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We study the acoustic response of flat-meniscus bubbles trapped in the grooves of a microstructured
hydrophobic substrate immersed in water. In the first part of the paper, we consider a single bubble subjected
to a normally incident plane wave. We use the method of matched asymptotic expansions, based on the
smallness of the gas-to-liquid density ratio, to describe the near field of the groove, where the compressibility of
the liquid can be neglected, and an acoustic region, on the scale of the wavelength, which is much larger
than the groove opening in the resonance regime of interest. We find that bubbles trapped in grooves support
multiple subwavelength resonances, which are damped—radiatively—even in the absence of dissipation. Beyond
the fundamental resonance, at which the pinned meniscus is approximately parabolic, we find a sequence of
higher-order antiresonance and resonance pairs; at the antiresonances (whose frequencies are independent of the
gas properties and groove size), the gas is idle and the scattering vanishes, while the liquid pressure is in balance
with capillary forces.

In the second part of the paper, we develop a multiple-scattering theory for dilute arrays of trapped bubbles,
where the frequency response of a single bubble enters via a scattering coefficient. For an infinite array and
subwavelength spacing between the bubbles, the resonances are suppressed by an interference effect associated
with the strong logarithmic interactions between quasistatic line sources; the antiresonances are robust. In
contrast, for finite arrays, however large, we find strong and highly oscillatory deviations from the frequency
response of an infinite array in a sequence of intervals about the resonance frequencies of a single bubble; these
deviations are shown to be associated with edge excitation, in the finite case, of surface “spoof plasmon” waves,
which exist in the infinite case precisely in the said frequency intervals; the resonant peaks in these intervals
correspond to the formation of standing surface waves in the finite array.

DOI: 10.1103/PhysRevB.99.195155

I. INTRODUCTION

Over the last two decades the design of structured acoustic
devices has been strongly influenced by developments in
plasmonics and electromagnetic metamaterials, where sub-
wavelength resonators are exploited to achieve unprecedented
control of light and enhance light-matter interactions on small
scales [1–4]. Building on these ideas, acoustic metamaterials
and metasurfaces have been designed to control propagation,
localization and attenuation of sound waves in ways previ-
ously not thought possible, or even imagined, as in the case
of structured materials that negatively refract [5]. Resonators
used to realize acoustic metamaterials include traditional
Helmholtz and cavity resonators, which have long been used
for filtering [6] and sound attenuation [7], as well as mem-
branes, rubber-coated particles and space-coiling structures
[5,8,9].

Bubbles, whose acoustic properties have been extensively
studied in the context of bubbly liquids [10], biomedical
applications [11] and soft-matter physics [12], have also
been used to demonstrate a range of phononic-crystal
and metamaterial effects underwater [13–20]. Bubbles are
especially appealing for this purpose as they support a deeply
subwavelength “breathing mode,” or Minnaert resonance
[21], with the smallness of the resonance frequency linked to
the extreme density contrast between air and water [22]. There

are, however, challenges in using bubbles for metamaterial
applications: beyond their tendency to dissolve, bubble
screens and clusters are naturally disordered, mobile, and
polydisperse. Such difficulties could be overcome, at the cost
of reducing the contrast between the phases, by embedding
bubbles in a soft elastic matrix [23–26] or by encapsulating
bubbles in elastic shells [27–29].

Given the extraordinary acoustic properties of bubbles, we
here suggest to consider superhydrophobic surfaces as natural
candidates for realizing highly tunable acoustic metasurfaces.
Superhydrophobic surfaces are formed by rough hydrophobic
substrates immersed in water, the roughness being either
natural or engineered—usually by texturing the substrate
with periodic arrays of grooves, pillars or holes [30]. When
the roughness varies on a micrometer scale, the immersed
substrate may attain a so-called Cassie state, wherein gas
bubbles become trapped in the vacancies of the microstructure
[31]. Superhydrophobic surfaces are well known for their
spectacular fluidic properties, exhibiting anomalous wetting
phenomena [31] and reduced hydrodynamic resistance [32].
At the same time, such surfaces naturally provide a planar
distribution of subwavelength acoustic resonators, namely,
the trapped bubbles. This suggests anomalous scattering and
absorption properties, enhanced sound-matter interactions on
subwavelength scales and the possibility of guided surface-
acoustic “spoof-plasmon” waves [33–35]. We accordingly
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envisage superhydrophobic surfaces as acoustic metasurfaces,
where the arrangement, shape, and size of the bubble
resonators are tuned through the geometry of the trapping
microstructure.

Acoustics in bubbly liquids is a classical problem in fluid
dynamics (see Ref. [10] and references therein), which has
been recently receiving renewed theoretical interest in the
context of metamaterials [36–40]. When modeling acous-
tically forced trapped bubbles, however, a modified theo-
retical framework is required, which couples the equations
of acoustics and interfacial fluid mechanics. In particular,
friction on the molecular level results in pinning of the bub-
ble menisci, often along the corners of the microstructured
cavities. The equilibrium shapes of the trapped bubbles and
meniscus boundaries are therefore linked to the geometry of
the underlying structure and may accordingly substantially
differ from the spherical shape of a free bubble. The pin-
ning conditions also modify the dynamics of the meniscus
deformation, which on the micrometer scale are appreciably
affected by surface tension. Yet a further complication is that
the liquid experiences mixed conditions on the solid-liquid
and gas-liquid interfaces, respectively. Our overarching aim
is to advance the acoustofluidic modeling of both isolated
trapped bubbles and periodic bubble arrays.

There have been several theoretical and experimental
studies in the literature of acoustically driven microbubbles
trapped in holes, micropits and rectangular cavities,
motivated by biological sensing, enhanced cavitation,
microfluidic applications, acoustic streaming, as well as the
characterization of superhydrophobic surfaces [41–48]. Given
the smallness of the trapped bubbles in comparison to the
wavelength, these investigations employed an incompressible
description, where the subwavelength resonances are damped
solely by viscous and thermal dissipation; in that description,
the acoustic field enters only as an externally applied uniform-
pressure fluctuation, whereas the acoustic scattering is not
sought. Such a methodology is adequate when radiation losses
are negligible, as one usually expects for micrometer-sized
bubbles near resonance [49]. Going beyond single trapped
bubbles, Rathgen et al. [43] carried out experiments with
superhydrophobic surfaces featuring doubly periodic arrays
of bubbles trapped in holes; the surfaces were forced by an
ultrasound transducer and an averaged meniscus displacement
was measured. A pronounced resonant peak was found at a
frequency below that predicted for a single isolated bubble.
The observed frequency shift was explained by considering
the interactions between the trapped bubbles, which in light
of the subwavelength periodicity were modeled as quasistatic
monopole interactions decaying inversely with distance.

In the above investigations, the trapped bubbles are con-
fined in all three dimensions. In contrast, in this paper our
interest is in bubbles trapped in long grooves, a common
texture employed for superhydrophobic surfaces. In that case,
the bubbles are cylindrical and we expect an essentially dif-
ferent acoustic response. Alluding to studies of cylindrical
bubbles [50–52], we anticipate that bubbles trapped in grooves
emit cylindrical, rather than spherical, acoustic waves. As a
consequence, radiation damping is enhanced and becomes
the dominant loss mechanism for bubbles larger than approx-
imately one micrometer [51]. The dominance of radiation
damping also implies that the compressibility of the liquid
cannot be neglected and an acoustofluidic model is necessary.

Finally, interactions between cylindrical trapped bubbles are
expected to be markedly different from those between three-
dimensional trapped bubbles. Indeed, the pressure disturbance
induced by a pulsating cylindrical bubble grows logarithmi-
cally on subwavelength scales only to eventually attenuate
over distances commensurate with the wavelength. Thus, in
contrast to the decaying monopole interactions discussed in
Ref. [43], in the case of cylindrical trapped bubbles we expect
strong long-range interactions.

In light of the above, we wish to theoretically study the
acoustic response of cylindrical bubbles trapped in infinite
grooves. Following standard modeling of superhydrophobic
surfaces [53,54], we shall assume that the menisci are flat at
equilibrium and remain pinned to the corners of the grooves;
furthermore, in accordance with the above discussion we
ignore viscous and thermal effects. For the sake of simplicity,
we shall also assume that the solid substrate is perfectly rigid.
We shall first analyze the problem of an isolated trapped bub-
ble subject to a normally incident acoustic plane wave. This
two-dimensional problem is formulated in Sec. II. In Secs. III
and IV, we systematically develop an asymptotic description
of the bubble dynamics and acoustic scattering, based on
the smallness of the gas-to-liquid density ratio; our analysis
focuses on the resonant long-wavelength regime associated
with this limit. Notwithstanding the disparity between the
groove size and the wavelength, for cylindrical bubbles it
is not possible to entirely neglect the compressibility of the
liquid, as already noted. We overcome this difficulty using
the method of matched asymptotic expansions [55]; building
on the analyses of other long-wavelength scattering problems
[22], we match an “inner” bubble-scale near field, where
the liquid is approximately incompressible, and an “outer”
wavelength-scale acoustic region. In Sec. V, we investigate
dilute arrays of trapped cylindrical bubbles, namely, grooved
superhydrophobic surfaces; to this end, we use the theory
developed for a single isolated trapped bubble, in conjunc-
tion with a two-dimensional variant of Foldy’s point-scatter
approximation and techniques of multiple-scattering theory
[56,57]. Concluding remarks are given in Sec. VI.

II. FORMULATION FOR A SINGLE MENISCUS

A. Physical problem

The system considered herein consists of a semi-bounded
layer of liquid (density ρ, sound speed c) which is in contact
with an infinite hydrophobic wall. The wall, assumed rigid,
is decorated with a single groove which is filled with a gas
(density ρ̄, sound speed c̄) in a stable Cassie state. The groove
opening is 2a and its cross-sectional area is denoted by a2V .
The interfacial tension of the liquid–gas meniscus is denoted
by γ . We assume a zero protrusion angle of the meniscus
at equilibrium. The values of the liquid and gas pressure at
that equilibrium are accordingly identical, say P. Assuming
an ideal gas, P is related to ρ̄ and c̄ via the relation

κP = ρ̄c̄2 (2.1)

wherein κ is the gas adiabatic index. Table I(a) presents
typical values of the pertinent liquid and gas properties.

The system is excited by an acoustic plane wave (frequency
ω, pressure amplitude p∞) which propagates through the
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TABLE I. (a) Typical material values for air-water system.
(b) The resulting typical values of the dimensionless parameters.

(a)
Liquid properties:

density ρ: 1000 kg m−3

sound speed c: 1500 m s−1

Gas properties:
density ρ̄: 1 kg m−3

sound speed c̄: 340 m s−1

adiabatic index κ: 1.4
Liquid-gas properties:

reference pressure P: 105 kg m−1 s−2

interfacial-tension coefficient γ : 0.07 kg s−2

(b)
Material ratios:

density ratio δ: 10−3

sound-speed ratio χ : 4.4
Geometric parameters:

scaled area V : of order unity
Material-geometry parameters:

stiffness ratio K : of order 2a
(with a measured in micrometers)

liquid towards the wall. In a plane perpendicular to the groove
the problem is two-dimensional (2D), see Fig. 1. It is ac-
cordingly convenient to employ two unit vectors: ı̂, which is
parallel to the wall, and ĵ , which is perpendicular to the wall,
pointing into the liquid.

We assume that p∞ (and whence the resulting pressure
fluctuation) is small compared with both P and γ /a. This
assumption allows to linearize both the acoustics and interface
dynamics. In the resulting linear framework, it is natural to
consider time-harmonic fields with a fixed frequency, say ω.
Denoting the position vector by x, it follows that any generic
field must possess the form

f (x, t ) = Re[e−iωt f̂ (x)]. (2.2)

In what follows, we conveniently omit the hat decoration;
all subsequent variables are therefore phasor quantities. With
this convention, the pressure fluctuation associated with the
incident plane wave is given by

p(i) = p∞ exp(−ikx · ĵ ), (2.3)

where

k = ω/c (2.4)

is the wave number in the liquid.
In the linearized description the interfacial boundary con-

ditions are specified on a straight line segment, denoted by
M, which coincides with the meniscus at equilibrium. The
associated liquid and gas domains are respectively denoted
by L and G. The pressure fluctuations in the liquid and gas
domains are respectively denoted by p and p̄. They satisfy the
Helmholtz equation in both domains,

∇2 p + k2 p = 0 in L, ∇2 p̄ + χ2k2 p̄ = 0 in G,

(2.5)

2a

a2V

ω

L

G

M

ρ
c

P

c̄
ρ̄

p∞

ı̂

ĵ

FIG. 1. Schematic of the dimensional problem.

wherein

χ = c/c̄ (2.6)

is the ratio of sound speeds.
To discuss the boundary conditions we introduce the ve-

locity fluctuations in the respective liquid and gas domains, u
and ū. These are related to the pressure fluctuations via the
linearized momentum equations

iωρu = ∇p in L, iωρ̄ū = ∇ p̄ in G. (2.7a, b)

The boundary ∂L of the liquid domain consists of the menis-
cus M and the solid wall ∂L \ M. Similarly, the boundary
∂G of the gas domain consists of the meniscus M and the
groove boundary ∂G \ M. The impermeability condition at
the solid-liquid and solid-gas interfaces in conjunction with
(2.7) yields the following Neumann conditions,

ĵ · ∇p = 0 on ∂L \ M, n̂ · ∇ p̄ = 0 on ∂G \ M,

(2.8a, b)

in which n̂ is a unit vector normal to ∂G \ M.
Consider now the conditions on M. Let s and ζ (s) re-

spectively denote the rectilinear coordinate along M and the
the normal meniscus displacement (reckoned positive when
directed into the liquid). The linearized dynamic condition re-
lates the meniscus curvature to the pressure difference across
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M according to

γ
d2ζ

ds2
= p − p̄ in M. (2.9)

Since the meniscus is pinned at its ends to the sharp corners,
the displacement is also subject to the end conditions

ζ = 0 on ∂M. (2.10)

In addition to the dynamic condition we also need to satisfy
the linearized kinematic condition, which imposes continuity
of the velocity component perpendicular to ∂M; making use
of (2.7) this gives

ĵ · (∇ p̄ − δ∇p) = 0 on M, (2.11)

wherein

δ = ρ̄/ρ (2.12)

is the gas-to-liquid density ratio. Last, relating the flow to the
time derivative of the displacement gives, upon making use
of (2.7),

ĵ · ∇p = ρω2ζ on M. (2.13)

In addition to the above boundary conditions, we require
that the scattered field p − p(i) satisfies a radiation condition
at large distances from the surface. Since the kinematic condi-
tions (2.11) and (2.13) do not involve the velocity fluctuations,
we have obtained a well-posed problem governing p, p̄, and
ζ . In the preceding description, we have neglected viscosity
and heat transfer. Mechanical energy is accordingly lost only
by radiation to infinity through wave scattering.

B. Governing parameters and dimensionless formulation

Towards using a dimensionless formulation it is convenient
to identify the pertient parameters in the problem. We have al-
ready introduced the material ratios χ and δ and the geometric
parameter V . A fourth parameter,

K = κP

γ /a
, (2.14)

represents the ratio of gas and interface stiffnesses. Note
that K depends upon both material and geometric properties;
in particular, it is inherently proportional to the size of the
groove. Characteristic values of the above parameters, based
upon the air-water values of Table I(a), are presented in
Table I(b). Since the width 2a of realistic grooves in superhy-
drophobic surfaces is on the micrometer scale, K is of order
unity; the cross-sectional area is typically comparable with a2

and hence V is of order unity. The wave-speed ratio χ is also
of order unity. On the other hand, δ is exceedingly small.

In addition to the above parameters we have the acoustic
size parameter ka, characterizing the ratio of the wavelength
to groove size. With the latter being on the micrometer scale,
ka is very small for most of the ultrasound range. Based on
the theory of the Minnaert resonance of a free bubble [21],
we anticipate a resonance in the subwavelength regime ka =
O(δ1/2). This suggests working with the rescaled frequency

, defined via

ka = δ1/2
. (2.15)

x

y

1−1

q

q̄

χ = c/c̄

δ = ρ̄/ρ

K =
κP

γ/a

Ω = δ−1/2 ωa

c

V

∝ η

FIG. 2. Schematic of the dimensionless problem.

Writing x = ax ı̂ + ayĵ , we hereafter use the dimension-
less Cartesian coordinates (x, y) with the origin at the groove
mid-opening, see Fig. 2; we also employ the radial coordinate
r =

√
x2 + y2. The dimensionless pressure fluctuations and

interface displacement are defined as

q = p

p∞
, q̄ = p̄

p∞
, η = γ

a2 p∞
ζ . (2.16)

The Helmholtz equation in the liquid and gas domains respec-
tively reads

∂2q

∂x2
+ ∂2q

∂y2
+ δ
2q = 0 in L,

∂2q̄

∂x2
+ ∂2q̄

∂y2
+ δχ2
2q̄ = 0 in G. (2.17a, b)

On the solid walls, we have the homogeneous Neumann
conditions:

∂q

∂y
= 0 on ∂L \ M,

∂ q̄

∂n
= 0 on ∂G \ M. (2.18a, b)

At the meniscus, the kinematic condition (2.11) becomes

∂ q̄

∂y
= δ

∂q

∂y
on M. (2.19)
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In addition, upon making use of (2.1) we obtain from (2.13)

∂q

∂y
= Kχ2
2η on M, (2.20)

which introduces a coupling to the displacement η. The latter
is governed by the dynamic condition and the pinning con-
straint [cf. (2.9)–(2.10)],

d2η

dx2
= q − q̄ on M, η = 0 at ∂M. (2.21a, b)

In the dimensionless notation, the incident wave is

q(i) = exp {−iδ1/2
y}. (2.22)

Conditions (2.18)–(2.21) are supplemented by a radiation
condition which is imposed at large y on the scattered wave
q − q(i).

Note that integration of (2.17b) in conjunction with
Gauss’s theorem yields, upon making use of (2.18b)–(2.19),

∫ 1

−1

∂q

∂y

∣∣∣∣
y=0

dx + χ2
2
∫∫

G
q̄ dx dy = 0. (2.23)

While this constraint does not provide any independent infor-
mation, its use simplifies the asymptotic analysis that follows.

III. LONG-WAVELENGTH LIMIT

Given the smallness of δ, we now focus upon the asymp-
totic limit

δ � 1, 
 fixed, (3.1)

which, with (2.15), corresponds to a long-wavelength regime;
this regime is characterized by two disparate length scales,
namely, O(1) and O(δ−1/2), which in the dimensional descrip-
tion respectively correspond to the groove size a and wave-
length 2π/k. In what follows, the singular limit (3.1) is han-
dled using matched asymptotic expansions [22]. The “inner”
region in these expansions represents the “near-field” acous-
tics, while the “outer” region describes the incident, reflected
and diffracted fields. Our interest is in the leading-order
description in both of these regions. In particular, asymptotic
matching is expected to provide the relation between the
outer acoustic response and the meniscus and gas-pressure
dynamics. As is often the case in asymptotic analyses of
long-wavelength scattering processes, the expansions we find
contain terms logarithmic in the small parameter δ. We shall
follow the standard approach [55,58] of grouping together
logarithmically separated terms, ensuring an asymptotic error
that is “algebraically small” (i.e., smaller than some power
of δ).

A. Inner region

We shall start by considering the inner region where the
coordinates x, y are O(1). In the gas domain, the pressure field
q̄ satisfies Laplace’s equation at leading order, see (2.17b).
Given (2.18b)–(2.19), q̄ additionally satisfies at leading order
a homogeneous Neumann condition over the entire boundary
∂G. It follows that q̄ is uniform at that order. The integral

relation (2.23) provides the constant value of q̄ as

q̄ = − F
χ2
2V

, (3.2)

in which

F =
∫ 1

−1

∂q

∂y

∣∣∣∣
y=0

dx (3.3)

is proportional to the volumetric flux (per unit length in the z
direction) emanating from the meniscus. In Appendix A, we
show that the preceding results coincide with those obtained
using a “thermodynamic” description of the bubble.

In the liquid, the pressure also satisfies Laplace’s equation
at leading order, see (2.17a):

∂2q

∂x2
+ ∂2q

∂y2
= 0 for y > 0. (3.4)

In addition, it satisfies (2.18a) and (2.20)–(2.21), which retain
their form at leading order. Since the radiation condition does
not apply in the inner region, conditions at infinity follow
instead from matching with the outer pressure. To this end,
note that Laplace’s equation in conjunction with (2.18a) and
(3.3) implies a 2D sourcelike behavior at large distances,
namely

q ∼ F
π

ln r as r → ∞. (3.5)

Last, we observe that both q and η are even functions of x.
This symmetry, which follows from q̄ being uniform, does not
necessarily hold at higher asymptotic orders.

B. Canonical inner problem

The inner problem is closed apart from the unknown value
of F . The dependence upon that constant can actually be
factored out by defining

q − q̄ = F q̃, η = F η̃, (3.6)

where q̃ and η̃ respectively represent the rescaled excess liquid
pressure and meniscus displacement. The leading-order inner
problem governing q̃ consists of (i) Laplace’s equation,

∂2q̃

∂x2
+ ∂2q̃

∂y2
= 0 for y > 0; (3.7)

(ii) the homogeneous Neumann condition at y = 0
[cf. (2.18a)]

∂ q̃

∂y
= 0 for |x| > 1; (3.8)

(iii) the inhomogeneous condition at y = 0 [cf. (2.20)]

∂ q̃

∂y
= Kχ2
2η̃ for |x| < 1; (3.9)

and (iv) the far-field condition [cf. (3.5)]

q̃ ∼ 1

π
ln r as r → ∞; (3.10)

note that the solvability condition (3.3) now reads∫ 1

−1

∂ q̃

∂y

∣∣∣∣
y=0

dx = 1. (3.11)

195155-5



SCHNITZER, BRANDÃO, AND YARIV PHYSICAL REVIEW B 99, 195155 (2019)

Condition (3.9) introduces the coupling to the interface dis-
placement, itself governed by [cf. (2.21)]

d2η̃

dx2
= q̃|y=0 for |x| < 1; η̃ = 0 at x = ±1. (3.12)

The canonical problem which results from factoring out the
flux F , as prescribed by (3.7)–(3.12), is self-contained. In fact,
since the gas pressure does not appear in that problem, q̃ and
η̃ depend upon a single dimensionless group, namely,

λ = Kχ2
2. (3.13)

Making use of definitions (2.4), (2.6), (2.12), (2.14) in con-
junction with (2.1), the above group is readily expressed in
terms of the pertinent dimensional quantities

λ = ρω2a3

γ
. (3.14)

If follows that the canonical inner problem is independent of
the properties of the gas and the area of the groove.

Once q̃ and η̃ are determined, obtaining the unscaled vari-
ables q and η merely requires the calculation of the unknown
flux F ; as we shall see, the latter is determined by asymptotic
matching with the outer region. To that end, we note that
(3.10) can be refined to

q̃ ∼ 1

π
ln(2r) + β + o(1) for r � 1. (3.15)

(The 2 factor is introduced for convenience and merely
amounts to a specific definition of the parameter β.) The
constant β is determined from the solution of the canonical
problem. As such, it is a function of λ alone. As will become
evident, β captures the dynamical response of the quasistatic
inner region.

Since the canonical problem is driven by the inhomoge-
neous condition (3.10), which involves a real-valued forcing,
both q̃ and η̃ are real-valued (and whence so is β). On the
other hand, with F generally being complex-valued, so are q
and η.

C. Outer region

The outer region, at O(δ−1/2) distances, is described using
the stretched coordinates,

X = δ1/2
x, Y = δ1/2
y, R = δ1/2
r. (3.16)

Writing q(x, y) = Q(X,Y ), we find from (2.17a) that at lead-
ing order Q satisfies the Helmholtz equation,

∂2Q

∂X 2
+ ∂2Q

∂Y 2
+ Q = 0. (3.17)

At the boundary Y = 0 the groove shrinks to the point X = 0.
It therefore follows from (2.18a) that Q satisfies the homoge-
neous Neumann condition virtually on the entire X axis,

∂Q

∂Y
= 0 for X �= 0. (3.18)

In addition, it satisfies matching with the inner solution in the
limit R → 0, together with the radiation condition, associated
with the imposed incident wave [cf. (2.22)]

Q(i) = e−iY . (3.19)

It is illuminating to consider for a moment the outer
solution that would hold in the absence of any meniscus.
It is simply obtained by ignoring the matching requirement,
and accordingly consists of the incident wave (3.19) together
with a reflected wave which is determined by the radiation
condition and the boundary condition at Y = 0. For the ho-
mogeneous condition (3.18), the reflected wave

Q(r) = eiY (3.20)

is in phase with the incident wave. The solution thus consists
of the sum

Q(i) + Q(r) = 2 cosY. (3.21)

With a meniscus present, the need for asymptotic matching
results in an origin singularity in the outer solution. The
isotropic behavior (3.5) suggests, in turn, isotropic diffraction
and hence a fundamental solution of the Helmholtz equation.
The radiation condition therefore necessitates a solution of the
form

Q = 2{cosY + AH0(R)}, (3.22)

wherein the last term, in which H0 denotes the Hankel func-
tion of the first kind and order zero, represents an outward-
propagating cylindrical wave. The integration constant A ac-
cordingly represents the scattering coefficient of the groove. It
may be noted at this stage that our neglect of intrinsic losses
implies the constraint

Re{A} = −|A|2; (3.23)

this constraint follows from an energy balance which is inde-
pendent of the specific scatterer (see, e.g., Ref. [57]).

Towards asymptotic matching, we make use of the small-
argument asymptotic expansion of the Hankel function [22] to
obtain

Q ∼ 2 + 4i

π
A

(
ln R + γE − ln 2 − π i

2

)

+ O(R2 ln R) as R → 0, (3.24)

where γE ≈ 0.5772 . . . is the Euler–Mascheroni constant.
Matching with (3.15) we find, upon comparing the logarith-
mically growing terms,

F = 4iA. (3.25)

Then, matching the constant terms and using (3.25) gives the
amplitude of the monopole term in (3.22) as

A = iπ

ln(
2δ/16) + 2γE − 2πβ(λ) + 2π (χ2
2V )−1 − iπ
.

(3.26)

As mentioned before, we allow for a logarithmic dependence
upon δ in the leading-order term; given (3.25), this depen-
dence applies in the inner region as well. It is notable that
the form (3.26) is consistent with the energy balance (3.23).

We have accordingly obtained the two quantities of in-
terest, namely, the flux F and the scattering coefficient A.
These quantities depend upon the function β(λ), which we
now discuss.
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FIG. 3. Variation of β with λ = Kχ 2
2: solid line: exact solu-
tion; dashed line: strong interfacial-tension approximation (3.27);
thin vertical lines: antiresonances

D. The function β(λ)

The function β(λ) is determined in Appendix B by solv-
ing the canonical inner problem (3.7)–(3.12) using elliptical
cylinder coordinates. Figure 3 presents the resulting variation
of β with λ = Kχ2
2. This exact variation is depicted by the
solid line. We note several features of this function that are
derived in Appendix B. First, at small values of the argument
β diverges,

β ∼ − 3

2λ
for λ � 1; (3.27)

this approximation is portrayed by the dashed line in Fig. 3.
In this limit, the meniscus is parabolic, with

η̃ ∼ 3(1 − x2)

4λ
. (3.28)

We next note that β has an infinite sequence of singularities
at discrete values of its argument, the first three of these being
indicated by the vertical lines in Fig. 3. Let � be the difference

between the argument and one of these singular values, say λa;
then, according to the analysis in Appendix C,

β ∼ −constant

�
for |�| � 1, (3.29)

where the constant is positive; it follows that β → ∞ when
λ approaches λa from below, while β → −∞ when λ ap-
proaches λa from above. This is indeed observed in Fig. 3.
Last, in Appendix B, we confirm that for large values of the
argument, but away from the singularities, β = o(1).

E. Illustrations

With the variation β(λ) available, the response of the single
bubble to the planar wave is provided by formula (3.26). In
what follows we illustrate this formula employing the values
δ = 10−3, χ = 4.4, and V = 1 [see Table I(b)]; these values
are used hereafter throughout. Taking P as the atmospheric
pressure we find that, with a measured in micrometers, K is
approximately 2a; for micrometer-size grooves it is of order
unity.

In Fig. 4 we plot the variation of |A| and arg A with

 for K = 1. In the evaluation of A using (3.26) we have
calculated β using both the exact solution, as outlined in
Appendix B, and the small-Kχ2
2 approximation (3.27);
the resulting values of A obtained by these two cal-
culations are respectively portrayed in solid and dashed
curves. We observe resonances, where |A| attains a lo-
cal maxima, as well as antiresonances, where |A| van-
ishes. The loci of the resonances and antiresonances in
the (
, K ) plane are shown in Fig. 5. The larger is the
value of K , the earlier do the antiresonances occur on the

 axis. We also observe that the fundamental resonance oc-
curs on that axis before the first antiresonance, while higher-
order resonances closely follow the antiresonances.

The appearance of antiresonances is evidently related to
the singularities of β. Indeed, when |β| → ∞, we find from

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

/2

3 /2

2

FIG. 4. The magnitude and phase of A as functions of 
 for K = 1. The solid curves are obtained using the exact variation of β with
Kχ 2
2, while the dashed curves are obtained using the small-Kχ2
2 approximation (3.27). The vertical lines indicate the values of the
resonance frequencies, obtained using (4.1), and antiresonance frequencies, obtained using (B18) and (C1).
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0 1 2 3 4 5
10-1

100

101

FIG. 5. Loci in the (
, K ) plane of the resonances (solid lines)
and antiresonances (dashed lines) of a single trapped bubble. The
dash-dotted line shows approximation (4.4) for the fundamental
resonance.

(3.26) that A → 0. However, the appearance of resonances
and antiresonances in pairs requires some explanation.

IV. RESONANCES AND ANTIRESONANCES

A. Resonance frequencies

Considering (3.26) we see that the maximum possible
amplitude of A is obtained whenever the real part of the
denominator vanishes. This gives damped resonances at fre-
quencies 
r satisfying:

β(Kχ2
2
r ) = γE

π
+ 1

2π
ln


2
r δ

16
+ 1

V χ2
2
r

. (4.1)

At any one of these resonance we find from (3.26) that

A(
r ) = −1. (4.2)

In particular, the amplitude |A(
r )| = 1, independently of
material properties.

Given the formal largeness of ln δ, there are two ways to
satisfy the resonance conditions. The first, which corresponds
to the fundamental resonance, applies for small frequencies,

where (3.27) applies and (4.1) reduces to

− 3

2Kχ2
2
r

∼ ln δ

2π
+ 1

V χ2
2
r

, (4.3)

which gives


2
r ∼ π (3/K + 2/V )

χ2 ln(1/δ)
, (4.4)

corresponding to “logarithmically small” frequencies. Recall-
ing that the limit (3.27) is accompanied by the approximately
parabolic profile (3.28), and substituting the resonance value
[obtained from (3.25) and (4.2)]

F = −4i (4.5)

yields

η ∼ −3i(1 − x2)

Kχ2
2
. (4.6)

The approximation (4.4) for the fundamental resonance is
depicted by the dash-dotted line in Fig. 5. While the ap-
proximation agrees qualitatively with the exact frequencies
calculated using (4.1), the error is substantial; indeed, the error
in (4.4) can be shown to be O(ln ln 1

δ
/ ln2 1

δ
).

An essentially different balance, at nonsmall frequencies,
has to do with the singularities of β, which correspond to
antiresonances at discrete frequencies {
a}. Close to these
singularities β is large, provided by (3.29). Balancing with
the ln δ term in (4.1) implies that the higher-order resonance
frequencies are formally close to the antiresonances, with


r − 
a ∼ constant

ln(1/δ)
, (4.7)

where positivity of the constant here follows from (3.29). This
explains the “attraction” of the higher-order resonances to the
antiresonances, as observed in Figs. 4 and 5.

With the rescaled pressure q̃ being real-valued, and given
(4.5), the unscaled pressure q is imaginary at resonance;
the same holds for the displacement. In Fig. 6, we present
the contour maps of the imaginary part of q(x, y) at the
frequencies of the “zeroth-order” (fundamental) and “first-
order” resonances, as obtained for K = 1. Also shown are
the corresponding imaginary parts of the displacements. For
convenience, these are plotted on the same axes used to
portray the pressure map; since the displacements have not
been normalized by a [recall (2.16)], the latter plots only

FIG. 6. Contour maps of the imaginary part of q(x, y) at resonance for K = 1 (cf. Fig. 4). (a) Zeroth-order resonance, 
 = 0.26. (b) First-
order resonance, 
 = 2.02. Also shown is the imaginary part of η. The small rectangles, of unity area, indicate the gas cavity; their color
corresponds to the (imaginary part of) gas-domain pressure value, Im q̄.
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provide a relative measure. Notwithstanding the above, it is
worth noting that the displacement is about ten times larger
at the zeroth-order resonance than at the first-order resonance.
Note that at the fundamental resonance the displacement is
parabolic, as predicted in (4.6).

B. Antiresonances

We next consider the antiresonances, namely, the set of
frequencies {
a} where the scattering coefficient A vanishes;
note that the flux F and hence the gas pressure fluctuation
q̄ also vanish at these frequencies [see (3.2) and (3.25)].
Interestingly, we also find from (2.20) and (3.3) that the mean
displacement vanishes

∫ 1

−1
η(x) dx = 0. (4.8)

The liquid pressure in the inner region, however, does not
vanish; nor does the meniscus displacement. In fact, since
the antiresonance frequencies correspond to the singularities
of β, which implies in turn that q̃ is unbounded, it may at
first appear that these diverge at these frequencies. Rather, the
true liquid pressure q = F q̃ remains finite since the product
Fβ → 2 as any of the antiresonances are approached [see
indeed (3.25)–(3.26)]. Thus the unscaled pressure field in the
inner region satisfies

q → 2 as r → ∞. (4.9)

The latter is the inner-region value of the sum (3.21) of the
incident and reflected pressure fields. Thus at antiresonance
the action of the incident pressure on the meniscus is precisely
balanced by the capillary stresses and the coupling between
the meniscus dynamics and the liquid pressure in the inner
region. The gas bubble is idle and plays no role in this
balance; as a consequence there is no scattering: even though
the liquid pressure and meniscus are oscillating, the bubble
is acoustically invisible in the outer region, producing no
signal. Indeed, since the antiresonances are determined from
the singularities of β, they can only depend upon the group
(3.13) which is independent of the gas properties (namely,
ρ̄ and c̄) and the groove area [recall (3.14)]. With the gas
being idle, it is hardly surprising that its properties are not
manifested.

Since the unscaled pressure q is forced at antiresonance by
the real-valued condition (4.9), it must be real-valued as well.
To further illustrate the above deductions we show in Fig. 7 the
contour maps of Re(q) at the first-order antiresonance (
 ≈
1.97, cf. Fig. 4) for K = 1. Note the zero mean displacement,
in agreement with (4.8), and the idle gas pressure.

The antiresonance frequencies can be determined directly
by considering the canonical inner problem with zero flux.
There are nontrivial solutions to this problem only for certain
special frequencies, 
 = {
a}, which constitute the eigenval-
ues of that problem. The elliptic-cylinder coordinates scheme
of Appendix B is adapted in Appendix C to solve this eigen-
value problem. The resulting discrete values of 
a, obtained
for the appropriate K values, are indicated in Figs. 4 and 5.

FIG. 7. Contour maps of the real part of q(x, y) at the first-order
antiresonance for K = 1. Also shown is the real part of η. The small
rectangle indicates the corresponding gas-domain pressure value
Re(q̄).

V. DILUTE ARRAYS OF TRAPPED BUBBLES

A. Foldy’s approximation

Consider now a more complex configuration where the
solid surface is decorated not with one but rather with an
equally spaced array of identical grooves. For subwavelength
grooves, ka � 1, and in the “dilute” limit where the array
spacing L is large in comparison with a, Foldy’s approx-
imation [56,57] allows us to build on the theory we have
developed for a single groove to study the response of the
array. Foldy’s method, which has been widely used to study
clusters and arrays of free bubbles, among other applications,
holds for dilute collections of subwavelength scatterers that
radiate isotropically and in proportion to the local value of
the pressure field (excluding the self-scattering). In the present
case, the proportionally constant, or scattering coefficient, is
provided by the complex amplitude A studied in the preceding
sections; we may accordingly consider A as a known func-
tion of 
, provided by (3.26), which encodes both the near
field and acoustic properties of a single trapped bubble and
in particular describes its multiple resonances and antireso-
nances. We note that the outer description (3.22) coincides
with Foldy’s approximation in the case of a single groove;
the effective pressure acting on that groove is given by the
superposition of the incident and reflected plane waves, evalu-
ated at the groove’s position. For a dilute array of grooves, the
external pressure acting on any given groove is also affected
by the cylindrical waves emitted by all the other grooves.
Foldy’s scheme thereby approximately accounts for all the
multiple-scattering events between the bubbles in the array.

Foldy’s approximation can only be applied when ka � 1
and L/a � 1. The product of these numbers, l = kL, remains
otherwise arbitrary. In fact, this product represents the ratio
between the period L and the wavelength 2π/k. Recalling
(2.15), we note that l is related to the dimensionless frequency

 via

l = δ1/2 L

a

, (5.1)

where the representation by a product of a small parameter
and a large one is evident. In what follows we shall apply
Foldy’s scheme to an array of grooves, focusing on both
infinite and finite arrays.
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Q(i) = e−iY

X

Y

2π

l 2l0−l−2l

l = δ1/2 L

a
Ω

R1

φ

R0 = R

FIG. 8. Dimensionless schematic of a dilute array of trapped
bubbles.

B. Infinite arrays

Consider first the case of an infinite periodic array of
grooves. It is convenient to analyze scattering from the ar-
ray using the outer stretched coordinates [cf. (3.16)], where
lengths are normalized by 1/k, so that the wavelength is
2π and the dimensionless period is l , see Fig. 8. Let the
positions of the grooves be (X,Y ) = (Xn, 0), where Xn = nl
and n = −∞, . . . ,∞. As before, we assume an incident plane
wave propagating towards the surface [cf. (3.19)]. In that case,
symmetry dictates that the grooves emit cylindrical waves in
tutti; thus the total field is

Q = 2 cosY + 2w

∞∑
n=−∞

H0(Rn), (5.2)

where Rn =
√

(X − Xn)2 + Y 2 is the radial distance from
the nth groove (see Fig. 8) and the complex amplitude w

remains to be determined. Note that (5.2) is consistent with the
Neumann condition applying on Y = 0 for X �= nl . Following
Foldy’s scheme, the scattering coefficient A times the external
field acting on an arbitrary groove, say the mth one, must equal
2w [cf. (3.22)]:⎡

⎣1 + w
∑
n �=m

H0(|n − m|l )

⎤
⎦A = w ∀m ∈ Z. (5.3)

The dependence upon the arbitrary index m is readily elimi-
nated from (5.3); indeed, defining the lattice sum

σ (l,K) =
∑
n �=0

einKlH0(|n|l ), (5.4)

where K ∈ [0, π/l], we find that (5.3) can be written as

[1 + wσ (l, 0)]A = w. (5.5)

The additional dependence upon K in (5.4) is not needed here
but will be useful later. Solving for w, we find

w = A

1 − Aσ (l, 0)
. (5.6)

Following Linton [59], the lattice sum (5.4) is calculated
by transforming the conditionally convergent series into the
absolutely convergent series

σ (l,K) = −1 − 2i

π

(
γE + ln

l

4π

)
− 2i

h0

− 2i
∑
n �=0

(
1

hn
− 1

2π |n|
)

, (5.7)

where

hn =
{√

(Kl + 2πn)2 − l2, |Kl + 2πn| � l

−i
√

l2 − (Kl + 2πn)2, |Kl + 2πn| < l
. (5.8)

The coefficient w directly determines the near fields of the
scatterers. Specifically, each of these near fields is described
by the single-groove canonical problem discussed in Sec. III,
the only exception being that the scaling prefactor, the flux
F , is no longer proportional to A via (3.25); rather, F = 4iw,
where w depends on A via (5.6). In particular, w (rather
than A) is now proportional to the gas-pressure fluctuation. It
is evident from (5.6) that the near fields exhibit antiresonances
at precisely the same frequencies as an isolated groove,
whereas the resonances are modified by groove-groove
interactions.

The solution for w also allows, via (5.3), the calculation of
the pressure field at distances large compared with the groove
size. Of particular interest is the far-field, i.e., distances from
the surface large compared with the wavelength. Using the
asymptotic relation (see [59])

∞∑
n=−∞

H0(Rn) ∼ 2

l

�l/2π
∑
n=−�l/2π


ei(2nπX/l+Y
√

1−(2nπ/l )2 )√
1 − (2nπ/l )2

as Y → ∞, (5.9)

we find from (5.3) that the scattered far field consists of one
or more plane waves, depending on the largeness of l . In
particular, when the spacing is smaller than one wavelength,
i.e., for l < 2π , there is only a single reflected wave:

Q ∼ e−iY + ReiY as Y → ∞, (5.10)

wherein

R = 1 + 4w

l
(5.11)

is a complex-valued reflection coefficient. In the absence of
dissipation, energy conservation clearly requires that |R| = 1;
this is confirmed by substituting (5.6) into (5.11), using the
single-groove energy balance (3.23) and Re(σ (l, 0)) = −1 +
2/l .

To present the above results we employ the values which
have been used throughout in the analysis of a single groove,
namely, δ = 0.001 and V = 1, as well as the value K = 1.
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FIG. 9. Infinite array of grooves: |w|, arg w, and arg R as func-
tions of l (or 
) for L/a = 10 and K = 1. The vertical lines indicate
the corresponding single-groove resonance frequencies, obtained
using (4.1), and antiresonance frequencies, obtained using (B18)
and (C1).

We focus on the case where the spacing is small compared to
the wavelength. In this regime, which is relevant to grooved
superhydrophobic surfaces, the interaction of any two grooves
grows logarithmically, rather than attenuates, with the dis-
tance between them; the interaction only attenuates over dis-
tances comparable to the wavelength.

With δ fixed, the above requirement of small l implies that
L/a cannot be too big, see (5.1). To illustrate how these strong
long-range interactions affect the response we set L/a = 10,
for which l/
 ≈ 0.3. Figure 9 shows the variation of |w|,
arg w, and arg R with l (or 
). It clearly confirms our pre-
diction of the robustness of the single-groove antiresonances,
indicated in the usual manner by vertical lines. The single-
groove resonances, on the other hand, are significantly modi-
fied. Up to around the second antiresonance, |w| varies essen-
tially linearly with l , except close to the first antiresonance;
the zeroth and first resonances are entirely suppressed. There
are still clear signatures, however, of these isolated-groove
resonances in the phases arg w and arg R. In particular, close
to the fundamental single-groove resonance and between each
two antiresonances, there is a frequency for which arg R = π

(i.e., R = −1) and the surface effectively reflects as if it were
acoustically soft (rather than rigid as the underlying substrate).

C. Long-finite arrays

In reality, superhydrophobic surfaces are finite. Naively, it
seems plausible that long-finite arrays, consisting of a large
number of grooves, behave similarly to infinite arrays. When
the spacing is deeply subwavelength, however, the length of
the whole array may still be smaller than one wavelength; this,
together with the long-range character of the groove-groove
interactions, suggests conducting a comparison between long-
but-finite and infinite arrays.

To this end, consider a finite array of 2N + 1 (N ∈ N)
grooves that are distributed evenly about X = 0, viz., Xn = nl ,
where n = −N, . . . , N . In this case, which lacks the transla-
tional invariance of an infinite array, the total wave field is
[cf. (5.2)]

Q = 2 cosY + 2
N∑

n=−N

wnH0(Rn), (5.12)

where the coefficients {wn} remain to be determined. From
(5.12), Foldy’s scheme is developed similarly to the infinite
case [cf. (5.3)], giving⎡
⎣1 +

∑
n �=m

wnH0(|n − m|l )

⎤
⎦A = wm for m = −N, . . . , N.

(5.13)

This is an elementary matrix problem for {wn}. Note that
symmetry implies wn = w−n and hence only a system of
N + 1 equations needs to be solved.

In Fig. 10, we compare the variation with l of the co-
efficient |w0|, calculated by numerically solving (5.13) for
N = 20, and that of the coefficient |w| (= |w0|), which cor-
responds to an infinite array [cf. (5.6)]. In both cases, we have
set L/a = 10. The response of the finite array is essentially
identical to that of the infinite one, expect in a sequence of
frequency intervals wherein the response of the finite array
oscillates wildly. The first such interval is relatively wide and
is positioned about the fundamental resonance frequency of
an isolated groove; subsequent intervals are narrower, and
are positioned about the higher-order resonances of a single
groove. We have numerically verified that, within the above
frequency intervals, the response of the finite array does not
approach that of the infinite one with increasing N . This
observation is rationalized next.

D. Surface waves

The above observations strongly suggest that arrays of
bubbles trapped in the grooves of a rigid substrate are capable
of guiding surface waves, namely, waves which propagate
along the surface and attenuate exponentially fast in the
normal direction. Indeed, such waves would only be excited
in the finite case, by diffraction of the incident plane wave at
the edges of the array. In the absence of dissipation, surface
waves propagate without attenuation and hence the grooves
would interact across arbitrary distances. Moreover, counter-
propagating surface waves may form standing waves along the
finite array, resulting in resonances limited only by diffraction
of the surface waves at the edges (similar to so-called optical
Fabry-Pérot resonances [60]). Multiple resonances are indeed
visible in Fig. 11, which zooms in on the first oscillatory fre-
quency interval in Fig. 10. A similar effect has been previously
observed in a different scenario, of plane-wave scattering from
an array of (nonresonant) rigid cylinders [61,62].

The existence of surface waves in the present case is
hardly surprising. While flat solid surfaces are incapable of
supporting surface waves, it is well known that surface waves
may be brought into existence by introducing periodicity,
in which case they are traditionally termed Rayleigh-Bloch
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FIG. 10. (Top) Comparison between the near-field response for an infinite array and a finite array consisting of 2N + 1 = 41 grooves.
(L/a = 10 and K = 1 for both arrays.) (Bottom) Dispersion curves for surface waves guided by the infinite array; the sound line, representing
propagation in the bulk, is also shown.

waves. Rayleigh-Bloch waves normally exist in frequency
intervals where the wavelength in free space is comparable
to the spacing; they resemble elastic Rayleigh waves while
satisfying Bloch-periodicity conditions [63]. When the sur-
face is decorated with a periodic array of subwavelength
resonators, however, as in the present study, Rayleigh-Bloch
may exist even when the spacing itself is subwavelength; such
surface waves are termed “spoof plasmons,” since they mimic
electromagnetic surface-plasmon waves at a metal-dielectric
interface [33–35,64].

To verify the existence of surface waves for the present
configuration, we look for surface-wave solutions in the case
of an infinite array. Accordingly, we disregard the incident
(and reflected) plane wave and look for homogeneous so-
lutions Q(X,Y ) that attenuate as Y → ∞ and satisfy Bloch
periodicity, namely, that

Q(X,Y )e−iKX is l-periodic in the coordinate X , (5.14)

where K is known as the Bloch wave number. As before,
the grooves are treated as point-like isotropic scatterers char-
acterized by the scattering coefficient A. This, together with
condition (5.14), suggests the ansatz

Q ∝
∞∑

n=−∞
einlKH0(Rn), (5.15)

which is consistent with the Neumann condition on the solid
substrate; since we are looking for surface-wave eigenfunc-
tions, the constant of proportionality in (5.15) is immaterial.
Application of Foldy’s scheme to (5.15) yields the dispersion
relation,

Aσ (l,K) = 1, (5.16)

where A depends on l via (3.26) and (5.1), providing in turn
an implicit relation between the spacing l (or frequency 
)
and the Bloch wave number K.
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0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

3 /4
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/4

0

N=20

N=

FIG. 11. Same as Fig. 10 but focused on a small-l interval. The added horizontal lines mark the Kl values for which a whole number
of surface-wave wavelengths fit the finite array: these are provided by (5.18) with M = 1, 2, . . . , 20. The added vertical lines mark the
corresponding l values, showing approximate agreement with the position of the resonant peaks of the finite array.
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FIG. 12. Plane-wave scattering from a finite array of 2N + 1 =
41 grooves (L/a = 10 and K = 1). For X < 0 (X > 0), we plot Im Q
for l just below (above) the cutoff of the first surface-wave branch (cf.
Figs. 10 and 11). The inset zooms upon the array region.

Owing to time-reversal symmetry and the periodicity of
the array, l is an even and 2π -periodic function of Kl . We
may therefore restrict our attention to the irreducible Brillouin
zone 0 < Kl < π [65]. Moreover, since our interest is in
surface-wave solutions that decay away from the array, we
further limit our search to l < Kl < π , in which interval the
bulk supports only evanescent waves [59]. Use of (3.26) and
(5.7) to simplify (5.16) in that interval yields a real-valued
dispersion relation:

1

π
ln

l

π
δ1/2
+ 1√

K2l2 − l2

+
∑
n �=0

(
1√

(Kl + 2πn)2 − l2
− 1

2π |n|

)

+β(Kχ2
2) − 1

χ2
2V
= 0. (5.17)

We note that a similar dispersion relation has recently been de-
rived for surface waves guided by an array of open-waveguide
resonators [64].

To demonstrate the linkage between the anomalous re-
sponse of a long-finite array and edge-excitation of surface
waves, we solve (5.17) numerically for the same parameters
as in Fig. 10; the resulting dispersion curves are shown in the
lower part of that figure. We find several solution branches,
whose l intervals of existence are precisely those where
the long-finite array exhibits a highly oscillatory response.
Furthermore, in Fig. 12, we plot the spatial distribution of the
field Im Q for two values of l , just below and above the cutoff
value of the first surface-wave branch, respectively; in the
former case, the excitation of surface waves is clearly visible.
We can also test our assertion that the multiple resonant peaks
in the response of a finite array correspond to the formation
of standing surface waves. Specifically, we test an heuristic
approximation for the peak frequencies, to leading order in
the limit N � 1, obtained by requiring that a whole number

M of surface wavelengths 2π/K fits in the array; this gives

Kl ≈ πM

N
, (5.18)

where we took 2Nl for the length of the array. Solving the
dispersion relation (5.17), these values of Kl transform into
frequencies; in Fig. 11, we show that these frequencies predict
the resonant peaks quite well. To improve on (5.18), we would
need to carry out a detailed asymptotic analysis, which would
undoubtedly uncover period-scale corrections to the assumed
effective array length.

It is clear that there is a connection between frequency in-
tervals which accommodate surface waves and the resonance
frequencies of an isolated groove (compare Figs. 4 and 10).
This connection can be studied via asymptotic analysis of the
dispersion relation (5.17) close to the single-groove resonance
frequencies [64], which are governed by (4.1). As an example,
we obtain an approximation for the cutoff frequency of the
first, deeply subwavelength, surface-wave branch (cf. Fig. 11).
Thus, for Kl = π , approximating (5.17) to leading order in l ,
using (5.1) and (3.27), we find for the cutoff frequency


2
c ∼ π (3/K + 2/V )

χ2 ln(L/a)2
, (5.19)

with an O(1/ ln2(L/a)) logarithmic error. Remarkably, (5.19)
has the same form as the approximate expression (4.4) for the
fundamental resonance of an isolated groove, except that the
argument of the logarithm is (L/a)2 instead of 1/δ.

E. Scattering from an acoustically compact array

We complete this section by considering the scattering
from a finite array whose total length is small compared
to the wavelength. We thereby wish to emphasize that such
moderately long arrays scatter like a point scatterer, in contrast
to an infinite array which scatters one or more plane waves
[cf. (5.9)]. Specifically, we consider the diffracted field Q(d) =
Q − 2 cosY [cf. (5.12)], or

Q(d) = 2
N∑

n=−N

wnH0(Rn), (5.20)

in the limit l � 1 with N fixed. Using

Rn ∼ R − nl cos φ + O(l2) as l → 0, (5.21)

where φ is a polar angle measured from the X axis (see Fig. 8),
we find

Q(d)∼2

(
N∑

n=−N

wn

)
H0(R) + O(l2) as l → 0, (5.22)

where the O(l ) term vanishes because
∑N

n=−N nwn = 0
by symmetry. Thus an acoustically compact array scatters
isotropically. For the field distributions plotted in Fig. 12,
N = 20 and l ≈ 0.1, hence the total length of the array is
≈4, i.e., larger than half a wavelength; the deviations from
isotropic scattering, observed specifically about φ = π/2, are
therefore unsurprising.
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VI. CONCLUDING REMARKS

We have studied the acoustic response of an isolated cylin-
drical gas bubble, trapped in a micrometer-sized groove, to
an incident plane wave. It exhibits multiple subwavelength
extremities, namely, a fundamental Minnaert-like resonance
followed by a sequence of higher-order resonance and an-
tiresonance pairs. The fundamental resonance occurs in a
low-frequency regime where the bubble dynamics are effec-
tively characterized by a single degree of freedom, say the
uniform gas pressure; the pinned meniscus retains an approx-
imately parabolic profile with a curvature proportional to that
pressure. At higher frequencies (still in the subwavelength
regime), the meniscus is no longer parabolic and its dynamics
become fully coupled with the compression and rarefaction
of the gas and the spatial variations in the surrounding liq-
uid pressure. Thus, in this regime, the meniscus profile is
characterized by an infinite number of degrees of freedom
(hence the infinite sequence of higher-order resonances). At
the antiresonances, which closely precede the latter reso-
nances, the liquid pressure and meniscus deformation appear
to conspire to nullify the gas-pressure fluctuations (and hence
the scattering), irrespective of the groove geometry, the gas
properties and the local value of the incident pressure field.
This robustness of the antiresonance frequencies may be
useful for experimentally studying the meniscus dynamics as
a function of a reduced set of parameters.

The acoustic response of a dilute array of trapped bub-
bles has also been studied. To this end, we have employed
Foldy’s point-scatterer approximation, with the frequency-
response of an isolated bubble, as described above, entering
via a complex-valued and frequency-dependent scattering
coefficient. Although in this dilute limit the array spacing
is assumed large compared to the groove size, interbubble
interactions are strong and long range. In fact, pair interac-
tions grow logarithmically with distance in the subwavelength
regime, attenuating only on the scale of the wavelength. As a
consequence, the resonances observed for an isolated bubble
are shifted and diminished in amplitude in the problem of
plane-wave scattering from an infinite dilute array; in fact, the
first few resonant peaks disappear in the case where the array
spacing is deeply subwavelength. (The antiresonances are
robust to interference in the dilute limit.) The isolated-bubble
resonances are manifested, however, in the phase response of
the infinite array; in particular, near these resonances the phase
of the reflected wave varies rapidly in between the values
corresponding to acoustically rigid and soft homogeneous
substrates. Furthermore, these resonances also give rise to
surface-wave eigenstates of the infinite array, i.e., collective
bubble oscillations propagating along the array and expo-
nentially attenuating away from it. In particular, given the
deeply subwavelength nature of the bubble resonances, arrays
with subwavelength spacing support “spoof plasmon”-like
surface waves, whose wavelength is small compared with
the wavelength in the bulk. In those frequency intervals where
surface waves exist, the acoustic response of a long-finite
array markedly differs from that of an infinite array; this is
due to edge-excitation of surface waves, which mediate inter-
actions over arbitrary distances. In particular, these frequency
intervals feature a set of resonant peaks which correspond to
the formation of standing surface waves over the array.

We have carried out our investigation neglecting intrin-
sic (i.e., viscous and thermal) losses. This choice has been
motivated by the hypothesis, corroborated by our analysis,
that the resonances of a cylindrical bubble trapped in a
micrometer-sized groove are damped (rather than weakly
damped) radiatively; in particular, the gas- and liquid-pressure
fluctuations in the vicinity of the bubble remain comparable
in magnitude to the incident field. While in agreement with
analyses of other two-dimensional scenarios [50–52], this
finding sharply contrasts the more familiar three-dimensional
scenarios of acoustically driven spherical bubbles and bubbles
trapped in holes; in these cases radiation damping is weak
and accordingly losses have a dramatic effect at resonance,
even when the viscous and thermal boundary layers are
narrow relative to the characteristic bubble size [43,45]. In
the present two-dimensional scenario we anticipate that such
narrow boundary layers have a perturbative effect, except
perhaps in certain “singular” scenarios. In particular, at the
high-order resonances and antiresonances, the radius of cur-
vature of the meniscus may become locally comparable to
the boundary-layer width. Also, losses will result in surface-
wave attenuation, which, in turn, would substantially modify
their dispersion at near-cutoff frequencies and dampen the
standing-wave-type resonances predicted for long-finite ar-
rays.
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APPENDIX A: THERMODYNAMIC MODEL

In modeling bubble dynamics, it is a common practice
to assume a thermodynamic-like description, where the gas
pressure is assumed uniform—with its value being governed
by the equation-of-state of an ideal gas. Generally speaking,
that approach is incorrect due to the gas motion, see (2.7b).
Nonetheless, our systematic approach leads, in the long-
wavelength limit, to a uniform leading-order gas pressure.
Since the Helmholtz equation is built upon the assumption of
local isentropic processes, it is worthwhile to inspect whether
the long-wavelength limit coincides with the results predicted
by the “thermodynamic description.”

For isentropic changes, the gas pressure satisfies an
adiabatic-process equation, where the product of the (uni-
form) pressure p̄ with the (two-dimensional) bubble volume,
raised to the power κ , must equal P(a2V )κ . In the present
linearized framework, where the meniscus deformation is
small, the difference between the bubble volume and a2V is
proportional to

∫
M ζ ds. The associated fractional change of

the gas pressure is then given by

− κ

a2V

∫
M

ζ ds. (A1)

Condition (2.9) is accordingly replaced by

γ
d2ζ

ds2
= p + κP

a2V

∫
M

ζ ds in M, (A2)
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while equations (2.5b) and (2.7b) and the velocity-continuity
condition (2.11) are abandoned. Consistently, (2.17b) and
(2.18b)–(2.19) are abandoned in the dimensionless formula-
tion, as is (2.23), while (2.21a) is replaced by

d2η

dx2
= q + K

V

∫ 1

−1
η dx in M. (A3)

Consider now the long-wavelength limit, where the gas
pressure predicted by the “dynamic” description is rendered
uniform, namely, (3.2), where F is defined by (3.3). Given
(2.20) we find that condition (2.21a) coincides with condi-
tion (A3), which was derived using the “thermodynamic”
description.

APPENDIX B: SOLUTIONS TO THE CANONICAL
INNER PROBLEM

1. Elliptic-cylinder coordinates

We begin by introducing the elliptic-cylinder coordinates
μ and ψ [66]. The constant-μ curves are the ellipses

x2

cosh2 μ
+ y2

sinh2 μ
= 1, (B1)

while the constant-ψ curves are the hyperboles

x2

cos2 ψ
− y2

sin2 ψ
= 1. (B2)

In terms of these coordinates, the upper-half plane y > 0 is
covered by the range μ > 0 and 0 < ψ < π , while M is the
line μ = 0. Note that at large r

μ ∼ ln(2r) + o(1). (B3)

Consider now the canonical problem (3.7)–(3.11) govern-
ing q̃. In terms of the elliptic-cylinder coordinates, condition
(3.8) reads

∂ q̃

∂ψ
= 0 for ψ = 0, π. (B4)

We accordingly seek a solution of Laplace’s equation which
satisfies both (B4) and (3.10) and is an even function of
ψ − π/2. Using separation of variables in the elliptic-cylinder
coordinates [66] and noting (B3) we readily obtain

q̃ = 1

π
μ +

∞∑
m=0

Ame−2mμ cos 2mψ. (B5)

The coefficients {Am}∞m=0 are determined using condition
(3.9), which apply at μ = 0, together with the interface equa-
tions (3.12). Once these coefficients are determined, the value
of β is provided as [cf. (3.15) and (B3)]

β = A0. (B6)

In what follows we first present an exact solution of the
canonical problem governing q̃ and η̃. This is followed by the
derivation of approximate solutions for small and large values
of the parameter λ, defined in (3.13).

2. Exact solution

a. Dirichlet to Neumann mapping on M
It is convenient to denote the pressure at y = 0 (with

|x| < 1) as �(x),

�(x)
def= q̃(x, y = 0) for |x| < 1, (B7)

and temporarily regard it as given. The solution of (3.12) can
then be readily obtained as

η̃ =
∫ 1

−1
G(x, x′)�(x′) dx′, (B8)

wherein

G(x, x′) = 1

2

{
(x + 1)(x′ − 1), x < x′

(x′ + 1)(x − 1), x > x′ (B9)

is the Green function appropriate to (3.12).
Substituting (B8) into (3.9) provides ∂ q̃/∂y at M,

∂ q̃

∂y
= λ

∫ 1

−1
G(x, x′)�(x′) dx′ for |x| < 1. (B10)

From (3.11), we then find that

−λ

∫ 1

−1
(1 − x′2)�(x′) dx′ = 2. (B11)

b. Calculation of the Fourier coefficients

Differentiating (B5), we obtain

∂ q̃

∂μ

∣∣∣∣
μ=0

= 1

π
− 2

∞∑
m=1

mAm cos 2mψ. (B12)

Noting that

∂ q̃

∂μ

∣∣∣∣
μ=0

= sin ψ
∂ q̃

∂y

∣∣∣∣
y=0

(B13)

we obtain, upon making use of the orthogonality of the
trigonometric functions on (0, π ),

−mAm = 1

π

∫ π

0

∂ q̃

∂y

∣∣∣∣
y=0

cos 2mψ sin ψ dψ, m = 1, 2, . . .

(B14)

In performing the integration we note that x = cos ψ at μ = 0.
This suggests employing the integration variable ψ ′ ∈ (0, π ),
defined via x′ = cos ψ ′, instead of x′. We therefore find that
for m � 1

Am + λ

mπ

∫ π

0
dψ cos 2mψ sin ψ

×
∫ π

0
dψ ′ G(x, x′)�(x′) sin ψ ′ = 0. (B15)

It is readily verified that applying the above procedure for the
zeroth mode simply reproduces (B11).
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c. System of algebraic equations

With the function � appearing in (B15), this equation set
provides only a formal solution for {Am}∞m=1. Moreover, it does
not provide A0, which is expected to be determined by (B11).
To close the problem, we substitute (B5) into (B7) to obtain

�(x) =
∞∑

n=0

An cos 2nψ. (B16)

Substituting (B16) into (B11) gives

1 + 6λ

∞∑
n=0

An

16n4 − 40n2 + 9
= 0, (B17)

which may be viewed as an equation governing A0. Simi-
larly, substituting (B16) into (B15) yields the infinite set of
equations,

mπAm + λ

∞∑
n=0

αmnAn = 0 for m � 1, (B18)

wherein

αmn =
∫ π

0
dψ sin ψ cos 2mψ

∫ π

0
dψ ′ G(x, x′) sin ψ ′ cos 2nψ ′ = 6(4m2 − 1)−1(4n2 − 1)−1

×(4(m − n)2 − 1)−1(4(m − n)2 − 9)−1(4(m + n)2 − 1)−1(4(m + n)2 − 9)−1

×(64m6 − 16m4(36n2 + 11) + m2(−576n4 + 864n2 + 76) + (1 − 4n2)2(4n2 − 9)). (B19)

For each m � 1, (B18) may be viewed as an equation govern-
ing Am.

Equations (B17) and (B18) provide an infinite algebraic
system governing the coefficients {Am}∞m=0. These equations
are readily solved using controlled truncation. Once the coef-
ficients are computed, we obtain β from (B6).

3. Strong surface tension (or low frequency)

In what follows, we supplement the above solutions with
two asymptotic approximations. Consider first the limit λ �
1. Equations (3.9)–(3.11) suggest that η̃ = O(λ−1) while
∂ q̃/∂y = O(1). This allows for a uniform O(λ−1) term in q̃.
We accordingly postulate the expansions

q̃ = λ−1β−1 + q̃0(x, y) + · · · , η̃ = λ−1η̃−1(x) + · · · .

(B20a, b)

It follows from (3.12) that the surface displacement is approx-
imately parabolic:

η̃−1 = x2 − 1

2
β−1. (B21)

Substitution into (3.9) and (3.11) gives

β−1 = − 3
2 . (B22)

Combining (B20a) and (B22) furnishes approximation (3.27).
Similarly, combining (B20b), (B21), and (B22) provides
(3.28).

4. Weak surface tension

Consider now the limit λ → ∞. In that limit, the kinematic
condition (3.9) suggests that η̃0 → 0 for all |x| < 1, while the
dynamic condition (3.12) implies that

q̃ = o(1) (B23)

on the meniscus μ = 0. The corresponding limiting pressure
field is then given by (B5) with An = 0 for all n, namely,

q̃ = μ

π
+ o(1). (B24)

We thus find that

β = o(1). (B25)

Inspecting the exact results for β we see that the above limit
only holds sufficiently away from the singularities of β.

APPENDIX C: SINGULARITIES OF β

1. Eigenvalue problem for singularities of β

To determine the singularities of β we note that when
|β| → ∞ the ln r term in (3.15) is subdominant. The prob-
lem governing q̃ and η̃ is accordingly modified, with (3.10)
being replaced by the condition of vanishing gradient at large
distances. Since the remaining equations [namely, (3.7)–(3.9)
and (3.12)] remain unaltered, the canonical problem becomes
homogeneous. It admits nontrivial solutions only for certain
values of λ, say {λa}. These solutions are determined up to a
constant multiplier.

The eigenvalues {λa} are readily determined using the
solution scheme of Appendix B. Indeed, the above discus-
sion implies that the solution of the canonical problem at
antiresonance is of the form (B5) provided that the first term,
proportional to μ, is omitted. The coefficients {An} are then
determined from (B17) without the forcing term,

∞∑
n=0

An

16n4 − 40n2 + 9
= 0, (C1)

and (B18). This combination constitutes a generalized eigen-
value problem for 1/λa, which is readily solved; the first three
values of λa are 75.11, 406.34, and 1179.41. For a given
value of K , the corresponding antiresonance frequencies—say
{
a}—are determined from (3.13).
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2. Analysis close to singularities

Consider now the limit λ → λa. Clearly for 0 < |λ −
λa| � 1 we have β � 1 and q̃ = O(β ). How does β depends
upon λ − λa?

We write the kinematic condition (3.9) as

∂ q̃

∂y
= λaη̃ + (λ − λa)η̃ for μ = 0. (C2)

When λ = λa we know that the first two terms balance. The
last term is related to O(1) flux, see (3.11). It follows that
η̃, and whence also β̃, scale as (λ − λa)−1. We accordingly
postulate the expansions

q̃ ∼ 1

λ − λa
q̃−1 + q̃0 + · · · , η̃ ∼ 1

λ − λa
η̃−1 + η̃0 + · · · ,

(C3)

and similarly expand

β ∼ 1

λ − λa
β−1 + β0 + · · · . (C4)

The leading-order pressure q̃−1 is governed by Laplace’s
equation. At y = 0 it satisfies a homogeneous Neumann con-
dition for |x| > 1 [see (3.8)] and the kinematic condition [cf.
(3.9)]

∂ q̃−1

∂y
= λaη̃−1 (C5)

for |x| < 1. At large r, it satisfies [cf. (3.15)]

q̃−1 → β−1 as r → ∞. (C6)

The corresponding leading-order displacement satisfies [cf.
(3.12)]

d2η̃−1

dx2
= q̃−1 for |x| < 1, η̃−1 = 0 at x = ±1.

(C7a, b)

This is the homogeneous problem which has been described
earlier. It is solvable for the singular values λa. Note that the
multiplicative freedom leaves β−1 undetermined.

To determine β−1, we consider the next asymptotic order.
The O(1) fields q̃0 and η̃0 satisfy a forced version of the
leading-order problem, whose solvability condition yields
β−1. Indeed, the problem governing q̃0 and η̃0 is the same as
that outlined above for q̃−1 and η̃−1, except that the kinematic
condition (C2) now gives

∂ q̃0

∂y
= λaη̃0 + η̃−1 (C8)

instead of (C5), while the far-field condition is

q̃0 ∼ 1

π
ln r + O(1). (C9)

Making use of the second Green identity in conjunction
with Laplace’s equation governing q̃−1 and q̃0 yields∮ (

q̃0
∂ q̃−1

∂n
− q̃−1

∂ q̃0

∂n

)
dl = 0, (C10)

where the integration is carried out over a closed contour on
which dl is a differential length element and ∂/∂n denotes dif-
ferentiation in the outward-normal direction. In what follow,
we choose the contour as the union of a line segment on the x
axis, extending from x = −R to x = R, and a semicircular arc
of radius R, centered about the origin, in the liquid domain.
Making use of the far-field conditions (C6) and (C9) together
with the mixed conditions which govern q̃−1 and q̃0 at y = 0
we obtain

β−1 =
∫ 1

−1

d2η̃−1

dx2
η̃−1 dx + λa

×
∫ 1

−1

(
η̃0

d2η̃−1

dx2
− d2η̃0

dx2
η̃−1

)
dx, (C11)

where the left-hand side is contributed from the semicircular
arc. Integration by parts in conjunction with the pinning
conditions reveals that the second integral on the right-hand
side vanishes; integration by parts of the first integral on the
right-hand side then yields

β−1 = −
∫ 1

−1

(
d η̃−1

dx

)2

dx. (C12)

Combining with (C4) thus furnishes (3.29).
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