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Gradient optimization of fermionic projected entangled pair states on directed lattices
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The recently developed stochastic gradient method combined with Monte Carlo sampling techniques
[W. Y. Liu et al., Phys. Rev. B 95, 195154 (2017)] offers a low scaling and accurate method to optimize the
projected entangled pair states (PEPS). We extended this method to the fermionic PEPS (fPEPS). To simplify
the implementation, we introduce a Fermi arrow notation to specify the order of the fermion operators in the
virtual entangled EPR pairs. By defining some local operation rules associated with the Fermi arrows, one can
implement fPEPS algorithms very similar to that of standard PEPS. We benchmark the method for the interacting
spinless fermion models and the t-J models. The numerical calculations show that the gradient optimization
greatly improves the results of simple update method. Furthermore, very large virtual bond dimensions (D) and
truncation dimensions (Dc) are necessary to converge the results of these models. The method therefore offers a
powerful tool to simulate fermion systems because it has much lower scaling than the direct contraction methods.
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I. INTRODUCTION

Interacting quantum many-body systems pose some of the
most exciting open problems in physics. Particularly, fermion
systems are central to many of the most fascinating effects
in condensed matter physics, such as high-temperature super-
conductivity [1], the fractional quantum Hall effect [2], and
Mott insulator transitions [3,4]. The simulation of the strongly
correlated fermion system plays the critical role to understand
these systems and is also one of the most challenging prob-
lems in condensed matter physics.

The quantum Monte Carlo (QMC) [5] method as one of the
leading methods in studying many-body physics has achieved
great success in bosonic and spin systems since it was first
proposed. However, except in some special cases [6], the
fermion systems are extremely difficult to treat using QMC
simulations [7,8] because of the notorious “sign problems.”

Recently, the methods based on tensor network states
(TNS), especially the projected entangled states (PEPS)
[9–16], have shown their power on simulation of the strongly
correlated many-particle systems. The PEPS is sign-problem
free and has achieved great successes in studying the frus-
trated spin models [17–19]. The PEPS method has been ex-
tended to study fermion models (namely, fPEPS) by different
approaches [20–25]. Apparently, the fPEPS are more compli-
cated than PEPS because of the anticommutation properties
of the fermion operators. In addition, fermion systems are
highly frustrated. It has been proven that the entanglements
of the ground states of some fermion systems are beyond
the area law [26,27]. Therefore, to faithfully simulate such
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models, it usually requires very large bond dimensions (D).
Furthermore, it has been shown that the imaginary-time evo-
lution with simple update [12] method may have large errors
because the environment effects are oversimplified. To exactly
consider the environment, the traditional methods, e.g., the
full update method [28,29], suffer from extremely high com-
putational scaling to the bond dimensions. This problem is
more serious for the fermion models when large D is required.
We note that the recently developed infinite PEPS (iPEPS)
with full update method has achieved great success [21,30],
by making use of the translation symmetry, which may greatly
reduce the number of independent tensors. However, not all
systems have such symmetry, e.g., defects, disorders, and
systems with spontaneous symmetry broken, etc. In these
cases, the finite PEPS method is essential.

The recently developed Monte Carlo sampling techniques
for PEPS can greatly reduce the computational scaling
[15,31–35]. By combining with stochastic gradient optimiza-
tion (GO) method, one can achieve great precision in ob-
taining the ground states [35,36]. In this work, we extended
the stochastic gradient method [35,36] to optimize the fPEPS
wave functions for fermion systems. To simplify the imple-
mentation of the fPEPS algorithms, we introduce a “Fermi
arrow” notation to specify the order of the fermion operators
in the entangled EPR pairs. With this notation and some local
operation rules associated with the Fermi arrows, we can
greatly simplify the implementation of the stochastic gradient
optimization method (and other methods) for fPEPS. We
implement this local operation rule for fPEPS in our recently
developed TNSpack [37], in which the anticommutation prop-
erties of the fermion operators are automatically taken account
of. Therefore, one can implement fPEPS algorithm very sim-
ilar to that of the standard PEPS without worrying too much
about the details of the anticommutation between the fermion
operators.
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We benchmark the stochastic gradient method for fPEPS
on the interacting spinless fermion models and the t-J models.
The numerical calculations show that the gradient optimiza-
tion greatly improves the results of the simple update method.
Furthermore, for these models, very large virtual bond di-
mensions D and truncation dimensions Dc are necessary to
converge the results which are the dominant difficulty in sim-
ulating the fermion systems. Therefore, the present method
is advantageous because it has much lower scaling than the
traditional direct contraction method.

II. DEFINITION OF fPEPS BASED ON
DIRECTED NETWORK

The definition of the fPEPS [25] on a lattice is similar to
that of the standard PEPS [14,16]. Without loss of generality,
we take a fermion system on a L1 × L2 square lattice as an
example, where the physical dimension of each site is d . For
each horizontal bond connecting sites (i, j) and (i, j + 1),
there is a EPR pair, i.e., a Bell-type entangled state,

Îh(i, j)|0〉 =
D−1∑
k=0

|k〉(i, j)r |k〉(i, j+1)l , (1)

where |k〉(i, j)r and |k〉(i, j+1)l are the fermion states on sites
(i, j) and (i, j + 1). States |k〉 are generated as |k〉 =
|k1k2 . . . kp〉 = a†k1

1 a†k2
2 . . . a

†kp
p |0〉, where (k1k2 · · · kp) is the

binary representation of k and |0〉 is the vacuum state. ai’s
and a†

j ’s are the fermion operators that satisfy {ai, a†
j} =

δi j . For convenience, we denote the state |k(i, j)r 〉 = a†k
(i, j)r

|0〉.
Similarly, for each vertical bond connecting site (i, j) and
(i + 1, j), there is also a Bell-type entangled state (in
short) Îv (i, j)|0〉 = ∑D−1

k=0 a†k
(i, j)d

a†k
(i+1, j)u

|0〉. Therefore, a stan-
dard virtual mother state of a fPEPS can be defined as

|�0〉 = �
L1−1
i=1 �

L2−1
j=1 Îh(i, j)Îv (i, j)|0〉. (2)

To define a quantum state in the real physical space, we project
|�0〉 to the physical space. The projector on site (i, j) is
defined as

P̂[i, j] =
d−1∑
β=0

D−1∑
β1,β2,β3,β4

Tβ,β1,β2,β3,β4 [i, j]a†,β

(i, j)

× aβ1
(i, j),l a

β2
(i, j),d aβ3

(i, j),raβ4
(i, j),u . (3)

Here, a†
(i, j) is the creation operator of the physical parti-

cle on site (i, j) whereas an
(i, j),m (m = l, d, r, u and n =

0, 1, . . . , D − 1) are the annihilation operators of the state
|n〉(i, j),m. The fPEPS is then defined as

|�fPEPS〉 = �i, j P̂[i, j]|�0〉. (4)

To make the fPEPS well defined, the state |�fPEPS〉
should be independent of the order of the projectors up
to a global phase, i.e., the parity of all elements in a
projector should be the same. The parity of the element
Tβ,β1,β2,β3,β4 [i, j]a†,β

(i, j)a
β1
(i, j)l

aβ2
(i, j)d

aβ3
(i, j)r

aβ4
(i, j)u

of the projector

P̂[i, j] is obtained by p̃(β ) p̃(β1) p̃(β2) p̃(β3) p̃(β4), where
p̃(x) = −1, if the parity of x is odd, and p̃(x) = +1, if the
parity of x is even. Therefore, the parity of all elements can

A B A B

(a) (b)

FIG. 1. Schematic diagrams of Fermi arrows between tensors A
and B, corresponding to (a) Eq. (7) and (b) Eq. (8).

be obtained by the lower indices of tensor Tβ,β1,β2,β3,β4 [i, j].
Without loss of generality, we assume all nonzero projector
elements have even parity in this paper. As a consequence, the
elements with odd parity vanish, i.e., Tβ,β1,β2,β3,β4 [i, j] = 0, if
β + β1 + β2 + β3 + β4 is odd. In this definition of fPEPS, we
may interchange the positions of any two projectors and EPR
pairs because they all have even parity.

One of the key issues in the fPEPS is the order of the
fermion operators, including the operators in the projectors
and in EPRs. We define the standard order of the fermion
operators in each projector operator on the square lattice as
follows: physical creation operator, left, down, right, and up
virtual operators (i.e., anticlockwise order), which is the same
as the order of the lower indices in the tensor Tβ,β1,β2,β3,β4

[see Eq. (3)]. When changing the order of fermion operators,
a sign which is determined by the parity of the indices will
appear. For example, if we exchange the two adjacent fermion
operators aβ3

(i, j),r and aβ4
(i, j),u, there will be an extra phase, i.e.,

Tβ,β1,β2,β4,β3 = p̃(β3, β4)Tβ,β1,β2,β3,β4 , where

p̃(β3, β4) =
{−1, both p̃(β3), p̃(β4) = −1

1, otherwise. (5)

Aside from the fermion operators appearing in projector
P̂, we also need to specify the operators’ order in the EPR
pairs, which is not given in the tensors explicitly. In this
work, we introduce a Fermi arrow notation to specify the
order of the EPR pairs. For example, as shown in Fig. 1(a),
the arrow points from site A to site B and the corresponding
EPR state is ÎA→B|0〉 = ∑D−1

k=0 a†k
B a†k

A |0〉, whereas in Fig. 1(b),
the arrow points from B to A, and the corresponding EPR
state is ÎB→A|0〉 = ∑D−1

k=0 a†k
A a†k

B |0〉. The two states can be
transformed to each other as follows:

D−1∑
k=0

a†k
A a†k

B |0〉 =
D−1∑
k=0

(−1) p̃(k)a†k
B a†k

A |0〉. (6)

We may also assign Fermi arrows to the physical in-
dices: the Fermi arrows point into the sites for the phys-
ical creation operators, and point out of the sites for the
annihilation operators. This definition is equivalent to insert
EPR pairs between the physical operators when contract-
ing the physical indices, e.g., 〈0|∑βA,βB

A†
βA

aβA
A BβB a†,βB

B |0〉 =
〈0| ∑βA

A†
βA

aβA
A

∑
βB

BβB aβB
B

∑
k a†k

B a†k
A |0〉. With this defini-

tion, we can treat the physical indices and the virtual indices
in the same manner, and do not need to distinguish the real
fermions and virtual fermions during operations. We can now
uniquely define a fPEPS on a directed lattice, as shown, for
example, in Fig. 2, on a 4 × 4 lattice.

By defining some calculation rules associated with Fermi
arrows, we are able to perform fPEPS calculations. Con-
traction is one of the most important operations in PEPS
algorithms. When we contract the tensors on two sites in a
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FIG. 2. A schematic example of a fPEPS on the 4 × 4 lattice.
The circles are the tensors on the lattice whereas the black solid lines
are the virtual EPR pairs, and the arrows on the bonds specify the
order of the fermion operators in the EPR pairs. The red solid lines
are the physical indices associated with creation operators.

fPEPS, we need to consider the Fermi arrow direction. We
take the two situations in Fig. 1 as an example, which gives
two different contraction formulas:∑

β,βA,βB

AβA aβA
A BβB aβB

B a†β
B a†β

A |0〉 =
∑

β

AβBβ |0〉 (7)

for Fig. 1(a), and∑
β,βA,βB

AβA aβA
A BβB aβB

B a†β
A a†β

B |0〉 =
∑

β

p̃(β )AβBβ |0〉 (8)

for Fig. 1(b). The anticommutation relation of fermions has
been used. The Fermi arrow helps to distinguish the two
situations of contraction in the graphical notions of Fig. 1.
Using the graphic representation may greatly simplify the
notation.

More generally, giving two tensors A and B, connected via
multivirtual bonds (EPRs), where {i1, i2, . . . , ik, ik+1, . . . , iN },
are the joint bonds to be contracted. Assume that bonds
{i1, i2, . . . , ik} have Fermi arrows pointing from B to A, and
the rest bonds {ik+1, . . . iN } have Fermi arrows pointing from
A to B. We first reshape A to AI,iN ,iN−1,...,i1 and reshape B to
Bi1,i2,...,iN ,J , where {I}, {J} are the bonds that are not to be
contracted in A and B, respectively. For the convenience of
notation, we assume the signs due to the change of bond order
in the tensors according to Eq. (5) have been absorbed into the
tensors, then the resulting tensor is

RI,J =
∑

i1,i2,...,iN

∏
l=1,k

p̃(il )AI,iN ,iN−1,...,i1 Bi1,i2,...,iN ,J . (9)

Other often used operations associated with Fermi arrows
are given in the Appendix. We implement these operation
rules for fPEPS in our recently developed TNSpack [37], in
which the anticommutation properties of the fermion opera-
tors are automatically taken account of by these rules. There-
fore, one can implement the fPEPS algorithm very similar to
that of standard PEPS without worrying too much about the
details of the anticommutation between the fermion operators.

The Fermi arrows define the fermionic order for the fPEPS.
In some previous methods [21], the EPS pairs are not ex-
plicitly used. We note that, in this work, the EPR pairs are
only used in the derivation of the operation rules associated
with Fermi arrows. Once we have these rules, one may ignore
the underlying EPR pairs, and use only Fermi arrows for
all operations. In Ref. [20], the authors proposed a general
fermionization procedure using so-called fermionic operator
circuits (FOCs), in a bra and ket notation, instead of EPR
pairs. Our Fermi arrows are similar to the contraction arcs
defined in Ref. [20], albeit the starting point and detailed
implementations of the two methods are different.

III. STOCHASTIC GRADIENT OPTIMIZATION OF fPEPS

In order to find the ground state of a given Hamiltonian
using fPEPS, different methods have been introduced. The
leading method is the imaginary-time evolution (ITE) method
[12]. However, due to the high computation complexity to
obtain the exact environment during the time evolution, some
kinds of approximations are necessary. The simple update
method [12] has been widely used, which, however, may
have large errors because the environment is oversimplified.
Several methods have been developed to treat the environment
more rigorously, such as the full update (FU) method [28,29]
and the gradient method [35,38], which may significantly
improve the results, but the scaling to D of these methods is
rather high.

We recently developed the stochastic gradient optimization
method for PEPS, combined with Monte Carlo sampling
techniques [35,36]. This method gives remarkable accuracy
of the results which may be even better than the results of
the full update method at given D [35]. The method has
two advantages. First, the environments of tensors are treated
rigorously and, therefore, the results are more accurate than
SU and even FU methods [35]. Second, the Monte Carlo
sampling technique may greatly reduce the scaling of the
method to the virtual bond dimension D from D10 to D6

for OBC [15,31–33], which is even more crucial for fPEPS,
where larger D is often needed to converge the results. In this
work, we extended this method to fPEPS.

The fPEPS wave functions of a many-particle system in
Eq. (4) can be rewritten as

|�〉 =
∑
{n}

C
[∏

i

T [i]n,β1,β2,β3,β4

]
|n1, n2, . . . , nN 〉

≡
∑
{n}

W (n)|n〉, (10)

where i = (i, j) is the site index of the lattice, and C means
to contract all the entangled virtual fermions according to
the rules defined in Sec. II. W (n) is the coefficient of the
physical state |n〉 = |n1, n2, . . . , nN 〉 in the particle-number
representation. The energy of the system can be written as

E = 〈�|H |�〉
〈�|�〉

= 1∑
n′ |W (n′)|2

∑
n

|W (n)|2E (n), (11)
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where

E (n) =
∑

n′

W (n′)
W (n)

〈n′|H |n〉. (12)

The total energy of the system for a given fPEPS can be evalu-
ated via Monte Carlo sampling over the physical configuration
space [15,31–33,35].

To optimize the energy function, we need the derivatives of
the energy with respect to the tensor elements

∂E

∂T [i]n,β1,β2,β3,β4

= 2〈�[i]n,β1,β2,β3,β4 (n)E (n)〉

− 2〈�[i]n,β1,β2,β3,β4 (n)〉〈E (n)〉, (13)

where 〈. . . 〉 denotes the MC average. �[i]n,β1,β2,β3,β4 is de-
fined as

�[i]n,β1,β2,β3,β4 (n) = 1

W (n)

∂W (n)

∂T [i]n,β1,β2,β3,β4

, (14)

and the derivative of W (n) is

∂W (n)

∂T [i]n,β1,β2,β3,β4

= C[T [1] . . . T [i − 1]T [i + 1] . . . T [N]].

(15)
The derivatives can be also evaluated by the MC samplings
[35].

Once we have the energy and its gradients, we can opti-
mize the system energy using the stochastic gradient method
[31,35], which has been successfully applied to the standard
PEPS method.

The overall algorithm for fPEPS is similar to that of PEPS.
We need to contract the fPEPS tensors at given particle
configuration to obtain W (n) and the gradients. However, con-
tracting a fPEPS is much more complicated than contacting
a standard PEPS, because of the anticommutation relation
of fermions. One must be very careful about the contraction
order and underlying fermions’ order in EPR pairs. We show
here that with the help of Fermi arrows and the operation rules
associated with them, the contraction can be done easily as in
the standard PEPS algorithms.

To obtain W (n), we need to contact a single layer of fPEPS
with fixed particle configuration |n〉. We adopt the boundary-
MPO method [28,29] where we need to find a fermionic
matrix product operator (fMPO) denoted as |X 〉 with bond
dimension Dc [see Fig. 3(b)] to approximate the two rows of
fPEPS with bond dimension D, denoted as |�〉 [see Fig. 3(a)].
To find such |X 〉, we minimize

δ = ||X 〉 − |�〉|2
〈�|�〉 , (16)

which leads to the linear equation for each tensor T i, j on site
(i, j),

〈X i, j |X 〉 = 〈X i, j |�〉, (17)

where |X i, j〉 is obtained by taking the tensor T i, j out of |X 〉,
as graphically shown in Fig. 4.

To solve the equation, we first contract the tensors on
the left side of Fig. 4. We change the arrow directions from
Fig. 3(b) to Fig. 5(a), i.e., all arrows are pointing into site
(i, j). The rule of changing the directions of Fermi arrows is

D

D

Dc

(a)

(b)

|

|X

FIG. 3. Approximate (a) a double-row PEPS with bond dimen-
sion D by (b) a MPO with bond dimension Dc.

given in the Appendix. As will be seen in the following text,
the change of Fermi arrow directions is to take the advantages
of the canonic form of fMPO [10].

We next do QR decomposition to the tensor on the first
site of |X 〉, resulting in two tensors Q1 and R as shown in
Fig. 5(b). The rules for QR (and other decompositions) in the
presence of Fermi arrows are also given in the Appendix. We
then contract the R tensor with the second tensor on the right
site, and perform QR decomposition on the second site again
to obtain the Q2 tensor. We repeat this process until we reach
the tensor T i, j . We contract the last R tensor with the T i, j ,
resulting in a new tensor T i, j

R . Similarly, we perform the LQ
decomposition on the right side of |X 〉, starting from the last
site to the site (i, j), and contract the last L tensor with T i, j

R

to get T i, j
RL . During the LQ (QR) decompositions, new Fermi

arrows have been inserted between L (Q) tensor and Q (R)
tensor. After these processes, we obtain |X 〉 in Fig. 5(c).

We perform the same operations for |X i, j〉. After these
operations, the left side of Fig. 4 becomes that of Fig. 6. By
using the orthogonality of Q̂ and Q̂†, i.e., Q̂Q̂† = I, which is
discussed in the Appendix for the fPEPS with Fermi arrows,
we obtain the right side of Fig. 6. The original Fig. 4 becomes

=

|X
|

Xi,j|

Xi,j|

FIG. 4. The equation 〈X i, j |X 〉 = 〈X i, j |�〉, where |�〉 is shown
in Fig. 3(a) and |X 〉 is shown in Fig. 3(b). |X i, j〉 is obtained by taking
the tensor T i, j out of |X 〉.
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T
i,j

T
i,jQ1 R

T
i,jQ1 Q2

(a)

(b)

(c)

Q4RL

FIG. 5. Simplification of |X 〉: (a) To make use of the orthogonal-
ity conditions, we first reverse the directions of some Fermi arrows.
(b) We perform QR decompositions starting form the first tensor.
(c) The tensor state |X 〉 after simplification.

Fig. 7, which can be solved iteratively as in standard boundary
MPO method [28,29], which usually converges in a few
sweeps.

The contraction in Eq. (15) can be calculated in the same
procedures. Once we have W (n) and �niβ1β2β3β4 , the energies
and their gradients can be easily calculated.

In our calculations, we first perform ITE with a simple
update method to obtain an approximate ground state [35],
which usually has energy errors around 10−2. We further
optimize the fPEPS via gradient decent method to obtain the
highly accurate ground state.

IV. BENCHMARK RESULTS

We benchmark our method for two typical fermion models
on finite-size square lattices, including the interacting spinless
fermions model and the t-J model. We demonstrate that our
method can give highly accurate results compared with the
exact results.

A. Spinless fermions model

The interacting spinless fermions model reads as

H = −t
∑
〈i, j〉

(c†
i c j + H.c.) + V

∑
〈i, j〉

nin j, (18)

T
i,jQ1 Q2 Q4

Q1
† Q2

† Q4
†

T
i,j=

RL

RL

FIG. 6. By applying the orthogonality conditions QiQ
†
i = I, the

left side of Fig. 4 reduces to a single tensor T i, j
RL .

FIG. 7. The equation in Fig. 4 after the LQ and the QR decom-
positions on the |X i, j〉.

where c†
i and c j are the creation and the annihilation operators,

and 〈i, j〉 denotes the nearest-neighbor pairs. The chemical
potential μ is set to zero here. We set hopping parameter t =
1, and the interaction strength V � 0. In general, this model is
not exactly solvable, and has been numerically investigated in
Ref. [39] by the mean field theory and in Ref. [21] by the
iPEPS method. Both methods give similar phase diagrams.
For the parameters we used, the ground state is in a uniform
metallic phase when V is small and moves toward the phase
boundary between the uniform phase and the phase separation
with the increasing of V . Therefore, the ground state of the
model is expected to have entanglement beyond area law [27].

We first calculate this model on a 4 × 4 square lattice so we
can compare the fPEPS results with those obtained from the
exact diagonlization method. In the calculations, we take D =
10 and Dc = 30–40. The convergence of these parameters will
be discussed in details in Sec. V. The results are presented in
Table I for various V . As seen from Table I, the SU method
may give the results with errors around 5 × 10−3 when V is
small, but the errors increase for larger V . When V = 2, the
error of SU is about 10−2. The GO may significantly improve
the ground-state energies. By using the given D and Dc, we
are able to obtain an impressive highly accurate ground state
with relative error near ∼10−5.

We now consider a special case of V = 0, where the model
reduces to the free-fermion model. Although in this case
the model is exactly solvable, it is a challenging model for
the fPEPS method because the free fermions have strong
entanglement in real space S ∼ Ld−1logL that violates the
area law [27]. Especially at μ = 0, the Fermi surface is very
large, making the problem more difficult. One may expect that
to obtain the high-accuracy results it requires very large D
and Dc. Furthermore, the required parameters D and Dc will
generally increase rapidly with the increasing of the size of
the system to keep the given accuracy. In Table II, we list

TABLE I. The ground-state energies of the interacting spin-
less fermion models on a 4 × 4 lattice. The ground-state energies
obtained from the simple update (SU) method, and the gradient
optimization (GO) method are compared with those from exact
diagonalization method. The relative errors between the GO results
and exact results are in the order of 10−5.

V SU GO Exact Relative error

0.1 −0.66590 −0.67124 −0.67125 1 × 10−5

0.8 −0.59255 −0.59309 −0.59312 5 × 10−5

2 −0.48136 −0.50643 −0.50646 5 × 10−5
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TABLE II. Compare the ground-state energies of the free-fermion model of SU (D = 8) and GO (D = 6, 8) with the exact results. For the
4 × 4 lattice, the SU result is numerically instable for D = 8.

SU (D = 8) GO (D = 6) GO (D = 8)

Size Energy Energy Dc Relative error Energy Dc Relative error Exact

4 × 4 −0.68398 16 4 × 10−5 −0.68401 32 1 × 10−5 −0.68402
6 × 6 −0.67721 −0.73269 24 5 × 10−4 −0.73305 52 5 × 10−5 −0.73309
8 × 8 −0.74763 −0.75414 40 1 × 10−3 −0.75492 84 2 × 10−4 −0.75510
10 × 10 −0.75387 −0.76619 55 1 × 10−3 −0.76705 110 5 × 10−4 −0.76748
12 × 12 −0.77094 80 5 × 10−3 −0.77538

the ground-state energies of the free-fermion model on the
square lattice with different sizes obtained from the SU and
GO methods, compared with the exact results Eex. We see
that the relative errors of the SU are usually about 10−2 for
D = 8, but sometimes the SU method may have numerical
instability in some small systems. The performance of GO
is much better, and we always get stable results. Even with
a small D = 6, the relative errors are about 10−3–10−4, and
reduce to ∼10−5 when D = 8 is used. On the other hand, the
violation of the area law is also shown in this table, that the
accuracy gets lower in larger systems for a given D.

From the above tests, we find that the SU method some-
times may give rather accurate results (∼10−2–10−3), but the
situation may change from case to case. On the other hand, the
GO always gives reliable and highly accurate results (∼10−5).

B. t-J model

In this section, we benchmark our method on the t-J model

H = −t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + H.c.) + J
∑
〈i, j〉

(
�Si�S j − 1

4
nin j

)
,

(19)
where σ = ↑,↓ is the spin index and �Si is the spin- 1

2 operator
on site i. ni = ∑

σ c†
i,σ ci,σ is the number of electrons on site

i. In t-J model, the electron double occupancy is forbidden.
The t-J model is one of the key models to understand many
important physical phenomena [40], such as high-Tc super-
conductivity [1]. Here, we calculate the model with J/t = 0.4
and hole filling of n̄h = 0.125. The U(1) symmetry is adopted
to enforce the particle-number conservation. But, true physics
of the system at this point, whether the ground state is a
stripe state [22,30,41,42] or a uniform phase [43,44], is still
under debate. Without doubt, the energy is one of the critical
criterions to determine the ground state of the system. We
calculate the ground energies of different system sizes, using
D = 12, Dc = 36–50, and the results are shown in Table III
for both SU and GO methods. Again, we see the GO method
greatly improves the energies obtained from the SU method.
By extrapolating the energy to thermodynamic limit, we ob-
tain that the ground-state energy −0.6701, which is lower
than the value −0.6693 [30] from state-of-the-art DMRG
calculations [42] with χ → ∞, and −0.6619 obtained from
variation quantum Monte Carlo plus p-step Lanczos methods
[45]. More results of t-J model [46] will be published in a
separate paper.

V. CONVERGENCE OF fPEPS

Fermion systems may have large entanglement beyond the
area law [27] and therefore may need large D to represent
the many-particle state. One may also expect that the D and
Dc will increase with the size of the system. The speed
of the increasing of D and Dc along with the size of the
system indicates the efficiency of the simulation methods. It is
important to understand how the fPEPS calculations converge
with respect to D and Dc. For finite systems, we can explicitly
examine what D and Dc are needed to converge the results
as the size of the systems grows. In this section, we will
discuss the convergence of the parameters D and Dc, respec-
tively. We show that the behavior depends strongly on the
models.

We first investigate the convergency of the ground-state
energies to Dc in a given system with fixed parameter D. We
calculate the error of energy defined as

�E = E (Dc) − E
(
Dmax

c

)
, (20)

where E (Dc) is the energy with a giving truncation parameter
Dc and E (Dmax

c ) is the converged energy where the maximal
Dc is used.

Figure 8(a) depicts the results of the spinless fermion
model with V = 0 (free fermion) and V = 2, and different
system sizes, the 4 × 4 and 10 × 10 lattices. We fix the bond
dimension at D = 8. We use Dmax

c = 48 for the 4 × 4 system
and Dmax

c = 64 for the 10 × 10 system. We first note that
�E ’s approach 0 in a nontrivial way, which are not always
from above (i.e., �E > 0). This means that the ground-state
energy is not variational to Dc, and therefore one must be
very careful to extrapolate Dc to infinity. The convergency

TABLE III. Compare the ground-state energies of t-J model with
hole filling n̄h = 0.125 calculated by SU and GO methods. A virtual
bond dimension D = 12 is used.

Size SU GO

4 × 4 −0.55108 −0.56420
4 × 8 −0.57994 −0.59055
6 × 8 −0.59431 −0.60349
8 × 8 −0.60849 −0.61184
8 × 10 −0.61068 −0.61738
8 × 12 −0.61707 −0.62164
12 × 12 −0.62307 −0.62973
L → ∞ −0.66757 −0.67008
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FIG. 8. (a) The energy errors �E [see Eq. (20)] as functions
of Dc for the interacting electron model on the 4 × 4 and 10 × 10
lattices. A virtual bond dimension D = 8 is used in the calculations.
(b) The energy errors �E as functions of Dc for the t-J model with
n̄h = 0.125 on the 4 × 4, 6 × 6, and 12 × 12 lattices. A virtual bond
dimension D = 12 is used in the calculations. The dashed black line
is a guide to the eye.

of energy is model dependent. As shown in the figure, Dc

converge much faster for V = 2 (correlated electrons) than
for V = 0 (free electrons). In both cases, the convergency
of energy strongly depends on the size of the systems. In
the cases of small sizes L = 4, the energies converge rather
fast with Dc. However, for the 10 × 10 system, �E con-
verges much slower as functions of Dc. For V = 2, the
energy is well converged at Dc = 26 (about 3D), whereas
the energy of free fermions is not well converged even
at Dc = 48.

We investigate the convergence of the t-J model at hole
doping n̄h = 0.125, and the results are shown in Fig. 8(b). In
the calculations, D = 12 is used, and the result of Dmax

c = 50
is used as a reference. Interestingly, we find the ground-state
energies converge rather fast with Dc. The errors reduce to
3 × 10−4 for Dc = 2D, and the errors reduce to 1 × 10−5 for
Dc = 3D. More importantly, unlike the interacting fermion
model, Dc is only slightly dependent on the size of the
system.

The energy errors in the calculations are induced by the
contraction errors due to bond dimension truncation. We
further test the relationship between the convergent truncation
dimension Dc and the size of the system, i.e., we examine
the minimal Dc needed to ensure the relative contracting
error δ < 10−6 [see Eq. (16)] along with the increasing of
the system size. The bond dimension used here is fixed to a
relatively small one D = 6. We compare the truncation errors
for the spinless interacting electron model at V = 0 and 2. For
the t-J model, we compare two situations, the hole doping
n̄h = 0.125, and the n̄h = 0, and the latter one reduces to
the Heisenberg model. The results are shown in Fig. 9(a).
We find that the required Dc is almost independent of the
size of the system for the Heisenberg model, and for the t-J

4 6 8 10 12
L

0

20

40

60

80

D

free electron
V=2
t-J model
Heisenberg

4 5 6 7 8
D

0

25

50

75

100

D

free electron
V=2
t-J model
Heisenberg

c
c

(a)

(b)

FIG. 9. The bond truncation dimensions Dc needed to ensure the
contraction error δ < 10−6 [see Eq. (16)] as functions of (a) the lat-
tice size L and (b) the virtual bond dimension D for various models,
including the spinless interacting fermion models, and the t-J model.
The “t-J model” in the figure is calculated with parameters J = 0.4,
n̄h = 0.125, whereas the “Heisenberg” model is calculated using t-J
model in the limit of n̄h = 0.

model with hole filling n̄h = 0.125. However, the required Dc

increases rapidly with the size of the system for the interacting
electron model, especially for the free electrons. At L = 12,
Dc = 80 is required to ensure the desired contraction accu-
racy for the free-electron model and Dc = 40 for the V = 2
model.

We also examine the relationship between Dc and the bond
dimension D. In this test, we fixed the size of the system to
L = 10. The results are shown in Fig. 9(b). We see that the
required Dc increase roughly linearly with D for these models.
For the Heisenberg model (and even J1-J2 model) [47] and
the t-J model with hole filling n̄h = 0.125, Dc ∼ 2D–3D is
enough to ensure the accuracy of contraction, whereas for
the interacting electron model, Dc ∼ 9D–15D are required to
ensure the desired contraction accuracy, which becomes the
major difficulty to simulate these models. We note that in the
standard contraction method, the bond truncation dimension
Dc2 for a double-layer tensor network should scale as D2

[28,29], making the simulation of fermions with large D even
more difficult.

With the convergent Dc for each D, we can analyze the
convergence of the energy against D for a given system
size. The energy of a model in the thermodynamic limit
can be further extracted by finite-size scaling method. The
convergence of the energy against the parameter D is shown
in Fig. 10, where �E is defined as the energy differences
compared to those of maxima D, which are Dmax = 8 for the
free-fermion model and Dmax = 10 for the interacting fermion
model with V = 2. A Dmax = 12 is used for the t-J model
with n̄h = 0.125. Surprisingly, for the free-fermion model
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FIG. 10. The convergence of ground-state energy as functions of
D for (a) the free-fermion model, (b) the interacting spinless fermions
model with V = 2, and (c) the t-J model with n̄h = 0.125, on the
lattices of different sizes. The dashed black line is a guide to the eye.

(V = 0), we have �E ≈ 4 × 10−4 for D = 7 on the 10 × 10
lattice, as shown in Fig. 10(a), where one may expect a much
larger error. For the interacting fermion with V = 2, which is
shown in Fig. 10(b), the energy is also converged to �E ≈
1 × 10−4 at D = 8. On the other hand, for the t-J model,
the energies converge rather slowly with D. For the 12 × 12
system, the energy errors reduces to about 3 × 10−4 at D =
11. The nontrivial dependence of D and Dc for different
models may pose some interesting questions to understand
the structure of fPEPS. We leave these problems for future
studies.

VI. SUMMARY

In this work, we extend the stochastic gradient op-
timization method combined with Monte Carlo sam-
pling techniques to optimize the fPEPS wave functions
for fermion systems. The Monte Carlo sampling tech-
niques may greatly reduce the scaling of the calcula-
tion, and therefore allow using larger bond dimensions (D)
and bond truncation dimensions (Dc) in the calculations,
which is important for the faithful simulations of fermion
systems.

We benchmark the method on the interacting spinless
fermion models and the t-J models. The numerical calcula-
tions show that the gradient optimization may greatly enhance
the accuracy of the results over the simple update method. We

A B =
A' B

A B'

or

FIG. 11. The rule for reversing the Fermi arrow.

further investigate the convergence of fPEPS calculation with
respect to D and Dc for the models. The free-fermion model
is most challenging to simulate with fPEPS because the Dc

increase very rapidly with D and the size of the system. For
t-J models, we find that large D’s are needed to converge
the results. Our method therefore offers a powerful tool to
simulate fermion systems because it has much lower scaling in
both computational time and memory than direct contraction
methods.
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APPENDIX: RULES FOR FERMI ARROWS

In this Appendix, we give the rules of operations associated
with the Fermi arrows in fPEPS. These rules are straightfor-
ward to prove.

1. Reversing Fermi arrows and the Hermitian conjugate

Sometimes, we need to reverse the direction of a Fermi
arrow. The rule of reversing Fermi arrows is giving as follows.
Suppose

Â =
∑
β1,β2

Aβ1,β2 aβ1
1 aβ2

2 ,

B̂ =
∑
β3,β4

Bβ3,β4 aβ3
3 aβ4

4

are two projectors in a fPEPS that are connected by a Fermi
arrow pointing from Â to B̂, as shown on the left side of
Fig. 11. We may reverse the Fermi arrow, pointing from B̂
to Â, and resulting in two possible (but equivalent) forms that

Al r

u

d

A†u d

l

r

Hermitian
conjugate

FIG. 12. The rule of taking a Hermitian conjugate a tensor.
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Q R

L Q

U S VC
SVD

C
QR

C
LQ

(a)

(b)

(c)

FIG. 13. The rules for (a) SVD decomposition Ĉ =
Û ŜV̂ ÎÛ→Ŝ ÎŜ→V̂ ; (b) the QR decomposition Ĉ = Q̂R̂ÎQ̂→R̂; and
(c) the LQ decomposition Ĉ = L̂Q̂ÎL̂→Q̂. The EPR pairs with Fermi
arrows have been inserted into decomposed matrices. The bonds on
the left and right sides can have arrows in either direction, which
keep unchanged after the decompositions.

are given on the right side of Fig. 11. It is easy to prove that

Â′ =
∑
β1,β2

p̃(β2)Aβ1,β2 aβ1
1 aβ2

2 ,

B̂′ =
∑
β3,β4

p̃(β3)Bβ3,β4 aβ3
3 aβ4

4 . (A1)

When we calculate the expectation value of a physical
quantity, 〈�fPEPS|Ô|�fPEPS〉, we need to take the Hermitian
conjugate of ket state |�fPEPS〉 to get the bra state 〈�fPEPS|.
When taking the Hermitian conjugate of the projectors in a
fPEPS, we need to (i) reserve the orders of the indices of
the tensor associated with the projectors, e.g., change tensor
Al,d,r,u to A†

u,r,d,l , as shown in Fig. 12; and (ii) reverse all the
Fermi arrows associated with the projectors. Note that here
the reversion of the Fermi arrows is required by the Hermitian
conjugate, and no change is needed for the tensors during the
process.

2. Matrix decompositions and contractions

The operations such as tensor decompositions also
have close relation to the Fermi arrows. For example,
in the standard PEPS, when we do SVD to a matrix C, we
have C = USV . However, in fPEPS, two Fermi arrows should
be inserted to the inner bonds after the decomposition, i.e., the

Q Q†...

Q Q†...

=

=
FIG. 14. The rule of contacting Q̂iQ̂

†
i . To use the orthogonality

Q̂iQ̂
†
i = I, the Fermi arrows must have “consistent directions” as

shown above.

Fermi arrow pointing from Û to Ŝ, and the one pointing from
Ŝ to V̂ as follows, and schematically shown in Fig. 13(a),

Ĉ = Û ŜV̂ ÎÛ→Ŝ ÎŜ→V̂ , (A2)

where

Ĉ =
∑
α,β

Cα,βaα
Laβ

R, Û =
∑
α,δU

Uα,δU aα
LaδU

U ,

Ŝ =
∑
δ1,δ2

Sδ1,δ2 aδ1
S1

aδ2
S2

, V̂ =
∑
δV ,β

VδV ,βaδV
V aβ

R. (A3)

Other matrix decompositions such as LQ/QR decompositions
follow the similar rules, i.e., one needs to insert Fermi arrows
(i.e., directed EPR pairs) between the decomposed matrices,
as shown in Figs. 13(b) and 13(c).

In standard PEPS, we often use so-called canonical form
of MPS in the MPO algorithm [28,29] to contract the PEPS,
taking the advantage of the orthogonality of the Qi tensors
obtained from LQ/QR decompositions (or the U and V ma-
trices from SVD decompositions) [9], i.e., QiQ

†
i = I, where I

is a unit matrix. However, this relation cannot be directly used
in the fPEPS, where we need to take the Fermi arrows into
consideration during the contractions. It is easily proven that
only when the Fermi arrows have “consistent directions,” i.e.,
all Fermi arrows point from Q̂ to Q̂†, or from Q̂† to Q̂, we can
use the orthogonality condition for the Q̂ matrix. The results
after contraction are Fermi arrows pointing to the right or to
the left, as schematically shown in Fig. 14. If the Fermi arrows
are not “consistent,” we need to rearrange the directions of the
Fermi arrows first to make them “consistent” before we can
use the orthogonality condition. This is done in Sec. III, when
we contract two rows of fPEPS via a MPO scheme.
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