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Optimized correlations inspired by perturbation theory
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We study the accuracy of analytical wave-function-based many-body methods derived by energy minimization
of a Jastrow-Feenberg ansatz for electrons (the “Fermi hypernetted chain/Euler Lagrange” approach). Approxi-
mations to avoid the complexity of the fermion problem are chosen to parallel successful boson theories and to
be computationally efficient. For the three-dimensional homogeneous electron gas, we calculate the correlation
energy, the pair distribution function, and the static structure function in comparison with simulation results. We
also present a variant of theory which is interpreted as an approximate, self-consistent sum of ladder and ring
diagrams of perturbation theory. The theory performs particularly well in the highly dilute density regime.
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I. INTRODUCTION

The quantum many-body (MB) problem, a numerically
hard problem, cannot be solved straightforwardly. A potent
approximation strategy requires thoroughly understanding,
for each particular system, how the relevant physics man-
ifests itself in the existing competing theories. Here, we
combine experience from three prospering fields, quantum
Monte Carlo (MC), perturbation theory (PT), and variational
Jastrow-Feenberg (JF) approaches [1]. We aim at a better
comprehension of where, depending on the system param-
eters, specific approximations perform better. Our study on
fermions with an only distance-dependent interaction v(r) can
be suitably generalized to dipoles [2], mixtures [3,4], and
lattice models [5]. The homogeneous electron gas (HEG) is
of particular interest because (i) it is extremely relevant for
electronic structure methods, (ii) it is well studied with various
methods in its entire density range, and (iii) its random-phase
approximation (RPA) is well defined.

Monte Carlo methods yield benchmark results for the
ground-state energy [6], the pair distribution function [7,8],
and the static density-density response function [9]. Extending
the applicability to excited states is an active field with utmost
numerical demands [10,11].

Based on Feynman diagrams, PT is a proven systematic
treatment of MB systems, widely used for calculating both
excited-state [12,13] and ground-state properties [14–16].
Practical implementations allow the retaining of to retain
specific, appropriately chosen classes of diagrams. A prime
example is the importance of self-energy graphs for quasi-
particles, successfully handled in “GW summations” [13,17].
Another class arises from the Bethe-Salpeter equation (BSE),
relevant for correct results for exciton binding observed by
optical absorption [12,18,19].

Wave-function-based methods include physical intuition
right from the start, via either a parametrized or a general
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functional form. The Jastrow-Slater wave function, ψ = Fφ0,
works excellently; for homogeneous cases φ0 is a plane
wave Slater determinant, and F = ∏

i< j exp [ 1
2 u2(|ri−r j |)]

accounts for correlations.1 The approach attains its full power
when u2(r) is optimally determined via functional variation.
Inspired by cluster expansions developed for classical liquids
[20], the pair distribution function g(r) is here explored in
the hypernetted chain formalism, abbreviated FHNC in its
fermion version [21–23].

The full diagrammatic formalism exactly maps u2 to all
observables, as illustrated in Fig. 1 (left). Graphs are classified
by their topological structure as nodal, non-nodal, or elemen-
tary diagrams. The latter are arbitrarily difficult (similar to PT,
where vertex corrections are complicated). Energy minimiza-
tion determines the best g via a corresponding Euler-Lagrange
(EL) equation (Fig. 1, right).2 An exact result obtained this
way would essentially equal that of variational MC (VMC)
with a parametrized u2 that can reach the functional result.

The theory, like any, relies on approximations. Although
not reaching quite the MC accuracy, FHNC is numerically, by
orders of magnitude, less demanding.3 It thus allows a highly
efficient evaluation of observables in a multivariable space,
depending, e.g., on position r, density ρ, spin σ , and valley
index [24]. Most important, the FHNC can be systematically
improved by topping it with PT, termed the “correlated basis
function” (CBF) approach [25]. For the ground state, this is
comparable to stepping from VMC to released-node diffusion
MC. The CBF route is also the prime tool to extend the
theory to excited states [26–31]. Again, in terms of accuracy

1The bosonic JF form is exact when correlations un are included to
all orders.

2In the literature, (F)HNC may denote both the exact cluster
expansion with all elementary diagrams and (F)HNC/0, where they
are omitted. Functional optimization is emphasized by “EL,” e.g.,
(F)HNC/0-EL.

3For homogeneous systems FHNC/0-EL scales as n ln n for n
sampling points of g(r).

2469-9950/2019/99(19)/195156(10) 195156-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.195156&domain=pdf&date_stamp=2019-05-31
https://doi.org/10.1103/PhysRevB.99.195156


PANHOLZER, HOBBIGER, AND BÖHM PHYSICAL REVIEW B 99, 195156 (2019)

FHNC/∞ Euler-Lagrange
δE = 0

e
1
2 u φ0

g

E

δE[u]
δu = 0

δE[g]
δg = 0

g[u]

E[u]
E[g]

FIG. 1. Left: Graphical expansions provide an exact map from
the JF correlations u2 to the observables g[u2] (pair distribution
function) and E [u2] (energy). Right: The optimal u2 minimizes E ,
yielding the EL equation. This can equivalently be interpreted as a
pair density functional theory.

versus computation time, obtaining dynamic properties via
FHNC+CBF is much more efficient than obtaining them by
MC [11,30].

At first sight, the PT and optimized JF approaches appear
to be very different. Their link was demonstrated for bosons
by Jackson et al. [32,33], who showed which approximation
of the sum of parquet diagrams leads to the HNC equations.
We here extend their studies to fermions. In particular, we de-
rive an approximation to the particle-particle ladder, inherent
in the variational Jastrow-Slater ansatz and identical to the
boson ladder equation corrected by a “potential” constructed
from the density matrix of the Slater-determinant. Accounting
for self-consistently summed ladder and ring diagrams, it is
excellent for highly dilute HEGs (rs >5; the density ρ is
3/4π (a0rs)3, and a0 is the effective Bohr radius).

We further demonstrate that this and two other FHNC
variants [21,23] perform very well even in their most basic,
bosonlike versions. All are easier to implement than the
more often employed approach of Singwi, Tosi, Land, and
Sjölander (STLS) [34] and give better results. Additionally,
they yield effective interactions for PT, providing physical
insight through their connection to diagrammatic (sub)classes.

II. THEORY

A. Exact EL equations

The functional variation (HNC-EL) in the case of bosons
gives a Schrödinger-like equation for

√
g(r), with effective

potentials from sums of diagrams. Pursuing the same route
for fermions makes the theory much more cumbersome: Ex-
change effects cause countless additional diagrams.

For bosons, if elementary diagrams are neglected (HNC/0)
as their consistent treatment via two-body kernels is topo-
logically unfeasible, two self-consistent equations arise, one
being algebraic in direct space and the other one in reciprocal
space. In contrast, the corresponding fermion (FHNC/0) re-
sult consists of eight plus eight coupled equations in real and
reciprocal space.

This intricacy makes it difficult to identify FHNC expres-
sions with corresponding PT diagrams. A promising route
due to Krotscheck [21], ensuring the correct long-wavelength

limit, is the simplified FHNC (sFHNC). Its momentum space
EL equation, (A2), is understood as the sum of ring diagrams
(see Appendixes A and C).

Whereas that approach is rooted in approximating the static
structure factor S(q) for small wave vectors q, we here derive
a real-space formulation, arriving at a bosonlike parquet sum
[33], where the ladders and rings are supplemented by a
correction for Fermi statistics.

The Slater exchange function �(r)≡ l (rkF), i.e., the density
matrix of a system with Fermi momentum kF and degeneracy
factor ν, determines the noninteracting pair distribution func-
tion gF(r) = 1 − �(r)/ν, accounting for the Pauli exclusion
hole. We start with the exact FHNC expression for the pair
distribution function [35],

g(r) = [1 + 	dd(r)] [gF(r) + gee(r)], (1a)

gee = 2� (Ncc + Ecc) − ν(Ncc + Ecc)
2 + Nee + Eee

+ 2(Nde + Ede) + (Nde + Ede)
2. (1b)

Here, we introduced the FHNC classification [36], where
the capital letters Ni, Xi, and Ei denote nodal, non-nodal,
and elementary diagrams and 	i ≡ Ni+Xi. The subscript i ∈
{dd, de, ee, cc} specifies the exchange structure. Equation (1)
follows from the diagrammatic rules, which also give the rela-
tions between the various ingredients. An important example
arises from the dd product graphs,

	dd(r) = exp [u2(r) + Ndd(r) + Edd(r)] − 1. (2)

If all elementary graphs Ei are omitted, this route yields the
first set of eight coupled FHNC/0 equations [22]. They can
be solved self-consistently if u2 in (2) is known.

To find the optimal u2 by energy minimization, the JF
ground state energy per particle e is obtained as [21]

e = t0 + ρ

2

∫
d3r g(r)VJF(r) + tJF, (3a)

VJF(r) = v(r) − h̄2

4m
∇2u2(r), (3b)

with t0 ≡ 3h̄2k2
F/10m (m is a particle’s mass) and where VJF is

known as the Jastrow-Feenberg interaction. The last term in
Eq. (3a),

tJF = − h̄2ρ

8mν

∫
d3r 	dd(r) ∇2�2(rkF) + t (3)

JF , (3c)

where t (3)
JF = t (3a)

JF + t (3b)
JF includes pair as well as three-body

exchange contributions:

t (3a)
JF = h̄2ρ

4m

∫
d3r 	dd(r) [Ncc(r) + Ecc(r)] ∇2�(r), (3d)

t (3b)
JF = h̄2ρ2

8mν2

∫
d3r12 d3r13 	dcc(r1 ; r2 , r3 )[∇1�(r12 )] [∇1�(r13 )]

(3e)

(∇1 denotes differentiation with respect to r1); 	dcc collects all
three-point diagrams [21], where the distinct coordinate r1 has
no exchange line but is connected with each of r2 and r3 via a
path that does not go through the respective other one, and a
continuous exchange path exists between r2 and r3.
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Requiring the variation of the energy with respect to u2 to
vanish leads to the EL equation

h̄2

4m
∇2g(r) =

∫
d3r̄ VJF(r̄)

δg(r̄)

δu2(r)
+ 2

ρ

δtJF

δu2(r)

≡ g′(r). (4)

The right-hand side of the first line formally defines g′. It
is generated diagrammatically by replacing [21], in turn, (1)
every correlation line by VJF(r) eu2(r) and (2) every connected
pair of exchange lines by h̄2

8m ∇2
i �(ri j )�(rik ) . Applying these

graphical rules, we obtain an expression for g′(r) in terms of
	′

dd and g′
ee, where (as in the following) all primed quantities

are constructed by employing these same rules. Inserting this
definition of 	′

dd and eliminating u2 in favor of g in Eqs. (1)
and (2) leads to a differential equation for g (for details, see
Appendix B).

The resulting exact EL equation, (B11), is Schrödinger-like
in r space,[

− h̄2

m
∇2 + v + wI + VE + Vee + VF

]√
g = 0, (5)

where

VF ≡ h̄2∇2√gF

m
√

gF
(6)

and VE and Vee denote the contribution of dd elementary
diagrams and the exchange correction, respectively [see
Eqs. (B7) and (B12)]. The “induced interaction” wI [derived
in (B6) and further elucidated in Appendix C] is formally
defined identically to that for bosons,

wI(r) ≡ h̄2

4m
∇2Ndd(r) + N ′

dd(r). (7)

B. Leading-order ladder FHNC-EL approach

The simplest fermionic approach is to neglect both VE and
Vee altogether, keeping only VF(r),[

− h̄2

m
∇2 + v(r) + wI(r) + VF(r)

]√
g(r) = 0. (8)

All effects of the surrounding medium on a pair of particles is
then contained in only two corrections to the bare v(r) in (5),
namely, wI(r) induced by correlations and VF arising from the
Pauli principle.

So far, we defined wI via the nodal diagrams. Attempting to
derive an expression along this route, although further improv-
ing g(r →0), does not change the long-wavelength behavior.
We therefore choose to instead incorporate the relevant q→0
terms by using Krotscheck’s sFHNC expression [21],

w̃I(q) = − h̄2q2

4m

[
1

S(q)
− 1

SF(q)

]2[2S(q)

SF(q)
+ 1

]
, (9)

with the free static structure factor SF . (As wI(r) in (9) is finite
at the origin, it ensures the cusp condition [37].)

Equations (8) and (9) constitute a closed set of equations
to be solved self-consistently, correctly reproducing the non-
interacting limit.

C. Relation to perturbation theory

Before presenting numerical results, we clarify the physics
contained in VF(r). Subsuming all effective interactions in V ≡
v + wI+ VE+ Vee+ VF and defining L≡ − h̄2

m ∇2(
√

g −1) and

t (k)≡ h̄2

2m k2, the exact EL equation (5) reads in real and
Fourier space[

− h̄2

m
∇2 + V (r)

]
(
√

g(r) −1) + V (r) = 0,

L̃(q) = Ṽ (q) +
∫

d3k

(2π )3
Ṽ (|q−k|) L̃(k)

t (k)
. (10)

This is recognized as the Bethe-Goldstone equation [38] for
bosons. Recall that VF is completely independent of inter-
actions. Thus, even for free fermions, the FHNC-EL can
be formulated as a bosonic ladder equation with a potential
originating from the Slater determinant.

The similarity is no coincidence, as the optimization of
the correlation function u2 happens independently of the
individual states in the Fermi sea; only their sum in the density
matrix � enters the optimization.4

Accepting the interpretation of Eq. (5) as a ladder sum, wI

is conjectured to sum the rings (bubbles) of PT. Indeed, in
Appendix C we demonstrate how the sFHNC form (9) for w̃I

follows from treating the rings in the single-pole approxima-
tion. Both perspectives clearly corroborate the evidence that
(8) combined with (9) is an approximate self-consistent sum
of ladders as well as rings, which we therefore denote here as
the “ladder+ approximation.”

Strategies of improvement are evident: Specifically, in
every step of the self-consistency cycle one could replace
the bosonic with the full fermionic propagator. This may
answer which precise approximations in PT reproduce the
EL equation (5). But even the present approach, derived from
an alternative formalism, gives an alternative perspective and
thus can open the door for new approximation schemes in PT
(in particular for ladder sums), which are hard to motivate
from PT alone.

D. Three bosonic FHNC-EL approaches

Note that two exact relations connect the FHNC quantities
Ni and Xi with the static structure; the real-space equation
(1a) and the momentum-space equation (see, e.g., Eq. (2.7)
in Ref. [21]). Of course, the exact EL equation (5) for
the optimal g(r) from a Jastrow ansatz is equivalent to its
momentum-space counterpart. Approximations, necessary in
practice, usually break the equivalence of r- and q-space
formulations. A crucial point here is that (the real space)
Eq. (1a) with gee =0 better approximates the ladders, whereas
Eq. (A1) (in momentum space) is superior for the bubbles.
We here test the performance of the following three simple,
bosonlike types of FHNC/0-EL approaches: (i) ladder+, a
self-consistent solution of (8) and (9), (ii) sFHNC, a self-
consistent solution of (A1)–(A3) and (9), and (iii) bFHNC,

4The q→0 expansion in sFHNC, where the fermionic Lindhard
function is approximated by the bosonlike χ0

CA, (C1), also shares this
benefit of the state-independent Jastrow ansatz.
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Kallio and Piilo’s [23] suggestion (see below). For remarks
on the implementation, see Appendix D.

On purpose and in hindsight of the theory’s extension to
periodic structures, we refrain from any sophisticated mod-
ifications but test the “nakedest” versions of ladder+ and
sFHNC. Note, however, that the Fourier transform of a good
approximation for S(q) from certain FHNC equations may
give [39] an inadequate g(r). We here stress that applications
of sFHNC can be done in a refined manner (see the end of
Appendix A). Our intention is to figure out where the three
approaches work best, so that they can complement each
other.

The version introduced by Kallio and Piilo [23] enforces
the noninteracting fermion limit on the bosonic HNC-EL and
was further motivated from a density functional theory (DFT)
perspective [40]. For brevity, we call it bFHNC (its imple-
mentation is analogous to that of ladder+; see Appendix D).
This variant has been successfully applied to various charged
systems before.

III. RESULTS

We now test the above approaches for the HEG. The
basic assessment of a theory’s accuracy is to compare the
correlation energy per particle ec(rs) with simulation results.
We obtain it by coupling constant integration from the pair
distribution function gr̄s (r) at a density parameter r̄s,

ec(rs) = 3

8π r2
s

∫ rs

0

dr̄s

r̄2
s

∫
d3r

a3
0

v(r) [gr̄s (r) − gF(r)]. (11)

This procedure has the benefit that all three different approxi-
mations are compared on the same level, based solely on their
pair distribution functions.5

The correlation energies of the ladder+, the sFHNC, and
Kallio and Piilo’s bFHNC are compared to MC results in
Fig. 2. The bFHNC performs best, with an error of a few per-
cent over the whole rs range. The sFHNC works reasonably
well for metallic densities (how the deviation for rs →0 can
be corrected is reported in Appendix A). In accordance with
the PT knowledge that ladder summations are crucial in the
highly correlated regime [38], the ladder+ curve is seen to
become superior for rs� 15.

We also compare our results with the seminal BSE results
of Maggio and Kresse [15]. They evaluated the four-point
particle-hole ladders with a static RPA screened interaction.
It appears promising to replace this by FHNC (CBF) interac-
tions for the particle-hole ladder [28,42].

Despite the substantial simplifications of the various prop-
agators in all three FHNC/0-EL approaches, they perform
notably well. This indicates that their effective interactions are
of high quality, accounting for the most relevant physics in the
respective density regime.

An accurate energy does not guarantee a high-quality wave
function or static structure. As is well known, the STLS [34]

5The sFHNC energy can also be directly calculated from Eq. (3);
the bHNC functional is unknown. The ladder+ combination of
Eqs. (8) and (9) cannot be uniquely mapped on expression (3) either.
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FIG. 2. Correlation energy per particle versus the density pa-
rameter for three FHNC-EL variants. Bottom: bFHNC (dashed
violet line), sFHNC ring summation (dot-dashed cyan line), and
the ladder+ approach (solid orange line), compared to BSE [15]
(squares) and parametrized MC data [6,41] (dotted black line). Top:
Relative error with respect to MC.

yields excellent correlation energies but fails for g(r →0),
yielding negative values for rs�4. The rs =5 pair distribution
functions are displayed in Fig. 3; we compare them with
the most recent simulations of Spink et al. [8]. Remarkably,
the ladder+ approximation is closer to MC than the bFHNC,
which is high quality too. The sFHNC and STLS clearly
deviate from the MC data; the inset shows that their nearest-
neighbor peak position rm1 is dissatisfying.

Per construction, ladder+ performs insufficiently for
rs → 0; this error is carried over and accumulated by the
coupling constant integration (11), explaining the deviations
of ec from MC. We conclude that g(r) is most satisfying in
ladder+, but the kinetic energy is less accurate.

The fully spin polarized HEG is depicted in Fig. 4, again
for rs =5. For small r the spin-polarized ladder+ g(r) is on
top of the MC benchmark curve [8]. The behavior of the first
peak position rm1, foreshadowing the Wigner crystal’s nearest
neighbors, is interesting. The MC peak has the lowest rm1; in
the paramagnetic HEG the ladder+ value agrees closely, and
its ferromagnetic first maximum is too far right.

Note that these discrepancies are only ∼2%. For the two-
dimensional (2D) HEG, where correlation effects are more
pronounced, neglecting elementary diagrams and triplet cor-
relations leads to larger deviations (see the review by Asgari
[43]). This trend continues to one dimension, but still, the
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FIG. 3. Pair distribution function of the paramagnetic HEG at
rs =5 in the ladder+, bFHNC, and sFHNC approaches (line types
as in Fig. 2), compared to a fit of MC data (Spink et al. [8], dotted
black curve); STLS data are taken from [34] (double-dot-dashed blue
line). Inset: First maximum.

ladder+ serves as a reasonable starting point [44]. Similar
expectations hold for partial spin polarization [45].

In Fig. 5 we compare the on-top pair distribution function
g(0). The overall agreement of both the ladder+ and the
bFHNC values with the MC results is good, with a slight
superiority of the former. The static structure factor in Fig. 6
demonstrates for all approximations the correct q2 behavior
for long wavelengths, confirming the overall picture already
discussed.

Of course, some of the less satisfactory features of the
above approaches can be removed: Yoshizawa and Takada
[47] suggested an improved STLS scheme; in sFHNC the
small r behavior of g(r) can be corrected as indicated at the
end of Appendix A. Here, we want to compare them in their
nakedest form, and it turns out that even these FHNC versions
perform highly satisfactorily.
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FIG. 4. Same as Fig. 3, but for the ferromagnetic HEG. The
STLS curve is omitted, lying significantly below the sFHNC.
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FIG. 5. On-top pair distribution function g(0) multiplied by rs

for the paramagnetic HEG. The Kallio and ladder+ approach is
compared to the MC results of Spink et al. [8] and Holzmann
et al. [46]. The inset demonstrates the correct behavior for g(0)
for small rs.

Finally, in Fig. 7 we show the sum of the bare and the
induced interaction, v(r) + wI(r), as this appears as the driv-
ing term in Eq. (5). Since bFHNC has an EL equation of
similar form, we compare it to the corresponding expression
v + wIB − wIBF (see Appendix D). Most prominent is the
minimum at 1.5rsa0, again a precursor of the Wigner crystal.
Although in absolute units the minimum gets smaller with
higher rs, it has to be compared with the kinetic energy, which
scales with r−2

s . Thus, the effective depth becomes larger,
correctly leading to a higher nearest-neighbor peak in g(r).

IV. SYSTEMATIC IMPROVEMENTS

Having demonstrated that the ladder+ yields generally
good and, for strong correlations, excellent results, we
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FIG. 6. The static structure function of the three FHNC approx-
imations at rs = 20 and rs = 5 (shifted up by 0.2), compared to the
respective MC result [8].

195156-5



PANHOLZER, HOBBIGER, AND BÖHM PHYSICAL REVIEW B 99, 195156 (2019)

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

v(
r)

 +
 w

I(r
)  

[e
V

]

r  / rs a0

Kallio rs=5
ladder+ rs=5
Kallio rs=20

ladder+ rs=20

FIG. 7. Effective interaction v(r) + wI (r) for the optimized cor-
relations at rs =5 and rs =20. The corresponding bFHNC potential
is v + wIB − wIBF (see Appendix D).

here show how it can be systematically improved—another
strength of the present theory.

A. Jastrow-Feenberg contributions

Additional diagrams. Most obvious is to include V 0
ee, with

the superscript 0 indicating that elementary graphs in Vee

are neglected.6 For the nonbosonized FHNC this was done
by Lantto [48], with a result similar to that of our ladder+

approximation. This further justifies the simplified treatments.
Including elementary diagrams is then the next step.

Higher-order correlations. Using not only pair correla-
tions in the wave function ψ = Fφ0 but adding triplet cor-
relations u3(r1, r2, r3) (and possibly higher-order un) further
amends the theory. The inclusion of both the diagram E4 and
triplets u3 significantly improves the bFHNC results for the
2D HEG [43].

B. Correlated basis functions

While for bosons by adding un(r1, . . . , rn) of arbitrarily
high order the exact ground state is reached, the unknown
nodes of ψ prevent this for fermions. The CBF framework
[25] remedies this problem. Particle-hole excitations of the
Slater determinant, φph = a†

pah φ0, correlated by F of the
FHNC ground state, form a correlated basis, allowing us to
obtain the true ground state. Compared to standard PT, the
CBF convergence is much faster (but derivations become
more involved). We exemplify the principle of the method
for the ring diagrams. Their PT summation yields the RPA.
The analogous route in CBF gives the correlated RPA (cRPA)
response function,

χcRPA(q, ω) = χ0(q, ω)

1 − Ṽph(q) χ0(q, ω)
, (12)

6Consequently, wI , obtained from the FHNC equations for Ndd and
N ′

dd, then takes a more complicated form than Eq. (9).

with the bare ṽ(q) replaced by the particle-hole irreducible
interaction Ṽph = X̃ ′

dd − X̃dd h̄2q2/4m. (The derivation [42] is
a bit tedious; an explicit expression for Ṽph in sFHNC is given
in Eq. (A3).)

How the induced wI of sFHNC follows from the plasmon
pole approximation of χ (q, ω) together with the m0 sum rule
is outlined in Appendix C.7 There, we also delineate the close
relation of Ṽph to the ladders.

The cRPA response function (12) significantly improves
the bare RPA dynamics. It should be compared to time-
dependent DFT (TDDFT). An explicit nonlocal approxima-
tion for the exchange-correlation kernel is obtained via f̃xc ≈
Ṽlad = Ṽph − ṽ, which should be tested against other static
kernels [49,50].

Similarly, we propose an upgraded treatment of the
fermionic Bethe-Goldstone equation in PT. Since wI contains,
although approximately, a large class of diagrams, using the
interaction v + wI as a driving term, the corresponding ladder
sum is expected to be superior to that with the bare v and to
give quicker convergence if used as a starting point in more re-
fined summations. The latter would allow us to further assess
the accuracy of the above bosonlike FHNC schemes (ideally,
to be compared to a fully self-consistent sum of fermion rings
and ladders, still a numerically challenging task).

Other classes of PT diagrams can be approximated by
FHNC summations too. Self-energy diagrams, contained in
gee, are neglected in the present treatment. Again, a combina-
tion of FHNC and PT gives good results [51].

C. Extension to inhomogeneous systems

The low computational demands of the method suggest a
generalization to inhomogeneous systems. Numerically, the
huge step from a one-dimensional g(r) to a six-dimensional
g(r, r′) makes exploiting symmetry unavoidable. As demon-
strated in Ref. [44], the solution of the FHNC equations for
periodic systems is numerically feasible, and further work in
that direction is in progress.

Our present study adds value and reliability to that attempt.
First, the relation to PT is particularly useful for describing
excited-state properties of realistic systems. Second, the non-
local behavior of two-point quantities is kept; that is, neither
local nor semilocal approximations are needed, in contrast to
the local density approximation (LDA) or the generalized gra-
dient approaches in DFT. Starting from TDDFT and utilizing
the adiabatic connection formula partly remove this locality
with promising results [49,52]; however, the nonlocality of
fxc still has to be approximated. The inhomogeneous version
of the theory yields a nonlocal fxc at the same level of
approximation as the homogeneous version. Third, it allows
us to account for or estimate the different approximations
done by calculating, e.g., V 0

ee, low-order contributions to V E,
or CBF corrections.

V. CONCLUSION

We demonstrated here the strength of uncomplicated
FHNC-EL versions. Their key advantage is to be based on

7Using the full Lindhard function does not give an explicit Ṽph(q) .
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functional optimization, thus yielding a parameter-free, un-
biased result for the ground-state structure. The intricacy of
the full fermion version is avoided by neglecting elementary
diagrams and exchange corrections gee. The resulting self-
consistency equations exhibit physical transparency and share
the low computational demand with classical HNC. From a
practical perspective, they are thus extremely efficient while
nevertheless yielding rather accurate results.

The HEG served for testing and comparing the following
specific approaches: the bFHNC formulated by Kallio and
Piilo [23], the sFHNC introduced by Krotscheck [21], and
an FHNC-EL version that we developed for the short-range
region and the low-density limit of HEGs. It self-consistently
sums approximated ladder and ring diagrams with emphasis
on the former, motivating the term ladder+ approach.

The bFHNC method performs best in a wide density range,
yielding both a pair distribution function and correlation en-
ergy close to the MC benchmark data. For high and low den-
sities, g(r) is more accurate in sFHNC and ladder+, respec-
tively. Their additional advantage is to allow a connection with
PT. Consequently, their extension to periodic systems [44]
holds a high potential for an implementation in combination
with PT algorithms for solid-state physics, e.g., in BSE [15].

Apart from the good performance combined with low
numerical cost, we stress the following: Although derivations
in the FHNC-EL formalism are intricate, they justify the
resulting equations and energy functionals. Once established,
these can then be applied in a pair DFT [40,53–55], the pair
analog of conventional DFT.

Finally, the possibility of coherently refining the method
via CBF and generalizing the static ground-state correlations
to dynamic fluctuations [27,29] underpins the value and utility
of the FHNC approach.
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APPENDIX A: sFHNC

We provide a brief summary of the sFHNC as formulated
by Krotscheck [21]. The static structure factor S and its
noninteracting counterpart SF are related to the sum of all
direct-direct cluster diagrams 	̃dd via

S(q) = SF(q) [1 + SF(q) 	̃dd(q)], (A1)

which is exact for q→0. Denoting the energy of a free single
particle as t (q) ≡ h̄2q2/2m, the EL equation resulting from
minimizing the ground-state energy reads

S(q) = SF(q)√
1 + 2S2

F (q)
t (q) Ṽ sFHNC

ph (q)
, (A2)

with the particle-hole irreducible interaction [21]

V sFHNC
ph (r) = [1 + 	dd(r)] v(r) + h̄2

m

∣∣∣∣∇√
1+	dd(r)

∣∣∣∣2

+ 	dd(r) wI(r). (A3)

Here, wI is related to the summed nodal diagrams exactly as
in (7). Consistent with the approximations leading to (A1),
w̃I can be expressed in terms of the static structure function,
resulting in Eq. (9). From 	dd(r) the potential V sFHNC

ph is

obtained with (A3), yielding S(q) via (A2) and then 	̃dd for
the next iteration step from (A1).

We emphasize that also the sFHNC contains both ring
and ladder diagrams in V sFHNC

ph , Eq. (A3), and that these are
summed in an approximate but consistent way.

As Krotscheck [39] pointed out, the Fourier transform (FT)
of S(q) does not yield a physically meaningful g(r). Instead, g
should be calculated differently, or additional FHNC integral
equations should be included for the exchange diagrams. The
importance of the latter, alternatively, can be estimated by
comparing a good g(r) with the FT of S(q).

Since Eq. (A1) is designed to exactly reproduce the FHNC
q→0 limit, the small r regime may well lack quality. Specifi-
cally, g(r →0) is not well approximated and violates the cusp
condition.

An ad hoc recipe [56] is to obtain g from Eq. (1a) with
gee =0, i.e., g= (1+ 	dd ) gF, as it holds in ladder+, but with
	dd(r) being the FT of 	̃dd = (S − SF)S−2

F . We do not use
this for the following reasons: First, it violates the most fun-
damental relation between S(q) and g(r), Eq. (D6). Second,
although improving g(r →0), the result gets much worse for
intermediate distances, r � 0.5 rsa0, in the present case of
Coulomb systems. Third, this additional assumption spoils the
simplicity and elegance of the original approach.

APPENDIX B: DETAILED DERIVATION OF THE EULER
LAGRANGE EQUATION

We provide here all contributions to the exact FHNC-EL
theory. Like in Ref. [57], we stay in real space, but in contrast
to their usage of Lagrange multipliers in the optimization
procedure, we employ the diagrammatic rules.

To get familiar with the formalism, we demonstrate the
explicit procedure for obtaining the primed 	′

dd by applying
the graphic rules defined in Sec. II to the unprimed 	dd in
Eq. (2). First, we replace eu2 −1 by VJF eu2 . Then we need to
utilize both rules for the collection of Ndd and Edd graphs, thus
defining N ′

dd and E ′
dd as sums of specific diagrams. Rewriting

	dd = (eu2 − 1)
(
1 + Ndd + 1

2 N2
dd + · · · )eEdd

+ (
1 + Ndd + 1

2 N2
dd + · · · )eEdd − 1, (B1)

it is straightforward to apply rule 1 directly, and both rules
to all subdiagrams.8 Explicit expressions are obtained by
invoking the rules in the FHNC equation for Ndd and the
chosen approximation to Edd.

To keep the derivation general, we continue with the exact
expression. Collecting all product graphs leads to

	′
dd = (1+ 	dd ) (VJF + N ′

dd + E ′
dd ). (B2)

This is applied analogously to all FHNC equations. With the
underlying definition being based on a functional derivative,

8The rules are used in turn for each subdiagram; for example,
applied to N2

dd/2, they give NddNdd′ .
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this mostly amounts to taking the “ordinary” derivative of
each equation, where all new primed ingredients are well-
defined diagrammatic sums. When g′

ee is obtained graphically,
the execution of rule 2 for two connected cc diagrams requires
some care (in the literature often avoided by neglecting t (3b)

JF ,
argued to be negligibly small). Some pertinent details are
discussed at the end of this section.

For g′ obtained from (1a),

g′ = 	′
dd (gF+ gee ) + (1+ 	dd )

(
h̄2

4m
∇2gF + g′

ee

)
, (B3)

we can now rewrite the first term with (B2) as

	′
dd (gF + gee ) = g (VJF + N ′

dd + E ′
dd ). (B4)

Here, we replace u2 in VJF with Eq. (1) by

u2 = ln

(
g

gF + gee

)
− Ndd − Edd, (B5)

and obtain for the right-hand side of Eq. (B4),

g

{
v − h̄2

4m
∇2

[
ln

(
g

gF+ gee

)
− Ndd − Edd

]
+ N ′

dd + E ′
dd

}

≡ g

[
v − h̄2

4m
∇2 ln

(
g

gF+ gee

)
+ wI + VE

]
. (B6)

This proves Eq. (7) for the induced potential wI and gives an
analogous expression for another effective interaction,

VE = h̄2

4m
∇2Edd + E ′

dd, (B7)

due to dd elementary diagrams. Although coinciding with the
bosonic formulas, wI and VE contain many more diagrams
arising from the various internal exchange lines.

Using the identity

∇2g + g∇2 ln g = 4
√

g ∇2√g, (B8)

the exact EL equation (4) takes the form

0 =
(

h̄2

4m
∇2g − g′

)/√
g

= h̄2

m
∇2√g − √

g

[
v + wI + VE + h̄2

4m
∇2 ln (gF+ gee )

× 1

gF + gee

(
h̄2

4m
∇2gF + g′

ee

)]
, (B9)

where 	dd on the right-hand side of (B3) has been expressed
with gee.

We intentionally separate the exchange contributions into
the purely statistical gF and the correlation-dominated Vee,

ln (gF+ gee ) = ln gF + ln (1 + gee/gF),

1

gF + gee
= 1

gF
+

(
1

gF + gee
− 1

gF

)
. (B10)

Collecting all terms and applying (B8) to gF lead to

h̄2

m
∇2√g =

(
v + wI + VE + Vee + h̄2

m

∇2√gF√
gF

)√
g,

(B11)

with the exchange correction

Vee = h̄2

4m
∇2 ln

(
1 + gee

gF

)
+ g′

ee/gF

1 + gee/gF

− gee/gF

1 + gee/gF

(
h̄2

4m

∇2gF

gF

)
. (B12)

The
√

gF term in (B11) can be viewed as a simple Fermi
correction to the bosonic ladder (propagator) equation, in
analogy to sFHNC, which is an approximation to PT ring
diagrams with the Lindhard function replaced by the simpler
collective approximation [see (C1)].

As mentioned above, employing rule 2 may appear cum-
bersome. This is avoided by neglecting t (3b)

JF , which leads to
a simplified (approximate) form of rule 2: In turn, each loop
formed by two exchange lines is replaced with h̄2

4m ∇2�(r)2,
and where more than two such lines make a loop, each
exchange line, in turn, is replaced by h̄2

4m ∇2�(r). Within this
approximation we obtain

g′
ee ≈ 2[� + ν(Ncc+ Ecc)](N ′

cc+ E ′
cc) + (Ncc + Ecc)

h̄2

m
∇2�

+ N ′
ee + E ′

ee + 2[1 + Nde+ Ede](N ′
de+ E ′

de). (B13)

Together with some specific approximation for the elementary
diagrams, this provides an explicit expression for Vee in (B12)
if the ladder+ approach is taken a step further.

APPENDIX C: DERIVATION OF wI FROM PT

Here, we demonstrate how the induced potential wI is
obtained from the ring (=bubble) diagrams of PT. As a first
step the Lindhard function is approximated in the “collective”
(or “single-pole”) approximation,

χCA
0 (q, ω) = 2t (q)

(h̄ω + iη)2 − [t (q)/SF(q)]2
, (C1)

implying an RPA response of Bijl-Feynman form,

χCA
RPA(q, ω) = χCA

0 (q, ω)

1 − ṽ(q) χCA
0 (q, ω)

. (C2)

This approximation will elucidate the physical meaning of wI.
We next add, in a similar spirit, a two-point approximation of
the ladder diagrams to the bare interaction, v → v + Vlad ≡
Vph. Note that the rungs in Vlad are not just bare, but rather
a consistently resummed interaction, justifying the identifica-
tion with the particle-hole irreducible diagrams (no specific
Vlad needs to be assumed here). The m0 sum rule (or adiabatic
connection) relates Vph to the static structure:

S(q) = −
∫ ∞

0
dh̄ωIm

[
χCA

cRPA(q, ω)
] = t (q)

ε(q)
, (C3a)

ε(q)2 ≡ t (q)2

SF(q)2
+ 2t (q) Ṽph(q). (C3b)

This is identical to the sFHNC EL equation (A2).
The ring diagrams generated from Ṽph(q) are

Ṽring(q, ω) ≡ Ṽph(q)2 χCA
0 (q, ω)

1 − Ṽph(q) χCA
0 (q, ω)

. (C4)
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Even though Ṽph(q) is static, this summation is energy depen-
dent. Following Jackson et al. [33] we replace ω in Vring by
a suitably determined characteristic frequency ω̄q. Again, the
solely statistical effects are split off,

χ (q, ω) = χ0(q, ω) + χ2
0 (q, ω)[ Ṽph(q) + Ṽring(q, ω)]

≈ χCA
0 (q, ω) + χCA

0 (q, ω)2[Ṽph(q) + Ṽring(q, ω̄q )] .

(C5)

Demanding consistency with the static structure implies

S(q) = SF(q) − SF(q)3

t (q)

Ṽph(q)

1 − Ṽph(q) χCA
0 (q, ω̄q )

. (C6a)

This results in (we skip q for ease of reading)

Ṽph χCA
0 (ω̄q) = 1 − SF

2S

[
SF

S
+1

]
; (C6b)

solving for ω̄q using (C3) gives

h̄2ω̄2
q = − ε(q) t (q)2/S2

F(q)

ε(q) + 2t (q)/S2
F(q)

, (C6c)

the fermion analog of the boson ω̄q found in Ref. [33].
Inserting (C6b) into (C4), we thus have shown that

w̃I(q) = Ṽring(q, ω̄q ); (C7)

that is, wI in Eq. (9) is indeed the sum of approximated ring
diagrams with the effective interaction v + Vlad.

This procedure also explains the name “induced potential”
for wI. Defined as the difference between the screened and
bare interactions, ṽind in plain RPA is

ṽind = ṽ

1 − ṽ χ0
− ṽ = ṽ χ0 ṽ

1 − ṽ χ0
. (C8)

Replacing the bare interaction by the particle-hole irreducible
interaction demonstrates the connection.

APPENDIX D: IMPLEMENTATION

We show here a favorable self-consistent procedure to treat
bosonlike FHNC equations. Instead of numerically solving
the nonlinear differential equation (5), a straightforward ma-
nipulation maps it onto an algebraic relation in reciprocal
space. The static structure factor defines an auxiliary potential,
where we split off the boson-induced interaction,

S(q) ≡ 1/

√
1 + 2

t (q)
Ṽaux(q), (D1a)

w̃IB(q) ≡ − t (q)

2

[
1

S(q)
− 1

]2

[2S(q) + 1], (D1b)

Ṽaux(q) = −w̃IB(q) − t (q)(S(q) −1). (D1c)

In the exact EL equation multiplied by
√

g, where (as in
Sec. II C) we subsume all effective interactions in V ,[

− h̄2

m
∇2 +V (r)

]
g(r) + h̄2

m

∣∣∣∣∇√
g(r)

∣∣∣∣2

= 0, (D2)

the term V g is recognized as −Vaux − wIB , so that the auxil-
iary potential in real space is

Vaux(r) = V (r) g(r) − wIB(r) + h̄2

m

∣∣∣∣∇√
g(r)

∣∣∣∣2

. (D3)

In the ladder+ approximation the explicit expression reads

V lad+
aux (r) =

[
v(r) + wI(r) + h̄2∇2√gF(r)

m
√

gF(r)

]
g(r)

− wIB(r) + h̄2

m
|∇

√
g(r)|2. (D4)

An initial guess for g(r) gives Vaux(r) from (D4) and, in turn,
after a Fourier transform (FT) with the convention

Ṽaux(q) = ρ

∫
d3r e−iq·r Vaux(r) (D5)

a static structure factor from (D1a), inserted into (D1b). The
inverse FT gives wIB(r) and a new g(r) from

g(r) −1 =
∫

d3q

(2π )3ρ
eiq·r [S(q) − 1]. (D6)

This procedure is iterated until convergence is achieved,
merely having the FT as a rate-limiting step. Note that in con-
trast to STLS-type [34] methods, all FHNC-EL approaches
presented here are easier to implement since no integrations
other than the FT are involved.

For the bFHNC of Kallio and Piilo we adopt the same
strategy. The auxiliary potential acquires an additional term,
wIBF, which is determined solely by SF,

V Kallio
aux (r) = [v(r) + wIB(r) − wIBF(r) + VF(r)] g(r)

−wIB(r) + h̄2

m
|∇

√
g(r)|2,

w̃IBF(q) ≡ −1

2
t (q)

[
1

SF(q)
− 1

]2

[2SF(q) + 1]. (D7)

This corresponds to approximating the exact real-space EL
equation (5) with[

− h̄2

m
∇2 + v + wIB − wIBF + VF

] √
g(r) = 0. (D8)

For v→0, the iterations yield wIB → wIBF . An appealing
feature is that this concept can be easily extended to include
elementary diagrams.

An implementation of all three versions discussed in the
present work, the sFHNC, the bFHNC, and the ladder+

method can be found in Ref. [58].
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