νG = 2/3 and between copropagating δν = 1
and δν = 1/3 channels for the particle fractional state νG =
4/3, as seen in the edge channel structures in Figs. 2(d) and
2(e), respectively. A more complicated channel structure can
appear when the edge potential is smooth [25,46]. Since we
have not tested the actual structure in our device, the original
and simplest model with δν = 1 and δν = −1/3 channels is
applied in the following analysis. Figures 5(a)–5(c) show the
gate voltage Vg dependence of G, Vxx, and Vxy for the � = 100
μm device. The presence of fractional states is visible with
conductance steps in Fig. 5(a) and dips in Vxx of Fig. 5(b)
and also in Vxy of Fig. 5(c). Both edge and bulk equilibrations
are obvious as the data in G and Vxy greatly deviate from the
reference level for P = 1 and P′ = 0, shown by horizontal
bars. P and P′ evaluated with Eqs. (6a)–(6c) are plotted in
Figs. 5(d) and 5(e), respectively. We find a notable difference
in equilibration between νG = 2/3 and νG = 4/3. While the
small G at νG = 4/3 is mainly associated with a small edge
equilibration rate P ∼ 0.3 (P′ ∼ 0), the small G at νG = 2/3 is
mainly associated with a large bulk equilibration rate P′ ∼ 0.5
(P ∼ 1).

The bulk equilibration can be understood with excitation
to higher-lying states. In the composite fermion (CF) picture,
the ν = 2/3 state corresponds to a filling factor νCF = −2
for composite fermions, and the ν = 4/3 state is its particle-
hole counterpart corresponding to the same filling factor.
While this particle-hole symmetry might imply that these two
states have the same activation energy, the symmetry can be
practically broken in the presence of Landau level mixing, as
reported in experiments and theories [47–51]. In our measure-
ment, the electron density is different for the νG = 2/3 and
4/3 states, and this may cause different disorder effects. Such
asymmetry could be the reason for the difference of small
P′ for νG = 4/3 and large P′ for νG = 2/3 in our device,
as shown in Fig. 5(e). Systematic study together with heat
transport through the bulk [7] may be useful in understanding
the asymmetry.

In contrast, the edge equilibration can be understood with
the spatial distribution of the edge channels. For νG = 4/3,

ν

δν 

δν 

δν 

δν 

ν

μ
μ

μ

ν

ν

ν

μ

ν

ν

ν

μ

FIG. 5. Gate voltage Vg dependence of (a) G, (b) Vxx, (c) Vxy,
and (d) P and (e) P′ at νB = 1 for the � = 100 μm device. The
corresponding filling factor νG is shown in the top scale. Reference
levels with P = 1 and P′ = 0 are marked as horizontal bars for
comparison with the experiment data. (f) The � dependence of P and
P′ at νG = 2/3 and νG = 4/3. The solid red lines in P are the fit to
Eq. (2) for extracting the equilibration length �e. The blue dashed
lines in P′ are a guided for the eye. (g) Vg dependence of �e. (h)
The band structure for νG = 2/3 (left) and νG = 4/3 (right) formed
in the same magnetic field. At νG = 2/3, the counterpropagating
channels for edge equilibration originate from the up-bending δν = 1
band and the down-bending δν = −1/3 band with a band gap of
E2/3. However, at νG = 4/3, the copropagating channels for edge
equilibration originate from both the up-bending spin-up band with
δν = 1 and the spin-down band with δν = 1/3. The two bands are
separated by Zeeman energy EZ . The interchannel distance is labeled
as a′ for νG = 2/3 and a for νG = 4/3.

copropagating integer (1) and fractional (1/3) channels are
separated by a, as shown in the right panel of Fig. 5(h),
which is determined by the electrostatic edge potential and
the energy gap between the integer and fractional levels
[52], analogous to the IQH regime [31]. However, the edge
structure proposed by MacDonald [19] for νG = 2/3 is com-
posed of an up-bending δν = 1 band and a down-bending
δν = −1/3 band, as shown in the left panel of Fig. 5(h).
The interchannel distance a′ is determined by the interaction
[17,53] and may be affected by the edge potential and the
energy gap [54]. Therefore, a′ can be very short which is
comparable to the magnetic length [46,55] and can be shorter
than a for νG = 4/3. This explains the distinct difference in
the edge equilibration rate P, close to 1 at νG = 2/3 but ∼0.3
at νG = 4/3 in Fig. 5(d). As shown in the � dependence of P
in Fig. 5(f), the edge equilibration length �e can be determined
by fitting P to Eq. (3). As summarized in Fig. 5(g), �e � 8 μm
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μ
μ

ν

ν

μ
μ

FIG. 6. Gate voltage Vg dependence of (a) G, (b) Vxx, and (c) Vxy

at νB = 2/3 for the � = 100 and 10 μm devices. The corresponding
filling factor νG is shown in the top scale. Reference levels with P =
1 and P′ = 0 are marked as horizontal bars for comparison with the
experiment data.

at νG = 2/3 is much shorter than �e � 200 μm at νG = 4/3.
The obtained �e � 8 μm for the 2/3 state does not contradict
the previous report in Ref. [22].

C. Isolated fractional hole channel

Finally, we discuss fractional edge channel transport for the
two configurations, (i) νG = 1/3 and νB = 2/3 and (ii) νG = 1
and νB = 2/3. The edge channel structures are sketched in
Figs. 2(f) and 2(g). For both cases, the counterpropagating
δν = 1 and −1/3 channels emanating from the contact must
be equilibrated before reaching the Hall-bar region, as the
counterpropagating length (280 μm) is much longer than the
equilibration length (�e � 8 μm). Figures 6(a)–6(c) show the
Vg dependence of G, Vxx, and Vxy for the � = 100 and 10 μm
devices.

For νG = 1/3 at Vg < 0 V, complicated equilibration takes
place between an inner closed δν = −1/3 channel and the
outer two counterpropagating channels (δν = 1 and −1/3)
along the gate boundary. Since the outer δν = −1/3 and δν =
1 channels come from the same Ohmic contact, we consider
a bundle of these two channels with effective δν = 2/3, edge
equilibration rate P between this bundle and the inner δν =
−1/3 and bulk equilibration rate P′ for the νG = 1/3 state.
This modified model suggests P � 1 for all devices. Deviation
in G and Vxy from the ideal limit at P′ = 0 (horizontal bars)
can be seen for � = 10 μm, together with finite Vxx, suggest-
ing the presence of bulk equilibration for a small �.

A similar analysis is made for νG = 1 at Vg > 0 V, where
G and Vxy are consistent with no bulk equilibration (P′ =
0), as shown by the horizontal bars. This is manifested by

vanishing Vxx even in the smallest sample with � = 10 μm.
This indicates that a clean isolated δν = −1/3 channel with-
out bulk equilibration is formed. Here the bulk equilibration
is significantly suppressed as the high magnetic field (B =
10.5 T) provides a large νG = 1 gap [56] in the gated region
and fractional νB = 2/3 gap in the bulk [see Fig. 2(g)].

This clean fractional δν = −1/3 edge channel between
νG = 1 and νB = 2/3 may permit various experiments. For
example, when it is weakly coupled to an integer edge channel
of δν = 1, one can study the edge equilibration as well as
charge and neutral modes with various distances. This could
be useful in further investigation of hole-conjugate fractional
states.

V. CONCLUSION

In summary, we have studied the charge equilibration in
both IQH and FQH edge channels using a generalized Hall
bar, in which the multiterminal geometry allows us to clearly
separate the edge and bulk equilibrations in electron transport,
making access to the equilibration problem, especially for
hole-conjugate FQH states, possible. Based on such separa-
tion, we first analyzed the edge and bulk equilibrations in
IQH regimes. The observed equilibration behaviors can be
well explained by the changes in the interchannel separation.
For the FQH regime, the equilibration between counterprop-
agating δν = 1 and δν = −1/3 edge channels for the hole-
conjugate 2/3 state and between copropagating δν = 1 and
δν = 1/3 edge channels for the particle-like 4/3 state were
studied. The characteristic equilibration length, �e � 8 μm,
was quantitatively determined for this hole-conjugate 2/3
state, which was found to be much smaller than �e � 200 μm
for the particle 4/3 state. Furthermore, clean transport of a
δν = −1/3 hole channel in the 2/3 state without showing
bulk equilibration was identified at filling factors (νG = 1,
νB = 2/3) with a positive gate bias.

As the edge equilibration in counterpropagating edge
channels in hole-conjugate FQH states is associated with
a completely different band structure compared to the co-
propagating case, which has rarely been explored, therefore,
based on the generalized Hall-bar scheme, it will be inter-
esting to see whether such a unique band structure can be
manifested in the equilibration behaviors by tuning the inter-
channel distance in magnetic fields and gate voltages, which
would open a new avenue for studying and understanding
those intriguing edge structures for the hole-conjugate FQH
states.
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