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Toroidal sigma models of magneto-transport are analyzed, in which integer and fractional quantum Hall
effects automatically are unified by a holomorphic modular symmetry, whose group structure is determined
by the spin structure of the toroidal target space (an elliptic curve). Hall quantization is protected by the
topology of stable holomorphic vector bundles V on this space, and plateau values σ⊕

H = μ ∈ Q of the Hall
conductivity are rational because such bundles are classified by their slope μ(V ) = deg(V )/rk(V ), where deg(V )
is the degree and rk(V ) is the rank of V . By exploiting a quantum equivalence called mirror symmetry, these
models are mapped to tractable mirror models (also elliptic), in which topological protection is provided
by more familiar winding numbers. Phase diagrams and scaling properties of elliptic models are compared
to some of the experimental and numerical data accumulated over the past three decades. The geometry
of scaling flows extracted from quantum Hall experiments is in good agreement with modular predictions,
including the location of many quantum critical points. One conspicuous model has a critical delocalization
exponent νtor = 18 ln 2/(π 2G4) = 2.6051 . . . (G is Gauss’ constant) that is in excellent agreement with the value
νnum = 2.607 ± .004 calculated in the numerical Chalker-Coddington model, suggesting that these models are in
the same universality class. The real delocalization exponent may be disentangled from other scaling exponents
in finite size scaling experiments, giving an experimental value νexp = 2.3 ± 0.2. The modular model suggests
how these theoretical and experimental results may be reconciled, but to determine if these theoretical models
really are in the quantum Hall universality class, improved finite-size scaling experiments are urgently needed.
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I. INTRODUCTION AND SUMMARY

The quantum Hall effect (QHE) is a cornerstone of modern
metrology, but almost four decades after its discovery it con-
tinues to challenge our understanding of quantum physics. It
is an emergent property of 1010 strongly interacting electrons
in two dirty dimensions that cannot be analyzed using only
conventional perturbative techniques. While special cases are
well understood, we do not have a comprehensive effective
field theory (EFT) that exhibits all the universal properties
observed in low temperature magnetotransport experiments.
It is our purpose here to try to remedy this situation.

All else being equal, we would prefer to derive such a
model from the well-understood microphysics of quantum
electrodynamics and localization in a disordered medium,
but since we are unable to do so, we must instead rely on
experiments to tell us what the essential (universal) features of
such an emergent model are. The most important information
characterizing a universality class is the symmetry represen-
tation of the low energy (long wavelength) modes. Since
continuous symmetries, which includes exact symmetries like
Lorentz and gauge invariance, are infinite, they are difficult
to accommodate, and therefore especially useful. Discrete
symmetries, on the other hand, are usually finite and therefore
much less constraining.

We shall here exploit a new type of symmetry (infinite
and discrete), which is called modular, that appears to be
relevant for the QHE [1]. This rigid emergent order is encoded
in a fractal phase diagram tightly harnessed by the modular
symmetry, which may be compared directly to scaling data
(cf. Ref. [2] for a recent review of the experimental situation).

Although these are finitely generated approximate (emergent)
discrete symmetries because they are nonabelian and infinite
they provide unusually strong constraints on model building.

This section tries to motivate the construction of a family
of “toroidal” (“elliptic”) models that automatically contain
modular symmetries. Toroidal sigma models have been ex-
tensively studied in string theory [3], and we make use of
some of the technology discovered in that context (includ-
ing modular and mirror symmetry, conformal field theory,
Zamolodchilov’s C-theorem, and topological properties of
gauge fields carried by “open strings”), which previously have
seen little or no use in condensed matter physics. The family
of toroidal models studied here, which are conformal only
at isolated quantum critical points, have not previously been
used. There is at present no deep understanding of how such
a model can emerge from the messy microphysics of the
QHE. However, since the model is extremely rigid it is easy
to falsify, and its usefulness may therefore be evaluated by
confronting its predictions directly with experimental data.

In order not to clutter this introduction, which serves only
to motivate the choice of ansatz that will be used to model
the QHE, but at the risk of making the narrative less self-
contained, only basic definitions and results are included in
this section. These are expanded on in the main body of the
paper, and a more complete review of modular mathematics
may be found in a technical Appendix.

The rest of this section may be regarded as a simplified
preview of coming attractions, and also introduces some of
the novel nonperturbative field theoretic techniques gifted
us by strings. Its main objective, however, is to explain the
rationale behind the choice of EFT discussed here. Since the
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narrative relies heavily on intuition and results from string the-
ory, readers unfamiliar with this enterprise may not find this
introduction very useful. Whether they think the reasoning
unconvincing, or just prefer to skip unfamiliar mathematics,
they can simply take the scaling function ϕ obtained in
Sec. II C [cf. Eq. (14)] as an ad hoc ansatz, and proceed to
analyze its properties. It is explained in the Appendix how
this ansatz, apart from the normalization, follows directly
from the modular symmetry and general properties of RG
flows. It is therefore logically independent of the model from
which it happens to be derived here. This EFT is itself an
ansatz, arguably better motivated, and perhaps more useful,
but nevertheless (so far) disconnected from our microphysical
understanding of the QHE.

The potential ϕ is a sharply defined, alternative, stand-
alone starting point, but without pedigree its usefulness is not
so obvious. This ansatz is, however, far from vacuous since it
was pointed out a long time ago that universal quantum Hall
data are encoded in this extremely rigid function, including
phase and scaling diagrams, and the exact location of quantum
critical points [1,2,4–11]. Its properties have been exten-
sively investigated over the years (cf. Ref. [2], and references
therein), so a brief summary comparison with data in Sec. IV
will suffice here.

An important reason for trying to derive this function from
an EFT is that this can give us access to critical exponents,
without which we cannot identify the universality class of
the QHE. These depend on the normalization of ϕ, which is
not fixed by symmetry arguments alone. Sections II and III
are devoted to extracting observable predictions from the
toroidal ansatz, by exploiting both the modular symmetry
and a quantum equivalence called mirror symmetry, so that
a comparison with data can be carried out in Sec. IV.

Another reason for investigating toroidal models is that we
shall ultimately need an EFT that is derived from the micro-
physics of the QHE, and it would be helpful to have something
consistent with data to aim for. Our goal here is much more
modest. The question we attempt to answer is if a more or
less plausible (depending on your point of view) EFT exists
that is consistent with currently available data. The conclusion
that the guiding principles (discussed below) extracted from
these experiments appear to lead naturally to a toroidal sigma
model, should be tempered by the fact that the argument is
quite heuristic. Nevertheless, predictions extracted from this
guess are encouraging, and most importantly, nonnegotiable.
Provided that enough experimental evidence accumulates to
convince us that a useful effective model has been identified, it
is not unreasonable to expect that this will help us to “reverse
engineer” a derivation of that model from microphysics. Alas,
this is a daunting task that appears to be well beyond our
current theoretical grasp.

Before we can construct the model we must first recall a
number of powerful field theoretic ideas that have appeared in
the wake of string theory.

A. Emergent sigma model

This subsection recalls how low energy physics sometimes
may be encoded in the geometry and topology of an effective
field theory that is a nonlinear sigma model. This is an old

idea that has been explored since the earliest days of the QHE.
Our story is framed in a language that is suited for toroidal
generalizations, not previously considered in this context, that
will be explored below.

The main idea to be investigated here is that universal
properties of the QHE are captured by an EFT that is a sigma
model whose target space geometry is determined by two
bosonic fields ϕ1 and ϕ2. To leading order in the derivative
expansion the most general form of such a model is

LEFT = γμν∂
μϕa∂νϕbKab + · · · ,

where γ is a 2-tensor on a two-dimensional manifold �, and
K (t ) is a matrix of running coupling constants, i.e., parameters
that renormalize or “flow” with the dominant scale parameter
t (usually t = ln T , where T is temperature). The ellipses
represent gauge and matter fields to be added later. If we allow
parity violation, as we must in any model of the QHE, then
these matrices have both symmetric and antisymmetric parts:
ημν = γ(μν), εμν = γ[μν], gab = K(ab), and hab = K[ab].

The fields ϕ take values in a target manifold M, and should
be viewed as coordinates on this space. In other words, they
are maps �

ϕ−→ M. This allows us to convert low energy
physics into geometry, which is intrinsically nonlinear, and
the powerful machinery of differential geometry and topology
becomes available for analyzing nonperturbative properties of
the model. The most relevant low energy field configurations
are deformations of M, which we can think of as changing
its shape and size. The matrix g of effective couplings gives a
metric on M, and if h �= 0 the manifold has torsion.

The running coupling constants in an EFT of the QHE
are the magnetoconductivity σD(t ) and the Hall conductivity
σH (t ). K (t ) is identified as the scale-dependent transport
tensor

Kab(t ) = σab(t ) =
[

σD(t ) σH (t )
−σH (t ) σD(t )

]
= σDδab + σHεab,

which is allowed to be asymmetric by the generalized Onsager
relation because parity is broken by the external magnetic
field. Our starting point is therefore what appears to be the
simplest possible (parity violating) effective action

LEFT = σD ∂μϕa∂
μϕa + σH εμν∂

μϕa∂νϕbεab + · · · , (1)

but this is delusive since most of the nontrivial information
about the physical system will be encoded in constraints on
the fields and suppressed “decorations.”

The prototypical sigma model in condensed matter physics
is the spherical model of quantum magnetism, often called the
O(3)-model [12]. In this case the origin of the compact curved
target sphere is well understood, as it belongs to a fertile fam-
ily of models that derive from the geometry of spontaneous
symmetry breaking. Spin waves, whose quanta are magnons,
are collective excitations of a spin chain that are modeled by
fluctuations in the spherical target metric. The target geometry
parametrizes Goldstone modes that appear because an SO(3)
symmetry is broken to SO(2) when the spins “spontaneously”
pick some direction. To lowest order in a derivative expansion
the EFT is unambiguously determined by the symmetries, and
the leading local term is parametrized by the spherical metric
on the target space M = SO(3)/SO(2) = S2. This is typical
of spontaneous symmetry breaking: if the system has a global
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symmetry G that breaks to a subgroup H , then the low energy
modes are fluctuations of the coset geometry G/H . In other
words, the target space coordinates are Goldstone bosons.

In some cases a topological term may be added to the
effective action, provided that it does not break any symmetry
respected by the physical system. The O(3)-model does admit
a topological term, which is not invariant under time reversal.
This term cannot be included in the antiferromagnetic case,
but it is allowed in the ferromagnetic case [13], and it must be
included since there is no symmetry that forbids it. This is for-
tunate since the topological piece of the effective action is the
only thing at leading order that distinguishes these two mod-
els, so without it sigma models of quantum magnetism would
make no sense. This explains why ferromagnetic magnons
have linear dispersion, while antiferromagnetic magnons have
quadratic dispersion. It is hard to find a better illustration of
the importance of topological terms in the low energy effective
action.

An effective field theory of magnetotransport, obtained
by adding a topological term parametrized by σH to a non-
linear tensor sigma model of localization that predates the
QHE [14], was proposed soon after discovery of the inte-
ger QHE (IQHE) [15]. This is sufficient to emulate some
qualitative features of the integer phase and renormalization
group (RG) flow (scaling) diagram proposed in Ref. [16],
but reliable nonperturbative results that may be confronted
with critical data (location of saddle points, and flow rates
near these points) have not been extracted from this model.
Furthermore, this model does not include the interacting case,
which exhibits the perplexing fractional QHE (FQHE), and
therefore does not contain the modular symmetry observed in
the data (cf. Ref. [2] and references therein).

This is in sharp contrast to the toroidal sigma model
proposed in 1991 [1]. Not only does it automatically unify
the integer and fractional QHE in a cohesive and attractive
geometric framework, it also provides strong constraints on
critical behavior that are only now, almost three decades
later, becoming experimentally accessible [6,9]. We shall here
extend and explore this model, and argue that it accounts for
most, if not all, universal data observed in the QHE, in a
profoundly geometrical and topological manner [17].

Since we are not yet able to derive this model from mi-
crophysics, we rely instead on two guiding principles distilled
directly from empirical evidence (“phenomenology”), which
impose severe constraints on the construction of an effective
(emergent) theory.

(i) Symmetry: The scaling of the model should match the
observed modular scaling of σ (t ) = σH (t ) + iσD(t ).

(ii) Topology: Hall quantization should be protected by
topological properties of the effective quantum fields relevant
at low energy.

B. Modular symmetry

This subsection recalls how the geometry of an EFT is
intertwined with the geometry of the parameter space of the
model. Quantum field theories are best regarded as families
of models, one for each point in parameter space. Conven-
tional renormalization theory only explores small regions
of parameter space close to scale invariant fixed points.

The full renormalization group acts nonperturbatively on the
whole parameter space, connecting fixed points by flow lines
whose global geometry typically is beyond our perturbative
reach. Modular symmetries are discrete symmetries acting
directly on the whole parameter space. They are intrinsi-
cally nonperturbative since they connect widely separated
models, and may be regarded as non-abelian generaliza-
tions of the more familiar Kramers-Wannier duality in Ising
models.

Our starting point is the assumption that the two scale-
dependent conductivities σH and σD parametrize an EFT that
captures all universal transport properties of the QHE. Our
first task is to discuss the parameter space M of this model,
which in mathematics and string theory usually is called a
moduli space, especially its topology and any symmetries it
may have. Since σD � 0, the conductivities take values in a
compactification of the upper half of the complex conduc-
tivity plane [18], M[σ (t ; . . . )] = C+(σ = σH + iσD), where
t is the dominant scale parameter, and the ellipsis represent
nonuniversal quantities that depend on the type of material
used and other “evironmental” (nonscaling) parameters that
can be dialled at will (e.g., the magnetic field B). We first give
a brief glossary of the vernacular used in the theory of scaling
and renormalization, as it is used throughout this article. Most
of it is borrowed from hydrodynamics.

All universal data are believed to be encoded in a scalar
function C (the RG potential) that can be visualized as a
potential landscape over the parameter space M (cf. Figs. 6
to 8). Since the properties of C are inextricably intertwined
with the topology and geometry of M, it is important to define
this space properly.

As long as the inelastic scattering length is smaller than
the size of the Hall bar, the dominant scale parameter is the
temperature T , and t = ln T . The phase and flow diagrams
on display in this article are obtained by studying families
σ (t ; B, . . . ) of quantum Hall data.

A flow line tracks how the effective (renormalized) values
of the transport coefficients change when the scale parameter
(temperature) is changed. We are free to dial any starting
point for a flowline by changing nonscale parameters, like the
magnetic field B, which must subsequently remain fixed while
only the scale parameter t is changed.

A flow diagram is a collection of such flow lines, which
if possible are chosen so that they “spread out” and probe
as much of parameter space as possible (in practice, experi-
mental limitations severely constrains access to initial values).
Since flow lines cannot cross phase boundaries they map out
the phase diagram. The geometry of any flow diagram is
controlled by fixed points of the flow. These are points in
parameter space where the flow (scaling) stops, so they are
by definition scale invariant.

Sources for the flow are called repulsive ultraviolet (UV)
fixed points, which we represent by the icon �. Experiments
reveal that these fixed points lie on the boundary of parameter
space. Sinks for the flow are called attractive infrared (IR)
fixed points, which we represent by the icon ⊕. In the QHE
these are the plateaus, where σH is a rational number (∈ Q) in
units with e2/h = 1, and σD vanishes. Rational points should
therefore be included in the physical parameter space for
the QHE. In mathematics this is called a compactification
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of M = C+ to the set M(σ ) = M(σ ) ∪ {⊕} (cf. Fig. 11 in
the Appendix). For topological reasons only rational points
may be added (including the “fraction” ∞ = 1/0), and this
set is called the boundary of M. Notice that each phase
is “attached to” (compactified by) a single, unique attractor
⊕ = p/q, whence the pair of integers (p, q) labels that phase
(cf. Fig. 4).

Saddle points for the flow (one attractive and one repul-
sive direction) are called semistable fixed points, which we
represent by the icon ⊗. In the QHE these are the quan-
tum critical points that control quantum phase transitions,
sometimes called the localization-delocalization transition,
between phases attached to different plateaus. Physical crit-
ical points are vanishing points (simple zeros) of the vector
field β = (βH , βD) of scaling functions, which belong to the
interior of parameter space.

This fixed point structure can be extracted directly from
the geometry of the data without any theoretical bias. If they
reveal a hidden order (symmetry), then they are the DNA
of this symmetry from which all else will follow. Our main
assertion is that quantum Hall data does reveal such an order,
encoded in the nested hierarchical structure of phase portraits
(cf. Figs. 5 to 8). This is the signature of an approximate global
discrete symmetry, which, given some familiarity with infinite
discrete groups, is surprisingly easy to identify by finding
some of the fixed points. The symmetry in question is called
modular.

We previously showed that there is substantial experimen-
tal evidence that the scaling of transport coefficients in the
QHE is harnessed by a modular symmetry [1,2,4–11]. The
symmetry constraint (i) is therefore imposed by experimental
data, unadulterated by theoretical assumptions, and is there-
fore nonnegotiable.

A modular transformation γ is simply a special type of
Möbius transformation

σ ∈ M → γ (σ ) = aσ + b

cσ + d
∈ M,

where the coefficients are integers satisfying ad − bc = 1.
These transformations preserve the compactified moduli
space, and the set of all transformations restricted in this
way (there are infinitely many) form a group that is called
the modular group �(1) = PSL(2,Z). It is generated by a
(horizontal) translation T (σ ) = σ + 1, and a duality trans-
formation, which in this case is the inversion (“reflection”)
S(σ ) = −1/σ in the unit circle. Since the generators T and S
do not commute, e.g., T S(σ ) = (σ − 1)/σ �= −1/(σ + 1) =
ST (σ ), this is an infinite, discrete, non-abelian group that
we sometimes write as 〈T, S〉. The symmetry observed in
experiments is always slightly smaller, usually one of the
maximal subgroups �X ⊂ �(1) (X = R, S, or T) [19], in
which case the integer coefficients satisfy additional parity
constraints (cf. Sec. II A and the Appendix).

This is a target space symmetry, or more precisely, a sym-
metry of the space of target spaces. Unlike in string theory, we
are not demanding modular invariance on the “world-sheet”
�, which would be tantamount to requiring the model to be
critical (conformal) for all target space geometries, and there
would be no RG flow. This is what happens in string theory,
where all deformations of the moduli of a given space-time

vacuum [which includes a compact Calabi-Yau (CY) space of
fixed topology] are truly marginal, and the central charge of
the conformal algebra is fixed at a value given only by the
dimension of the target space, independent of its shape and
size.

Since modular mathematics derives from the theory of
elliptic curves (tori), this is a strong indication that a toroidal
model (a sigma model with a toroidal target space M = T2)
may be useful. Furthermore, the mathematical structure of
a toroidal model forces the plateau values of the Hall con-
ductivity to be rational. This follows from the fact that any
toroidal model automatically is endowed with a modular
symmetry, and for this symmetry to act “properly” (in a strict
mathematical sense) on the mathematical moduli space, this
space cannot contain all real points, only rational ones [20].
Therefore, since a plateau by definition belongs to the bound-
ary of moduli space (σ⊕

D = 0), it must be rational (σ⊕
H ∈ Q),

as is observed in all quantum Hall experiments.
This is the first example (more will follow) of a surprising

and remarkable confluence of toroidal mathematics and quan-
tum Hall physics: in any toroidal model modular symmetry,
rational Hall quantization, and unification of integer and
fractional quantum Hall effects, is automatic and inescapable.

This is, however, just the first hurdle, as it only explores the
boundary of the moduli space M of the model. The real test is
what happens in the interior of M, which is where all quantum
critical points reside. The most important (experimentally
accessible) information is the location of critical points, and
the principal flow rates y± near these semistable RG fixed
points. The relevant (ν+ > 0) and irrelevant (ν− < 0) crit-
ical (delocalization) exponents are the inverse flow rates,
ν± = 1/y±.

C. Renormalization

This subsection recalls how properties of RG flows are
encoded in the geometry of sigma model parameter spaces.
We also recall the concept of “geometrostasis,” which will be
used to model quantum critical points in the QHE, and how
infinite (modular) symmetries under favorable circumstances
conspire to pin down the nonperturbative geometry of renor-
malization.

We shall ultimately construct what is arguably the sim-
plest and most natural viable toroidal model, whose scaling
predictions are in good agreement with all experiments to
date, including reasonable values of the critical exponents
(the meaning of “reasonable” in this context is discussed
at length in Sec. IV C). To prepare for our investigation of
scaling properties of these elliptic models (a class of toroidal
sigma models constructed below), especially the calculation
of critical exponents, we first collect here some general
(model independent) results about two-dimensional RG flows
that have been obtained in the wake of the conformal field
theory approach to string theory. Although our models only
are conformal (scale invariant) at isolated (quantum critical)
points in parameter (moduli) space, conformal symmetry in
low dimensions severely constrains scaling near these points,
as described by the C-theorem [21].

Renormalization of a two-dimensional sigma model is
geometrical, i.e., given by “quantum deformations” of the
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target geometry (shape, size, and torsion), with beta functions

βab = K̇ab = dKab

dt
= 1

2π
R̂ab + · · · ∝ δC

δKab
. (2)

R̂ is the Ricci curvature of the generalized connection
�̂ = � − H , where � is the Christoffel connection compatible
with the metric g, and H = dh is the torsion [21–24].

C ∈ R is an “effective action” or “RG potential” (on the
moduli space of the target manifold) that gives a gradient RG
flow [21]. A critical point is an inflection point of C, whose
value at this scale invariant point is the central charge of the
enhanced conformal symmetry. C decreases monotonically
along RG flow lines, which suggests that it is a kind of
“vacuum entropy” that measures the degree of entanglement
of the ground state of the effective quantum field theory, as a
function of scale [25].

The beta functions define a vector field tangent to RG flow
lines in the parameter space M. By definition a critical point is
a point in M where all beta functions vanish. The set of these
critical geometries may be a finite dimensionalal submanifold
of M (as in string theory), a line of fixed points (as in the
Baxter model), or isolated fixed points, as in the QHE. If
we only have massless toroidal bosons nothing much can
happen, and classical conformal symmetry is preserved at the
quantum level (no RG flow). Models with interesting flows are
obtained by adding other fields. Typically these are charged
matter fields coupled to gauge potentials, but beware that the
distinction between fermions and bosons can be blurred in two
dimensions.

If the RG flow, for exceptional (fine-tuned) initial condi-
tions, stops at a nontrivial fixed point in the interior of the
moduli space of target geometries (a saddle point ⊗ ∈M,
cf. Fig. 11), then the target space is frozen (albeit unstable)
at this quantum critical point, and scaling properties of the
model are determined by the shape, size, and torsion of the
critical target space geometry. It is this phenomenon, some-
times called geometrostasis [23], that will be employed here
to model quantum critical points in the QHE.

To leading order a sigma model is critical when the target
space is R̂icci flat [R̂ = 0, cf. Eq. (2)], but this perturbative
result does not provide enough information for us to locate
critical points, much less calculate critical exponents. How-
ever, if the model also has some degree of modular symmetry,
then this is so constraining that the beta functions in simple
cases are all but fixed. This follows from the explicit classifi-
cation of modular forms of the required type: so-called weight
two forms, if they exist, transform like vectors, as do beta
functions. It is the fortunate fact that modular beta functions
are essentially unique (up to an overall normalization) if the
symmetry is large enough, but not too large, and uniquely
associated with modular (RG) potentials, which will allow us
to calculate critical exponents. In order not to interrupt this
introductory narrative, a summary of previous work where this
surprising result was obtained is deferred to the Appendix.
This is arguably another example of the compelling conver-
gence of toroidal mathematics and quantum Hall physics.

In short, a sufficiently large modular symmetry (which are
the ones appearing in the QHE), combined with geometric
properties of RG flows (embedded in the C-theorem), renders

the beta function all but unique, up to an overall normalization
that may be taken to be real (as explained in the Appendix).
It is remarkable that these symmetries reduce our ignorance
about the flow to a single number. It is even more remarkable
that three decades of experiments have failed to falsify this
statement.

Modular symmetry is not by itself sufficient to give the
values of critical exponents since it does not fix the normal-
ization of the beta function, so this is as far as we can go
with symmetry arguments. Our “only” remaining task is to
identify a properly (physically) normalized modular 2-form
(beta function), and to expand this form near a convenient
quantum critical point to obtain values for the delocalization
exponents ν± that can be compared to numerical and real
experiments. To advance we need the dynamical information
encoded in an EFT, and to aid in the identification of a suitable
model we now appeal to constraint (ii).

D. Topology

This subsection recalls topological ideas that will be used
to construct the EFT. Some of these are familiar from first
quantized (wave function) models of the QHE, but appear
here in an entirely different way. Our second quantized (field
theory) models are “derived” or inferred from some rudimen-
tary phenomenological and mathematical observations. This
automatically includes the fractional case, where the topolog-
ical “slope” of a vector bundle on target space generalizes
the Chern class that suffices in the noninteracting (integer)
case.

We argued above that the topology and geometry of
modular symmetry “explains” the remarkable precision of
rational Hall quantization. The elegance of this argument
notwithstanding, it relies on a delicate mathematical property
of an exact (infinite and discrete) global symmetry, which at
first sight seems unlikely to reflect reality. Nevertheless, Hall
quantization is as close to simple rational numbers as we can
measure (parts per billion), so there must be some property
of the effective low energy fields that “protects” or “rigidi-
fies” the modular symmetry, and therefore Hall quantization,
rendering both essentially exact for all practical purposes. A
plausible candidate would be some kind of “topological kink”
in the emergent quantum fields that cannot be altered by small
fluctuations.

The topological constraint (ii) is more theoretical and
therefore less obvious than (i), but this constraint also derives
from empirical observations. The remarkable precision of
Hall quantization is one motivation; another is the remarkable
robustness of the QHE, observed in many different materials
over many decades in temperature. Topological charges of
a quantum field are by definition robust, i.e., insensitive to
continuous deformations.

Unlike (i), which is a sharp statement about an unfamiliar
but unique group (easily extracted from each experiment), by
itself (ii) is quite vague and unpromising. All it does is to in-
struct us to look for some kind of suitable topological property
of the low energy effective fields. However, in conjunction
with (i) it is surprisingly effective. Given that we are looking
for a topological structure on elliptic curves, as inferred from
(i), the possibilities are greatly reduced. Furthermore, since
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we expect gauge invariance to play a central role in this
model [26], a natural candidate presents itself.

To see this we recall a truly serendipitous mathematical
fact, which appears to be another example of the convergence
of toroidal mathematics and quantum Hall physics: the topo-
logical classification of vector bundles (gauge fields) on elliptic
curves provides precisely the kind of framework required by the
topological constraint (ii). We have no compelling physical
argument forcing us to decorate the model with topologically
interesting gauge potentials, but rather than looking this gift
horse in the mouth we will see how far it can carry us.

This kind of “pattern matching” of experimental data to an
unfamiliar mathematical structure, whose microscopic origin
is obscured by our inability to solve strongly coupled disor-
dered QED, leaves a lot to be desired. At this point it is at
best an educated guess, but this is not inconsistent with the
ethos of EFT. Furthermore, since it is abundantly clear that
emergent phenomena may look absolutely nothing like their
provenance, there are no a priori constraints on the mathemat-
ical structures that may be employed in the construction of a
model. The most fruitful question is not where the model came
from, but where it is going: does it make falsifiable predictions
about the outcome of experiments? If not, it is metaphysics
and of no use to physics. Fortunately, the predictions made by
the model we are in the process of ensnaring here are very
rigid indeed, and that is its main virtue.

Consider first (holomorphic) vector bundles Vr,d (complex
analytic gauge theories) over any “nice” curve, i.e., any
Riemann surface Mg. They have integer valued topological
invariants {g, r, d}, where g = genus(Mg) � 0 is the number
of holes in Mg, r = rk(Vr,d → Mg) � 1 is the rank of the
bundle, and d = deg(Vr,d → Mg) ∈ Z is its degree. We do
not have a classification of these objects, except when the
base space (the target space of the sigma model) is spherical
(Mg=0 = S2), or toroidal (Mg=1 = T2). Since every holomor-
phic bundle on a sphere is a direct sum of line bundles
Ld → S2 (r = 1, d ∈ Z) [27], a sigma model with this target
geometry could conceivably provide a topological model of
the IQHE [σ⊕

H = c1(Ld ) = d], but it is not rich enough to
model the FQHE.

The first nontrivial case is the elliptic curve, in which case
indecomposable holomorphic vector bundles Vr,d that are not
line bundles do exist (r � 1, d ∈ Z). They are classified by
the topological ratio

μ(Vr,d → T2) = c1(V )

rk(V )
= d

r
∈ Q, gcd(d, r) = 1,

which is called the slope of the bundle, together with a
complex number that may be identified with a point on the
target torus [28]. An indecomposable vector bundle is stable,
which means that all subbundles have smaller slope.

Given this classification, it is natural to conjecture that
each plateau (and the universality class to which it belongs)
is paired with a stable holomorphic vector bundle Vr,d → T2,
in such a way that the value of the Hall conductivity is fixed
by the topological slope of this bundle:

σ⊕
H = μ(V ) = d/r ∈ Q.

So the numerator of σ⊕
H is identified as the degree of a

stable bundle (gauge theory) on the target torus T2, and the

denominator is the dimension of the fibers in this bundle.
Furthermore, these gauge invariant objects appear naturally
in the field theory limit of toroidal strings.

In short, the paucity of suitable mathematical structures
that can satisfy both of the phenomenological constraints (i)
and (ii) singles out gauged toroidal sigma models for closer in-
spection. We do not attack this head on by trying to investigate
explicit dynamical details of these models, e.g., how the gauge
symmetry changes during a phase transition [29]. Instead we
bypass this difficult problem by drawing on information from
the corresponding string theory, which contains the toroidal
sigma model we are studying in a field theory limit. As
it is reasonable to assume that topological features of the
toroidal string survive in the field theory limit, this gives us
a relatively painless way to identify candidate topological
degrees of freedom in the low energy gauge theory. Further-
more, since the toroidal geometry and the infinite modular
symmetry severely constrains the energy function for these
modes, we can calculate topological partition functions that
contain enough nonperturbative information to give us the
location of quantum critical points in M, as well as critical
exponents at these points.

This is analogous to how symmetries are exploited to
analyze and classify two-dimensional conformal field theo-
ries [30]. This example shows that infinite symmetry can be
so constraining that sometimes the degrees of freedom, the
operator algebra, and ultimately the partition function, can be
deduced without exhibiting any effective action (Lagrangian
or Hamiltonian). This has the virtue that although an explicit
action may belong to the universality class of interest, it
is always an approximate representation of the real system.
Unless nonuniversal microscopic details are of interest, the
least biased approach is therefore to work directly with sym-
metry representations since that is where universal informa-
tion resides. Unfortunately, this “bootstrapping” appears to be
possible only if the symmetry is infinite.

It is intriguing that this reasoning [essentially a process of
mathematical elimination guided by (i) and (ii)] converges on
an EFT containing the same type of mathematical machinery
(Chern classes) that was found to be useful in the first-
quantized approach using approximate wave functions of non-
interacting particles [31], but since the field theory argument
makes no reference to multiparticle states it is mysterious why
this should be so. Another intriguing fact is that the symmetry
will force us to consider so-called quasimodular forms, whose
Fourier expansions may be identified as instanton expansions,
allowing us to compare some aspects of toroidal models more
or less directly with the dilute instanton gas analysis of the
original tensor sigma model [15] (cf. the Appendix).

E. Mirror symmetry

This subsection recalls that some sigma models are con-
strained by a quantum equivalence that is called “mirror
symmetry.” It is the serendipitous conjunction of mirror and
modular symmetry in toroidal models that allows us to ana-
lyze these models in some detail.

To obtain some physical insight that can help us understand
the degrees of freedom of this model, in particular how their
geometrical and topological properties conspire to explain
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FIG. 1. Cartoon illustrating some of the remarkable properties of
Calabi-Yau (CY) spaces (compact complex manifolds with vanishing
first Chern class) that were discovered in string theory. In general a
CY manifold is mirrored in a topologically distinct manifold C̃Y,
but in one (complex) dimension the only CY space is a torus, so
our target space T2 and its mirror T̃2 are topologically equivalent.
Heuristically, the mirror image of a stack of D2-branes wrapped
around T2 (top) (a flat holomorphic vector bundle in the geometric
limit) is a D1-brane wrapping T̃2 (bottom) (a gauge invariant Wilson-
loop in the geometric limit).

the robustness of Hall quantization, we exploit a quantum
equivalence called mirror symmetry. Mirror symmetry maps
the original toroidal model to another, equivalent, toroidal
model, whose shape is parametrized by the conductivity. In
this model the mirror image of a vector bundle is a “dyonic”
Wilson loop (a gauge invariant field configuration that is both
electrically and magnetically charged), whose energy depends
on the shape of the mirror torus, i.e., the conductivity. The
topological charges of these field configurations are simply
winding numbers on the mirror torus. An illustration of this
stringy phenomenon is shown in Fig. 1.

This allows us to argue that for each universality class the
location of the attractive fixed point (plateau) is determined by
the topology of a stable vector bundle on the target torus. Each
phase of the mirror model is dominated by the dyon that has
the lowest energy in that phase, and every physically stable
dyon defines a phase in this way. Because the dyonic energy
function is modular invariant, each stable dyon is uniquely
associated with a plateau on the boundary of moduli space,
and the rational value of the Hall conductivity is the ratio
of magnetic to electric charge of the dyon. Reversing the
mirror map, each stable dyon maps to a bundle with rational
slope, whose topology therefore is uniquely associated with a

rational Hall plateau. Since this bundle is topologically stable,
we may conclude that mathematical (topological) stability of
vector bundles in the original model is equivalent to physical
stability of dyons in the mirror model, which is easier to
understand since it follows directly from charge and energy
conservation.

Because this somewhat oblique argument relies only on the
topology and geometry of two physically equivalent mirror
models, it is not burdened by difficult calculations. The mod-
els have already rolled nonlinear dynamics into the quantum
geometry of D-branes on a pair of mirror target spaces. This
is encoded in the geometry of the quantum moduli space,
in much the same way that instanton corrections in one CY
manifold (string vacuum) may be obtained from the geometry
of complex structures on the mirror manifold [3,32].

F. Matter

This subsection recalls how matter fields (fermions) may
be added to a sigma model whose target space admits “spin
structures.”

It is an experimental fact that the parity of the numerator
or denominator of σ⊕

H (or both) always is constrained. This
is a crucial piece of phenomenological information since it
determines the type of modular symmetry that should be built
into the model. Fortunately, this constraint is automatically
built into a toroidal model with matter fields.

There is, in general, a topological obstruction to including
fermions, and to remove this obstruction the model must be
equipped with an additional geometric structure that is called a
spin structure. This implies that the fermions must satisfy cer-
tain boundary conditions, or, equivalently, that they couple to
certain flat gauge potentials. On a torus there are three possible
choices of spin structure. Mathematically, this is equivalent to
“enhancing the elliptic curve with 2-torsion data” (this group
torsion has nothing to do with the metric torsion discussed
above) [20]. This reduces the modular symmetry to one of
the three maximal subgroups [�X ⊂ �(1) (X = R, S, or T )]
observed in the scaling data.

In view of the supersymmetry lurking in disordered sys-
tems (including the QHE) [33], it is natural to pair each of
the two bosons with two fermions, which to leading order just
adds a Dirac term to the effective action. Since the central
charge of the conformal symmetry of a free boson (fermion)
is 1 (1/2), our naive expectation is that this elliptic model has a
total central charge c⊗ = 2×1 + 4×1/2 = 4 at critical points
associated with noninteracting integer phases, and modular
symmetry carries this over to any fractional transition.

For comparison to experiment we retain only the weaker
idea that the central charge at a critical point should be a nat-
ural number (c⊗ = n ∈ N). This gives a discrete set of values
ν±

n of the critical exponents. Comparing these to values ν±
num

obtained from numerical simulations of the delocalization
transition using the Chalker-Coddington (CC) model [34], we
find that they are in remarkable agreement with our naive
expectation, ν±

4 ≈ ν±
num [9]. At the very least, this shows that

viable toroidal models exist. It is striking that what is arguably
the simplest and most natural model of this kind (i.e., contain-
ing all the geometrical and topological structures dictated by
phenomenology), is so close to experimental reality.
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G. Summary

Our two phenomenological constraints (i) and (ii) have
uncovered a conjunction of favorable mathematical circum-
stances (closely knit topological and geometrical structures
that appear to be tailor-made for the QHE). This invites us
to conjecture that Hall plateaus, and the universality classes
to which they belong, can be modeled by topologically stable
holomorphic vector bundles on a torus with spin structure.
In this toroidal sigma model the topological invariant that
protects the robust and universal plateau values of the conduc-
tivity is the slope μ(V ) of stable holomorphic vector bundles
V on the target space, σ⊕

H = μ(V ) ∈ Q. In the equivalent
mirror model topological protection is provided by more
familiar winding numbers.

The noninteracting case is modeled by line bundles Ld

(r = 1), from which a familiar looking topological statement
about the IQHE is recovered [31], σ⊕

H = c1(Ld ) = d ∈ Z,
albeit in a field theoretic context. The connection to the first-
quantized theory, which is based on drastically simplified but
explicit plateau wave functions, is not completely obvious.
Some remarks on this connection are deferred until the dis-
cussion in the final section.

In the absence of a theoretical derivation of this EFT from
microphysics, the merits of the toroidal model can only be
decided by comparison to experimental data, as we review in
Sec. IV [1,2,4–11].

The goal of the next section is to derive the phase diagram
and partition function for the toroidal model we tried to
motivate above. We first review the geometry and topology of
generalized sigma models with toroidal target spaces, relying
heavily on results from string theory. The partition function is
evaluated by exploiting mirror symmetry, which in the context
of string theory found sufficient traction to spearhead funda-
mental new insights in algebraic geometry. Scaling proper-
ties (the RG flow) of this partition function is investigated
in Sec. III.

Modular symmetry is a quantum symmetry that only
emerges when thermal fluctuations are too feeble to overcome
quantum ordering, so the extremely cold experiments that are
now available could easily falsify the model. They instead
provided strong evidence in its favor. The geometry of scaling
flows extracted from the coldest quantum Hall experiments
is in good agreement with modular predictions, including the
location of many quantum critical points [2,6,7,9].

We also compare this analytical model to the numerical
Chalker-Coddington (CC) model [34], which has been under
intense scrutiny since its conception in 1988, because it was
designed to emulate the quantum critical delocalization transi-
tion in the QHE. The family of toroidal models discussed here
yields a discrete set of candidate delocalization exponents νn,
where n is an integer. One of these is ν4 = νtor = 2.6051 . . . ,
which is in excellent agreement with the best available numer-
ical value νnum = 2.607 ± .004 [35,36]. This suggests that
our family of toroidal models includes the universality class
of the CC model.

To investigate if these theoretical (numerical and analyt-
ical) constructions faithfully model universal properties of
the QHE near criticality, a careful examination of real scal-
ing data is required. The real delocalization exponent may

be disentangled from other scaling exponents in finite-size
scaling experiments, which has yielded an experimental value
νexp = 2.3 ± .2 that appears to be about 10% smaller than the
theoretical values νnum ≈ νtor.

However, the modular model suggests that there may be a
sensitivity to initial conditions in these experiments that has
not been fully appreciated, in which case it is possible that
no experiment so far has been in the proper scaling domain
for the delocalization exponent. If we use the modular scaling
function to take this into account, the adjusted experimental
value does line up with the theoretical one [9].

Another subtlety that complicates the comparison with the
data is that there could be more than one universality class,
depending on the type of disorder (essentially long vs. short
range), which may not have the same delocalization exponent.
If so, the original CC model would only be relevant for (at
most) one of them, but it is conceivable that the discrete
family of toroidal models could contain both. To determine
if these models really are in (one of) the quantum Hall univer-
sality class(es), improved finite-size scaling experiments are
urgently needed.

II. TOROIDAL MODELS

In less than four dimensions the classification of spaces
equivalent under homeomorphisms (continuous transforma-
tions) and diffeomorphisms (smooth transformations) are the
same. So in dimension one, two, and three topological and real
geometric structures coincide.

The only real topological invariant of a two-dimensional
Riemann surface is its genus, i.e., the number of holes. A finer
classification is obtained by considering complex structures
(equivalence under holomorphic transformations).

The toroidal sigma model has two complex structures Cτ

and Cσ , giving the shape and size* of the target space. The
“complexified size” size* parametrizes the complex Kähler
cone. This is a novel object, not used in mathematics, which is
essential for understanding the quantum geometry of strings,
as well as the quantum field theories that emerge in low energy
(large target space) limits where strings appear point-like. It is
the key concept on which the following narrative pivots.

A. Target geometry

Any two-dimensional Riemannian manifold M(ϕ1, ϕ2) is
equipped with a metric that may be written

ds2 = gabdϕadϕb = a

Imτ
|dϕ1 + τdϕ2|2,

where

gab = a

Imτ

(
1 Reτ

Reτ |τ |2
)

, τ = g12 + a i

g11
,

and a = vol g = √
det g is the area of M.

If M is a 2-torus T2, then the one-dimensional family Cτ of
distinct complex structures (shapes) is given by those values
of τ that are not identified under modular transformations.
It is convenient and natural to pair (“complexify”) the area
a > 0 with metric torsion hab = b εab (b = tor g ∈ R), giving
another one-dimensional family Cσ of complexified Kähler
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structures [37], parametrized by the size* (size and torsion)

σ = tor g + i vol g = b + a i.

Cτ and Cσ are the building blocks of the moduli space of
geometric structures on the target space T2, on which the
renormalization group (RG) acts.

Spinor fields require the target space M to have a spin
structure # = PA, AP, or AA, where (A)P means that the
fermion is (anti)periodic when transported around a cycle.
Each of the three nontrivial spin structures # gives a torus T2

#
(sometimes called “decorated” or “enhanced”) with a reduced
modular symmetry that is one of the three maximal congru-
ence subgroups �# of the modular group �(1) = PSL(2,Z).
We use one of the generators to uniquely label these subgroups
(conventional mathematical notation is shown in the second
column):

�T = �0(2) = 〈T, R2〉, T (z) = z + 1,

�R = �0(2) = 〈R, T2〉, R(z) = z

1 + z
,

�S = �θ (2) = 〈S, T2〉, S(z) = −1

z
,

where z = τ , σ or ρ = S(σ ) = −1/σ , depending on context.
Quantum Hall phenomenology informs us in no uncertain
terms that we must equip our target space with a spin structure.
Spin polarized scaling data force us to endow the torus with
spin structure PA. The modular symmetry of this “enhanced”
torus T2

T is the subgroup �T ∈ �(1) of the modular symmetry
�(1) of the unconstrained torus. The full geometric structure
of the base manifold is therefore locally (i.e., ignoring discrete
global identifications) (Cτ×Cσ )T.

By definition the model T2
# includes all vector bundles

consistent with the spin structure #, i.e., all bundles whose
slope μ = c1/r is given by a suitable subset of all coprime
lattice points. For the spin polarized quantum Hall model T2

T
we have r = 1 mod 2. For each spin structure the partition
function includes a discrete sum over these topologies.

The moduli space M of this geometry is given by
two copies of the upper half plane divided by the
full quantum symmetry group of the model, M(τ, σ ) =
[C(τ )/�#×C(σ )/�#]/Z2, where Z2 is the mirror map [37].
Mirror symmetry is an exact quantum symmetry that follows
from dualizing one of the isometries of the target space,
by performing what is essentially a Hubbard-Stratonovich
transformation on the functional integral in first order form,
and integrating out the linearized constraint in two different
ways [38,39].

In our model, which is really a family models contained in
the extended family of toroidal models parametrized by two
complex numbers τ and σ , the geometry of the target space is
given by the metric gab = σDδab and torsion hab = σHεab. The
moduli for this sigma model are τ = i and σ = σH + iσD ∈
C+. Since the complex structure of this model is fixed at
τ = i, the target space is a square torus whose shape is not
renormalized. Its size* σ , on the other hand, is not fixed, and
it is the RG flow of σ that will concern us here (cf. Fig. 2).

In the strongly coupled domain, which is where critical
points appear, the complexified Kähler cone Cσ may be
transmogrified by topological modes, and therefore deviate

τ

α β

ω1

ω2

|ω1|τ

|ω1| 

τ  = ω2/ω1

ωωωω22

|λω1| 

|λω1|τ

|λ2ω1| 

|λ2ω1|τ

λω1

λ2ω2

λ2ω1

FIG. 2. An arbitrary flat torus is spanned by basis vectors ω1 and
ω2. Multiplying by a complex number λ (here: |λ| < 1) rotates and
rescales (here: shrinks) the torus. A second rescaling by λ is also
displayed. Since the orientation of these tori in the complex plane is
of no physical or mathematical interest, they should be rotated into
“standard position” in the first quadrant, i.e., so that the rotated ω1

is real. It is then apparent that the rescalings have not changed the
shape (complex structure τ ) of the torus. What has changed is the
size (area) a = Imσ = |ω1|2Imτ of the torus.

strongly from its classical cousin (the vertical line σ = a i,
a > 0). We will circumnavigate this problem by using mirror
symmetry to find a simpler, and arguably more intuitive,
way to calculate the partition function ZT. This may seem
ill-advised in view of the fact that this map is not very well
understood in general, and what is known has been obtained in
the context of string theory, which has far more structure than
our model. However, the string has many geometrical phases,
i.e., phases with an asymptotic limit in string moduli space
where the theory reduces to a field theoretic sigma model with
a CY target space, the simplest being the torus. In fact, the
elliptic curve considered here is an exception for which the
mirror map has a solid mathematical foundation [37,39,40].

Modular symmetries are, of course, independent of string
theory, predating strings by a century, and have many appli-
cations unrelated to strings. That they were being popularized
by string theorists at the same time as quantum Hall effects
were being discovered was a fortuitous historical accident.

Since the metric is normalized by the effective coupling,
the magnetoconductivity is playing the role of the inverse
coupling constant in a gauge theory, σD ∼ 1/e2. In the weak
coupling limit (σD → ∞) the target torus T2 degenerates
to a sphere, so a spherical sigma model is included in the
toroidal model as a limiting case, but at strong coupling these
models are completely different. The torus degenerates to a
sphere at only one point on the boundary of its moduli space
(“σ = i∞”), and it is not possible to reconstruct the toroidal
model from this special case. In other words, there is no
way to infer that a sphere came from a degenerate torus, or
for that matter from any other topology. In the absence of a
rigorous derivation of the EFT from microphysics, it is only
experimental data that can tell us which model is correct at
strong coupling. Since this is where quantum phase transitions
and quantum critical points appear, it is the transition region
between plateaus that will give us this information.
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B. Mirror model

First discovered in string theory [37], the existence of this
particular mirror model is now a mathematical fact [3,40].
This is a recurrent theme: frequently stringy structures have
subsequently been found to stay up in the low energy field
theory limit, without the scaffolding afforded by string theory.
The symmetry between an elliptic sigma model endowed
with holomorphic gauge bundles (D0/2-branes), and a mirror
model on a dual torus endowed with dyonic Wilson loops
(D1-branes), is one example, which we will exploit here.

1. Mirror symmetry on the base space

If the target manifold M has an isometry, then the func-
tional integral has a remarkable quantum invariance that now
is called mirror symmetry [38]. By changing variables in
the functional integral, completing squares, and integrating
out the isometry, a dual sigma model with a different target
geometry M̃ is obtained.

In two dimensions the mirror transformation m is

Kab = Imσ

Imτ

(
1 Reτ

Reτ |τ |2
)

+
(

0 Reσ
−Reσ 0

)
m ←

−

K̃ab = Imτ

Imσ

(
1 Reσ

Reσ |σ |2
)

+
(

0 Reτ
−Reτ 0

)
, (3)

so the mirror map simply swaps the two complex structures

τ and σ : (τ, σ )
m−→ (τ̃ , σ̃ ) = (σ, τ ) [37–39]. This is the first

nontrivial check of mirror symmetry: since there is only one
one-dimensional CY manifold, the torus must be its own
mirror. M = T2 and M̃ = T̃2 must therefore have the same
parameter space, and by virtue of the mirror map m they do.

Our quantum Hall sigma model LEFT(τ, σ ) and its dual
L̃EFT(τ̃ , σ̃ ) are parametrized by τ = i = σ̃ and σ = σH +
iσD = τ̃ , so in this case Eq. (3) becomes

Kab =
(

σD σH

−σH σD

)
m−→ K̃ab = 1

σD

(
1 σH

σH |σ |2
)

= g̃ab.

(4)

One of the main virtues of the dual model is that K̃ab is
symmetric, so that the target space T̃2 of the mirror model
is a conventional torsionless torus, with periodic coordinates
(bosonic fields) (̃ϕ 1, ϕ̃ 2) ∈ S1×S1 and effective action

L̃EFT = g̃ab ∂̃μϕ̃ a ∂̃μϕ̃ b + · · · = 1

σD
∂̃μφ̃ ∂̃μφ̃ + · · · ,

where φ̃ = ϕ̃ 1 + σ ϕ̃ 2 and φ̃ is the complex conjugate field.
Notice that the duality (mirror) transformation has elim-

inated the unfamiliar torsion, by exchanging a target space
of constant (square) shape (τ = i) and scale-dependent
size [a(t ) = vol g = σD(t )] for one with constant size
[ã = vol g̃ = 1] and scale-dependent shape [σ (t ) = σH (t ) +
iσD(t )]. Because m is a quantum symmetry, these two models
are equivalent, and therefore have the same partition function
ZEFT = Z̃EFT.

2. Mirror symmetry on the fiber

By a toroidal sigma model we mean more than just a
toroidal target space: the base manifold T2 comes equipped
with a holomorphic structure, a spin structure respected by
fermions, and gauge fields with nontrivial topology. Since T2

is not simply connected, even flat bundles (vanishing field
tensor) may be topologically nontrivial (the Aharonov-Bohm
effect). It is the energy of these topological field configu-
rations that determines the ground state of the model, and
therefore its phase diagram.

The partition function ZEFT = Z̃EFT includes a sum over
all topologically distinct field configurations of finite energy.
To use mirror symmetry to calculate this function we must
therefore investigate the fate of flat vector bundles on T2 when
subjected to the mirror map.

We are fortunate that toroidal mirror symmetry by now is
a mathematical fact [40], but unfortunately the proof is quite
abstract, mapping “the derived category of coherent sheaves
on the B-side to the Fukaya category of Lagrangian sub-
manifolds on the A-side.” Our first challenge is to transcribe
this into ordinary quantum field theory language.

In this we are aided by open string theory, from which we
know that mirror symmetry in the field theory limit relates
flat vector bundles on a CY manifold to gauge invariant
objects on certain submanifolds of the mirror manifold [3].
These submanifolds are minimum volume spaces of suitable
dimension, and when the mirror manifold is a torus they are
simply straight lines winding the torus [cf. Fig. 3(a)]. The
objects on T̃2 that are dual to stable holomorphic bundles on
T2 are gauge-invariant Wilson loops [3].

The energy density of a D1-brane cannot be smaller
than the BPS bound, which is determined by the length
|Q = q + ip| of the topological charge vector [41],

p ∝ m
√

σD, q ∝ (n + σH m)/
√

σD,

Qn,m ∝ (n + σm)/
√

Imσ . (5)

In soliton language, the magnetic charge p is given by the
winding number m. Similarly, the electric charge q is given by
the winding number n, but because of the Witten effect [42]
q picks up an additional m-dependent contribution from the
topological piece of the effective action that is parametrized
by σH [43,44].

Topological properties of winding modes survive in the low
energy (geometric) field theory limit, and the total energy E of
a Wilson loop of length L should saturate the BPS bound. In
other words, E ∝ L |Q|, where the constant of proportionality
will be determined later. For the energy of these modes to
be finite the loop must be of finite length, and this happens
iff it winds a finite number n times around one cycle of
T̃2, and m times around the other cycle, before returning to
the starting point (cf. Figs. 1 to 3). In other words, only a
loop � = (�1, �2) = (n, m) whose slope is rational [m/n ∈Q,
cf. Fig. 3(a)] has finite energy. The length L of this loop in the
mirror metric g̃ab [Eq. (4)] is given by

L2
n,m(σ, σ̄ ) = g̃ab�

a�b = |n + σm|2
Imσ

. (6)

Combining Eqs. (5) and (6) we obtain the energy function for
topologically stable field configurations of finite energy on the
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(a)

u1 u2
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(b)

FIG. 3. Topological modes in the mirror model T̃2 with shape
(complex structure) τ̃ = σ = exp(π i/3) and size (Kähler structure)
σ̃ = τ = i. (a) The field theory limit of a rational D1-brane on a torus
is a straight Wilson loop with three real moduli (μ̃ = m/n, u, v),
which winds n times around one cycle, and m times around the
other cycle. The center of mass coordinate u and the value v of
the Wilson loop parametrizes a torus that is isomorphic to the target
space, u + σv � φ̃ ∈ T̃2. The two parallel closed loops shown here
(in purple and green) have the same winding numbers (n1 = n2 = 1,

m1 = m2 = 2) and slope (μ̃1 = μ̃2 = 2), but since they have distinct
moduli (u1 = 0 �= 1/4 = u2) they are not the same mode. (b) A state
has finite energy iff its charge vector (n, m) belongs to this charge
lattice, i.e., iff the slope m/n of the charge vector is rational. For a
given rational slope, only the point nearest the origin (red), whose
charges are coprime, is stable. The rest of the points (blue), whose
charges are not coprime, are unstable.

mirror torus T̃2,

En,m ∝ L2
n,m. (7)

3. Stability

A vector bundle W is called slope-stable (or Mumford-
stable, or just stable in one dimension) if every sub-bundle
V ⊂ W has smaller slope than W , μ(V ) < μ(W ), and it
is called semistable if μ(V ) � μ(W ). A semi-stable bundle
V for which deg(V ) and rk(V ) are coprime is stable. Line
bundles [rk(L) = 1] are therefore always stable, as required
if they are to model the IQHE (i.e., all integer plateaus
are observed, and should therefore all correspond to stable
bundles).

The mathematical motivation for singling out these bundles
is that slope-stable bundles are indecomposable, in the sense
that they cannot be reduced to a direct sum of “smaller”
bundles, and all holomorphic bundles can be built from these.

This offers little physical insight, but, since m is an exact
quantum symmetry, the classification of stable holomorphic
bundles on the elliptic curve T2 should be mirrored in an
equivalent classification of dyons on T̃2, and hopefully one
whose physical interpretation is more transparent. We already
discussed the physical reason (finite energy) why the geomet-
rical slope of an (n, m)-mode must be rational, as required by
the rationality of the topological slope of the dual bundle and
equivalence under mirror symmetry.

We must also show that the charges are coprime. This fol-
lows from the physical fact that a dyon is stable against decay
iff its charges are coprime. In order for two states �i = (ni, mi )
(i = 1, 2) to give a composite state � = (n, m), it follows from
charge conservation that they are related by vector addition on
the charge lattice, so they must satisfy the triangle inequality
|�| � |�1| + |�2|. From energy conservation it follows that �

decays into �1 and �2 iff this inequality is saturated, i.e., iff
the three states point in the same direction, with |ni| � |n|
and |mi| � |m|. They therefore have the same slope, so mi =
nim/n ∈ Z, and since n cannot divide ni, n must divide m. So
a dyon is unstable iff it is not coprime, and it is stable iff it is
coprime.

Geometrically, this means that a state is stable iff its charge
vector intersects the charge-lattice precisely once. In other
words, the lattice points nearest the origin are stable, and
these are the points with coprime coordinates [cf. Fig. 3(b)].
All other lattice points are not coprime and not stable since
neither charge nor energy conservation forbids them from
decaying into shorter (collinear) states that also belong to the
lattice.

The energy function En,m(σ ) ∝ L2
n,m(σ ) in Eq. (7) is invari-

ant under a very large group �(1) = PSL(2,Z) of discrete
symmetries that are called modular. A modular transforma-
tion γ ∈ �(1) acting on a complex variable σ is a Möbius
transformation with integer coefficients (a, b, c, d ∈ Z) and
unit determinant (det γ = ad − bc = 1):

σ
γ−→ σ ′ = γ (σ ) = aσ + b

cσ + d
= Reσ ′ + Imσ

|cσ + d|2 i. (8)

The nice transformation of the “electron” state (1,0),

L1,0(σ ) = 1√
Imσ

γ−→ |d + σc|√
Imσ

= Ld,c(σ ),

signals that the simple form of the energy function is pre-
served by modular transformations:

Ln,m(σ )
γ−→ Ln,m(σ ′) = Ln′,m′ (σ ),

(n′, m′)t = γ̃ · (n, m)t ,

γ̃ =
(

d b
c a

)
=

(
a −b

−c d

)−1

,

where the modular transformation γ̃ acts on charge vectors by
matrix multiplication. We can therefore undo the effect of γ

by acting on the charge lattice with γ̃ −1, leaving the energy
unchanged. Notice that any modular image of the coprime
pair (1,0) is also coprime because (d, c) is coprime for any
modular transformation. Stability is therefore preserved by
modular transformations.
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To pick a unique state we must also specify the position
u of the Wilson loop, together with the value v of the loop
integral (monodromy) [cf. Fig. 3(a)] [3]. These may be com-
bined into a complex parameter that takes values on a torus
that is isomorphic to the base space, u + σv � φ̃ ∈ T̃2. So
the classification of topological states on T2 and T̃2 require
the same arithmetic data (a pair of coprime integers and a
complex number that parametrizes the torus), as required by
mirror symmetry [45].

In summary, we learned from string theory the surprising
but convenient fact that mathematical (topological) stability
in our toroidal model is equivalent to physical stability in the
mirror model, thus vindicating our suspicion that the spectrum
of mathematically stable holomorphic vector bundles on T2

determines the physical spectrum of universality classes in
this model. Modular and mirror symmetry guarantees that
there is a unique stable fixed point compactifying each uni-
versality class, which is associated with a unique slope-stable
holomorphic vector bundle, and the plateau value is given by
the topological invariants of that bundle.

4. Phase diagram

The phase structure is determined by a competition be-
tween the dyons. The state of lowest energy depends on the
shape of the torus, and phase transitions occur when the
ground state degenerates.

Consider first the family of rectangular tori with complex
structure σ = it (0 < t ∈ R) and full modular symmetry (no
spin structure). Since the length L of a Wilson loop in this
case is given by

L2
n,m(σ = it ) = n2

t
+ m2t,

we see that when t > 1 the shortest loop is (±1, 0), when
t = 1 the states (±1, 0) and (0,±1) are degenerate, and when
t < 1 the ground state is (0,±1). It is known that the only
extremal points on the fundamental domain of a modular
function is a saddle point at σ⊗ = i and a global extremum
at σ� = exp(2π i/3) [46]. Since the partition function is a
modular function, we conclude that there is a phase transition
at t = 1 (⊗ = i), and at all its modular images.

Moving away from the imaginary axis, for every stable
dyon there is a region of moduli space (a phase) where that
dyon has less energy than all others, cf. left-hand column
in Fig. 4. The top left panel shows a bottom view of the
energy landscape of the mirror model T̃2. Each flake of this
“dyonic millefeuille” gives the energy of a specific dyon as
a function of the complex structure τ̃ = σ . This landscape,
derived from the unconstrained integer charge lattice �, has
maximal modular symmetry �(1).

The middle row shows the minimum energy landscape
as a function of the complex structure τ̃ = σ on T̃2 (left)
and T̃2

T (right). Quantum phase transitions take place along
the black ridges where neighboring states are degenerate in
energy.

The bottom left panel shows the phase diagram in the
moduli space of complex structures τ̃ = σ on T̃2. Color-
temperature is proportional to energy. In each phase, labeled
by its dyon charge (n, m), the energy has a unique global

minimum (⊕) at the rational point σ⊕ = −n/m (n, m ∈ Z)
on the boundary of moduli space, where En,m(⊕) = 0. The
quantum critical points (⊗) are points of minimum energy
on the self-similar tree of phase boundaries [Ln,m(⊗) = 1].
Bifurcation points (�), which appear when three phases are
degenerate, have maximum energy [L2

n,m(�) = 2/
√

3 ].
For the subgroup �T ∈ �(1) of relevance to the spin po-

larized QHE, only dyons with odd magnetic charge have
finite energy, and this has a dramatic effect on the phase
diagram, cf. right-hand column in Fig. 4. The top right panel
shows a bottom view of the dyonic energy landscape of the
mirror model T̃2

T, in which the charge vector is restricted to a
sublattice �T ⊂ � that includes only odd magnetic charges.
Compared to the unrestricted case (left), this removes half the
phases and all bifurcations (triskelions), and the modular sym-
metry is reduced to a subgroup �T ⊂ �(1). Each phase has a
unique global minimum (⊕) at the rational point σ⊕ = −n/m
(n ∈ Z, m ∈ 2Z + 1) on the boundary of moduli space, where
En,m(⊕) = 0. These plateau values are protected by topology
because (m, n) are winding numbers that cannot be continu-
ously deformed. They can only jump by integer amounts, by
provoking a quantum phase transition to a different ground
state. Since these charges are mirror reflections of (r, c1) in the
original sigma model, we also have σ⊕ = σ⊕

H = c1/r ∈ Q,
which reduces to the IQHE (σ⊕

H = c1 ∈ Z) for line bundles
(r = 1).

The bottom right panel shows the phase diagram in the
moduli space of complex structures τ̃ = σ on T̃2

T. In this
restricted case all maxima � moved to even denomina-
tor rationals and acquired infinite energy [En,m(�T) → ∞].
This fractal phase diagram, including the location of criti-
cal points, is in accurate agreement with the spin polarized
QHE [2].

So far we only used the geometry of T̃2 and T̃2
T, which is

built into the dyonic energy function. We have seen that this
is sufficient to extract the phase and fixed point structure, and
we verified that the model is manifestly invariant under the
modular symmetry that respects the chosen spin structure on
the target space. To study scaling (RG flows) and calculate
critical exponents we now turn to the partition function for the
model T̃2

T, which has been “enhanced” with a spin structure
that is appropriate for the spin polarized QHE.

C. Partition function

We want to calculate the partition function of the mirror
model, and to simplify notation we temporarily set x = σH ,
y = σD and Z# = Z̃#

EFT, where # = T, R, S labels the choice of
spin structure (PA, AP, AA) on the target torus T̃2

#. We focus
here on ZT; similar discussions for the R and S spin structures
may be found in the Appendix.

Physical and mathematical considerations, including the
requirements that the bosonic part Zb of the partition function
should be real, nonsingular, and invariant under both modular
and mirror transformations, gives a function that is indepen-
dent of spin structure, and therefore the same for all spin
structures:

Zb ∝ 1√
Imσ |η(σ )|2 × 1√

Imτ |η(τ )|2 .
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FIG. 4. Energy landscapes (top row) and minimum energy landscapes (middle row) [ln En,m(σ ) ∝ ln Ln,m(σ )], together with phase
diagrams in the moduli space of complex structures τ̃ = σ (bottom row), for the mirror model T̃2 without spin structure (left), and the
mirror model T̃2

T with spin structure (right). Saddle points (⊗) on the phase boundaries (black) are candidate quantum critical points. (The
iconography is explained in the main text.) The red lacework showing level curves of unit height [Ln,m(σ ) = 1], are Apollonian (left) and
sub-Apollonian (right) gaskets.

This function is invariant under all modular transformations,
because the modular weights [47] (w,w) = (1/2, 1/2) of the
squared modulus of the Dedekind function

η(z) = eπ iz/12
∞∏

n=1

(1 − e2π inz ), (z = σorτ ) (9)

are canceled by the weights (w,w) = (−1/2,−1/2) of
√

Imz
[cf. Eq. (8)]. Since η(i) = �(1/4)/(2π3/4) = 0.768225 . . . is
finite, in our case (τ = i) this simplifies to

Zb(σ, σ̄ ) ∝ 1√
y|η(σ )|2 . (10)
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Zb is invariant under modular transformations of the target
space complex structure, but it is neither holomorphic nor
holomorphically factorized.

The dyonic contribution Zd to the �T-invariant partition
function ZT = ZbZd is obtained by tracing the Boltzmann
weight over the sublattice

�T = Z ⊕ (2Z + 1)σ ⊂ � = Z ⊕ Zσ.

The spectrum found in Sec. II B 2 [Eq. (7)] gives

Zd (σ, σ̄ ) = Tr�T zn,m(σ, σ̄ ),

zn,m = e−βEn,m = e−β̃L2
n,m = e−(πα2/2)|n+σm|2/y,

where β̃ = πα2/2 is an unknown factor parametrized by α

for future convenience [48]. The remaining trace is over field
configurations of finite energy that respect the spin structure
# = T (n ∈ Z, m ∈ 2Z + 1).

To check the symmetry of the partition function, consider
first the action of the generators of the modular group on the
effective action:

|n + σm|2/y
T−→ |n + m + σm|2/y,

|n + σm|2/y
S−→ |m − σn|2/y,

where we used that S(y) = y/|σ |2. Notice that the duality
transformation S switches the role of electric and magnetic
charges. This gives

Tr�T zn,m(T σ ) = Tr�T zn+m,m(σ ) = Tr�T zn,m(σ ),

Tr�T zn,m(Sσ ) = Tr�T zm,n(σ ) = Tr�R zn,m(σ ),

where R = ST S and �R = (2Z + 1)⊕Z σ . The �T-trace is
therefore unchanged by T but not by S, as expected since T
is in �T and S is not. Suppressing traces, the duality generator
D = R2 = ST 2S in �T gives:

D : zn,m
S−→ zm,n

T 2−→ zm,n
S−→ zn,m, (11)

which shows that the effective action is invariant under the
duality transformation D on the lattice �T. Since both Zb and
Zd are �T-invariant, so is ZT = ZbZd .

After a Poisson resummation∑
n∈Z

e2iAn−Bn2 =
√

π

B

∑
n∈Z

e−(A+πn)2/B,

Zd takes a more familiar form,

Zd =
√

2y

α
Tr�T e2π i{xmn+y[(n/α)2+(αm/4)2]i}

=
√

2y

α
Tr�T qh2

+(α)q̄ h2
−(α),

where q = exp(2π iσ ), and h±(α) = (n/α ± αm/2)/
√

2. No-
tice that the nonholomorphic pre-factor

√
y in Zd is canceled

by the denominator of Zb [Eq. (10)]:

ZT = ZbZd ∝ ζT = 1

2|η|2 Tr�T qh2
+(α)q̄ h2

−(α).

At critical points conformal symmetry imposes severe
restrictions on a quantum field theory. This will be discussed

in the next section, but to avoid suspending our current cal-
culation we anticipate one result: the partition function should
be holomorphically factorized in σ [cf. Eq. (16)]. With α2 = 1
we obtain after some work the factorized form

ζT = 1

4

∣∣∣∣θ2

η

∣∣∣∣2

=
∣∣∣∣η(2σ )

η(σ )

∣∣∣∣4

= |η+|4, (12)

where

θ2(q) =
∑
n∈Z

q(n+1/2)2/2 = 2q1/8
∞∏

n=1

(1 − qn)(1 + qn)2

is a Jacobi theta-function, and we defined

η±(q) = q1/24
∞∏

n=1

(1 ± qn). (13)

The function η− is the usual Dedekind η-function defined in
Eq. (9), but η+(σ ) = η(2σ )/η(σ ) is less conventional [49].
We therefore choose α = ±1, which gives the “free energy”

fT = − ln ζT = −4 ln |η+| = −2(ϕT + ϕ
T
)

in terms of the �T-invariant holomorphic potential

ϕT (σ ) = ln η+(σ ) = ln η(2σ ) − ln η(σ ). (14)

We shall see in the next section that the RG potential
(C-function) for this model also derives from the “thermo-
dynamic potential” ϕT = ln η+. The reason for this surprising
and useful simplification is that modular vector fields in these
models derive directly from modular scalar fields, so 0-forms
and 2-forms are paired, and therefore equally unique.

This means that the deceptively simple looking function
η+ encodes most universal properties of the model, including
the location of critical points and the flow geometry between
these. Provided that it is properly (physically) normalized,
it also gives the flow rates near critical points, i.e., critical
(delocalization) exponents.

In summary, the high degree of modular symmetry in
this model means that the potential ϕT is extremely rigid
(essentially unique). It is therefore perhaps surprising, and
encouraging, that thirty years of experiments not only have
failed to falsify the model, the agreement appears to be
improving with time as the technology needed to reach the
scaling domain evolves (cf. Sec. IV).

III. RG FLOW

To investigate scaling properties of these models we ex-
ploit some geometric properties of RG flows. The physics of
this flow is determined by a vector field βa = λ̇a = dλa/dt
tangent to the parameter space M(λ) spanned by the relevant
effective couplings λa of the quantum field theory under
consideration.

A. RG potential

Explicit perturbative calculations of scalar ϕ4 theories in
4 − ε dimensions up to three loop order showed that the RG
flow is a gradient flow

βa(λ) = gab
Z

∂bC = gab
Z

(λ)
∂C(λ)

∂λb
, (15)
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where C is a scalar potential (the RG potential) and gZ is an
invertible metric on M [50]. Since this eliminates patholog-
ical limit cycles, it was believed to be a general property of
any effective field theory in its domain of validity. Further
evidence was obtained from the study of non-linear sigma
models in two dimensions [51], and finally established as the
so-called “C-theorem” in Ref. [21].

Here we consider only two-parameter flows (dim M = 2),
in which case we can work with complexified coordinates λ =
λ1 + iλ2 and λ̄ = λ1 − iλ2 without loss of generality. This
gives the complexified beta function βλ = dλ/dt = λ̇1 +
iλ̇2 = β1 + iβ2, and its complex conjugate βλ̄ = dλ̄/dt =
β1 − iβ2. Our moduli space M is the space of conductivities
(λ = σ ) [or, equivalently, the space of resistivities (λ = ρ)].

Renormalization must respect the symmetries of a model,
and in our case this includes the infinite discrete group
of modular transformations. Consequently, the physical beta
function, which is a contravariant vector field βσ = σ̇ , must
transform like a modular form of weight w = −2. Since no
modular form of this weight exists, βσ it is not a modular
form: it is a nonholomorphic vector field that transforms like
a modular form of negative weight.

A covariant vector field βσ , on the other hand, transforms
like a modular form of weight w = 2, and such forms usually
do exist [but not for the full modular group �(1)]. They first
appear for congruence subgroups at level two. For each of
the maximal symmetries �X (X = T, R, S) considered here,
the w = 2 form EX

2 is a unique Eisenstein function, up to an
overall normalization.

Equation (15) is transposed to complex coordinates by
using ∂ = ∂σ = ∂/∂σ and ∂̄ = ∂σ̄ = ∂/∂σ̄ . The complexified
beta function βσ has the properties required by the C-theorem
if the modular scalar C = � + �̄ is given by a holomorphic
potential �(σ ):

βσ = dσ

dt
= gσ σ̄

Z
∂̄C = gσ σ̄

Z
∂̄�̄.

Since ∂̄C = ∂̄�̄ is a modular form of weight (w,w) = (0, 2),
in the most symmetric cases (� = �X, for which there is only
one 2-form) we must have

βσ
X = gσ σ̄

Z
∂̄�̄X ∝ gσ σ̄

Z
ĒX

2 .

Fortunately, potentials �X whose derivatives are the Eisen-
stein functions EX

2 do exist.
To check the transformation properties of this form, notice

that an inverse modular metric transforms like a mixed tensor
of weight (−2,−2). The antiholomorphic weight is canceled
by the weight of Ē2, and the physical beta function βσ is
therefore a nonholomorphic vector field of weight (−2, 0), as
required.

It is remarkable that the requirement that RG transforma-
tions commute with modular transformations is so strong that
(for the cases we consider) the beta function is all but unique,
and the potential �X must be equally unique. For example, if
the modular symmetry is �T, then we have no choice but to
take �T ∝ ϕT = ln η+ [cf. Eq. (14)], and it follows that the
RG potential CT must be proportional to the free energy found
in the previous section, CT ∝ fT.

It is not surprising that the partition function and RG
potential are intimately related near a critical point since

they both in some sense count degrees of freedom at these
“geostationary” points in parameter space. There is, however,
usually no universality associated with the RG flow beyond
leading order in an expansion around a critical point, as
the higher order expansion coefficients normally are scheme
dependent. A modular symmetry is so rigid that it removes
this arbitrariness, forcing the RG flow to take a unique geo-
metric form, up to an overall (physical, scheme independent)
normalization that parametrizes our residual ignorance about
these toroidal models.

We would like to fix the value of this parameter since it
determines the values of the critical exponents. We will argue
that the remaining ambiguity is integer valued, which, if true,
is enough to provide a very strong test of the model. Fur-
thermore, if the supersymmetry of disordered materials [33]
forces this integer to be 4, then the critical exponent has a
precise value that is in remarkable agreement with numerical
simulations (at the per mille level, cf. Fig. 9).

B. Conformal field theory

At quantum critical points (⊗) the finite space-time
(Poincaré) symmetry expands to an infinite conformal sym-
metry, and this imposes severe restrictions on the quantum
field theory. These constraints may be extracted by wrapping
the “world-sheet” �2 on a torus T 2(ρ) with complex structure
ρ (not to be confused with resistivity),

�2 ⊗−→ T 2(ρ)
ϕ−→ T2(τ, σ )

m−→ T̃2(σ, τ ),

in which case the critical partition function Z⊗ (ρ, τ, σ ) has
three moduli (three complex parameters) that take values in
three copies of the upper half plane [C+(ρ)×C+(τ )×C+(σ )].

The toroidal partition function Z (τ, σ ) is unchanged when
complex and Kähler structures are exchanged because the
mirror transformation is a quantum equivalence. When the
model is critical this duality invariance (a Z2 symmetry) is
enhanced to a Z3 symmetry (triality) that allows us to permute
the moduli [37]:

Z⊗ (ρ, τ, σ ) = Z⊗ (ρ, σ, τ ) = Z⊗ (σ, ρ, τ ). (16)

Since a conformal partition function is holomorphically
factorized in p = exp(2π iρ) [30], by triality it is also factor-
ized in q = exp(2π iσ ), which we used above (in Sec. II C) to
evaluate the partition function.

To obtain the leading order expansion coefficients y± =
1/ν± at a critical point ⊗, we need to approximate the RG
potential C near ⊗. We simplify notation by omitting refer-
ences to the symmetry �T considered here (Z = ZT, ϕ = ϕT ,
etc.).

Since Z ∝ ζ and C ∝ ln Z we have two undetermined
constants A and B, with C = B ln(Aζ ). Near a saddle point
(σ → σ⊗ ) we can trade B for the central charge c⊗ ,

C
⊗−→ c⊗

ln Z (q)

ln Z⊗ (p)
= c⊗

ln ζ (q) + ln A

ln ζ⊗ (p) + ln A
⊗−→ c⊗ , (17)

valid for q ≈ q⊗ = exp(2π iσ⊗ ) and any p = exp(2π iρ). Be-
cause of triality at the critical point we expect Z⊗ (p) =
Z (p, q⊗ ) = Aζ⊗ (p) to have the same functional form as
Z (q) = Aζ (q).
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The asymptotic form (p → 0) of the conformal partition
function is

ln Z (q)
q→⊗−→ ln Z⊗ (p)

p→0−→ ln A + αc⊗ ln |p|,
for some constant α. This double limit gives an approximation
of the central charge,

c⊗ ≈ ln Z (q) − ln A

α ln |p| ≈ c⊗
ln ζ (q)

ln ζ⊗ (p)
,

that may be compared with Eq. (17), and we conclude that the
appropriate normalization is Z = ζ (A = 1).

Returning to the original geometry, these considerations
suggest that the C-function near a quantum critical point is
approximated by

C
⊗−→ c⊗

ln ζ (σ )

ln ζ (⊗)
= c⊗

Reϕ(σ )

Reϕ(⊗)
,

where ϕ(σ ) = ϕT (σ ) = ln η+(σ ). Our “only” remaining chal-
lenge is to determine the value of c⊗ .

The elliptic sigma model contains two free bosons, which
contribute cb = 2 to the total central charge c⊗ = cb + c f =
cb + cd , where c f (cd ) is the contribution from fermions
(dyons) in the T2 (̃T2) model. Both numerical and real exper-
iments (cf. Sec. IV C) are consistent with c⊗ = 4, in which
case c f = cd = 2. Each fermion contributes c = 1/2, so there
are two fermions for every boson. This is the signature of
supersymmetry, and there is indeed a global supersymmetry
in disordered models of localization in the QHE [33].

If this observation could be formalized, then the most con-
spicuous (supersymmetric) elliptic model has c⊗ = 4, and we
would obtain a sharp prediction for the values ν+ = −ν− of
the critical exponents. This would-be prediction is in excellent
agreement with numerical experiments, and perhaps also real
experiments, as explained below (in Sec. IV C).

C. Beta function

To extract critical exponents from the beta function we
need to expand the potential ϕ = ϕT at ⊗ = σ⊗ = (1 + i)/2
as a power series in δσ = σ − σ⊗ :

ϕ(σ ) =
∞∑

n=0

an

n!
δσ n = a0 + a1δσ + a2

2
δσ 2 + · · · (18)

The coefficients an = an(⊗) (n � 0) are evaluated in the
Appendix by exploiting transformation properties of modular
and quasimodular forms. This verifies by explicit computation
that a1(⊗) = 0 [cf. Eq. (A4)], so that the beta function indeed
has a simple zero at every quantum critical point. We also find
that a2(⊗) = π2G4/3 = π4

∞/(3π2) [cf. Eq. (A5)], where G
is Gauss’ constant and π∞ = πG = 2.6220 . . . is called the
lemniscate constant (a geometrical interpretation of π∞ may
be found in the Appendix). In conjunction with the C-theorem
this allows us to evaluate the critical exponents [6,9].

The remaining ingredient in Zamolodchikov’s C-theorem
is the parameter space metric gZ [21]. Since the EFT
should be well-defined near quantum critical points, this
metric is nonsingular and invertible near ⊗, and because
the torus is a one-dimensional CY manifold we can use a
result obtained in string theory. At least to leading order

in sigma model perturbation theory, which is all we need,
Zamolodchikov’s metric and the Weil-Petersen metric
coincide for CY spaces [52]. In our case we should therefore
use gZ = gH , where gH = 1/y2 is the hyperbolic metric on the
upper half plane that covers M(σ ).

Collecting everything, the C-theorem gives

βσ = gσ σ̄

H
βσ̄ = −σ 2

D

12
∂̄C

⊗−→ −c⊗
24

(Imσ⊗ )2

Reϕ(⊗)
∂̄ ϕ̄.

Expanding ϕ near the critical point σ⊗ = (1 + i)/2, as ex-
plained above, we find the beta function to leading nonvan-
ishing order,

βσ = δσ̄

ν
+ · · · , ν = 4

c⊗
νtor,

where the toroidal exponent is defined to be

νtor = 18 ln 2/(π2G4) = 18π2 ln 2/π4
∞ = 2.6051 . . . . (19)

We argued above that we expect c⊗ = 4 to give the sim-
plest and most natural elliptic sigma model, in which case
ν = νtor. However, in the absence of any compelling argument
why this is the preferred EFT of the QHE, for the purpose of
comparing with experiments we prefer for now to retain only
the weaker idea that the central charge should be a natural
number (c⊗ = n ∈ N), and ask first if the value νnum of the
delocalization exponent, obtained from numerical simulations
using the CC model [34], is close to any of the exponents
νn = 4νtor/n.

We shall find in the next section that νnum is very close
to ν4 = νtor (νtor/νnum = 0.999 . . . ), which we interpret as
strong evidence that the n = 4 elliptic sigma model is in
the same universality class as the CC model. Comparison to
experimental values νexp is more ambiguous (cf. Sec. IV C).

In summary, the toroidal model gives a very strong con-
straint on the experimental value of the delocalization ex-
ponent: we should find that νexp ≈ 4νtor/n for some positive
integer n. Since νtor is very close the numerical value νnum

calculated in the CC model [34], which is supposed to be in
the quantum Hall universality class, the pressing experimental
question is if

νexp
?≈ νnum

√
≈ νtor ≈ π∞ ≈ 21/8.

The best available data are reviewed in the next section.

IV. COMPARISON TO DATA

We found that the toroidal model makes a robust and pre-
cise statement about universal properties of the QHE: the ge-
ometry of the scaling flow should be modular, and the flow rates
near a critical point should be given by y+

n = −y−
n = 1/νn =

(n/4) ytor for some positive integer n, where ytor = 1/νtor =
0.3838 . . . ≈ 8/21 is the natural flow unit in this model. If
n = 4, as seems to be the case in the toroidal mirror model
discussed here, then |y±

4 |/ytor = νtor/ν4 = 1, and the values of
the relevant (ν+ > 0) and irrelevant (ν− < 0) delocalization
exponents are ν+ = −ν− = ν4 = νtor = 2.6051 . . . ≈ 21/8.

We now confront this statement with “experimental data,”
by which we mean results from both numerical simulations
and real experiments. The experimental information required

195152-16



ELLIPTIC MIRROR OF THE QUANTUM HALL EFFECT PHYSICAL REVIEW B 99, 195152 (2019)

for this comparison is obtained by answering the following
questions about the scaling flow:

(i) Where are the boundary fixed points (sources � and sinks
⊕) of the flow? (i.e., which plateaus are observed?)

(ii) Where are the semi-stable fixed points (saddle points ⊗)
of the flow? (i.e., where are the critical points?)

(iii) What is the geometry of the flow between fixed points?
(i.e., what is the shape of the flow lines?)

(iv) How fast is the flow near a critical point? (i.e., how big
are the critical exponents?)

In a system with modular symmetry this is sufficient to
identify the symmetry, and to map out the topology and
geometry of its parameter (moduli) space. We address these
questions by giving a summary comparison of modular pre-
dictions with some of the experimental data collected over the
past three decades. A more detailed comparison may be found
in Refs. [1,2,5–11].

A. Critical points

The easiest way to identify a modular symmetry in exper-
imental data is to find the location of a few quantum critical
points. Each modular subgroup has a unique signature of fixed
points, as explained in the Appendix. Since it is easy to get
these confused, an “atlas” of both conductivity and resistivity
flow diagrams is appended (cf. Fig. 11). This should make it
easier to compare future experimental results with modular
symmetries.

Figure 5 shows some theoretical (modular) critical points,
together with experimental critical points obtained in a spin
polarized experiment [9,53]. The toroidal model predicts that
transitions between neighboring plateaus (green ⊕) at ρ⊕ =
1/(1 + n) and 1/n (n = 0, 1, 2, . . . ) are controlled by saddle
points of the torus potential ϕ, which are located at rational
points ρ⊗ = (1 + 2n + i)/(1 + 2n + 2n2) (blue ⊗ on orange
circles), and repulsors (red �) at ρ� = 2/(1 + 2n). In this
phase diagram red semi-circles are phase boundaries, thin
black curves (arrows) are modular flow lines sampled from
the gradient of ϕ, and dashed blue semicircles are separatrices
for the flow. The modular and experimental critical points
coincide, within the uncertainty in the data.

Figure 6 extends this comparison of toroidal and exper-
imental critical points to the FQHE. The data on the top
face of the box-diagram are reconstructions of spin polarized
conductivity data reported in Ref. [54], most of which were
obtained for the insulator-plateau transition 0 = ⊕ ← ⊗ →
⊕′ = 1/3 (this notation is explained in the Appendix). Mod-
ular symmetry predicts a critical point at σ⊗ = (3 + i)/10 for
this transition (cf. Fig. 11), which is in good agreement with
this experiment.

An example of a different symmetry is provided by Fig. 7,
where unpolarized quantum Hall data is used to identify a
critical point [55]. This simply involves a rescaling of the
polarized case by a factor of 2, and the relevant symmetry is
now �R. It has a critical point at ⊗− = 1 + i (cf. Fig. 11), in
agreement with this experiment.

Some recent experiments on graphene have probed the
fixed point structure in sufficient detail to enable a comparison
with modular predictions. Because of the peculiar Fermi
surface in this material the symmetry �S comes into play
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FIG. 5. The top inset is a magnification of the small black rect-
angle in the main modular diagram, which has �T-symmetry, shown
here to facilitate comparison to other spin polarized experiments that
probe different parts of the phase diagram, and other symmetries
(cf. Fig. 11). The inset contains a comparison of the experimental
location of seven critical points (solid red icons), reconstructed from
Ref. [53], with the modular prediction (blue ⊗). (The iconography is
explained in the main text.) The size of the red plot-marker is a rough
estimate of the experimental uncertainty in the data (no error-analysis
is provided in Ref. [53]). Purple curves are temperature driven flow
lines, obtained by quadratic interpolation of points (black bullets)
sampled at different temperatures for a dozen arbitrary fixed values
of the magnetic field.

(cf. Fig. 11) [56], and sometimes a rescaling of the observed
conductivity by a factor of 2 is required, but otherwise it
is again a simple transposition of the spin polarized case.
A preliminary analysis found good agreement with modular
symmetry also in this case [11].

B. Flow lines

The paucity of scaling experiments designed to probe the
geometry of flow lines makes it difficult to test this part of the
model in detail, but Figs. 7 and 8 show two examples where it
is possible to carry out a comparison.

Thin black arrows on the bottom of these box-diagrams
are theoretical flow lines sampled from the gradient of the
potential shown inside the box, chosen in order to give a clear
and uncluttered picture of the phase and fixed-point structure.

Thin black curves on the top face are also theoretical flow
lines, this time chosen for comparison with the experimental
data plotted on the same side of the box (discrete icons).
All plotmarkers of the same shape and color belong to a
data-series obtained by changing only the scale parameter
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FIG. 6. Comparison of the toroidal model T2
T with experimental conductivity data reconstructed from Ref. [54] (colored plotmarkers on top

face). RG flow lines (thin black curves) and phase boundaries (red semicircles) on the top and bottom of the box are generated by the gradient
of the potential surface |ϕ(σ )| inside the box. Dashed blue semicircles are separatrices for the flow. Vertical orange lines are visual guides
connecting critical points in the three diagrams (blue and yellow icons ⊗ on the top and bottom face; inflection points on the surface). Most
of the data are probing the quantum phase transition between the fractional plateau σ⊕ = 1/3 and the insulator phase (σ⊗⊕ = 0) (cf. Fig. 11),
revealing a quantum critical point very close to the modular prediction σ⊗ = (3 + i)/10.

(here temperature), holding all other variables fixed. The
starting point of each series is given by choosing a sample
and a value of the magnetic field, which is then held fixed
as the temperature is lowered. While the starting point of
each theoretical flow line may be chosen at will, the shape
of the chosen line is completely fixed by the symmetry. It
is this geometry that should be compared to experiment, by
choosing flow lines that pass as close as possible to all data
points (not just the first one in each series). While many
details are not resolved by these experiments, we observe a
remarkable overall agreement.

Furthermore, by using standard temperature-driven scaling
theory it is possible to compare the steepness of the modular
potential with how quickly the data points spread out as the
temperature is lowered, i.e., to compare flow rates. Within
experimental uncertainty, which unfortunately is quite large,
there does not appear to be any inconsistency (cf. Ref. [7] for
further details).

It is sometimes possible to extract a flow diagram from
families of published temperature-dependent transport data,
as illustrated in Fig. 5. Experimental flow lines (purple curves
in the inset near the critical points 1

4⊗ 1
3⊗ 1

2 ) were obtained
by interpolation of data points (bullets) reconstructed from
Ref. [53].

Most scaling experiments focus on critical regions, with
the goal of extracting flow rates close to a critical point. We
shall argue that it is a pressing problem to determine when

“close” is close enough for a reliable estimation of critical
exponents.

C. Critical exponents

We focus now on the delocalization transition between
Hall plateaus, whose critical exponents should characterize
the quantum Hall universality class. The localization length
ξ of electron states in the center of an impurity-broadened
Landau level depends on the value of the magnetic field B,
and is believed to scale with δB = |B − B⊗| when B is near
one of the critical values B⊗ where the localization length ξ

diverges [58]. The critical correlation (delocalization) length
exponent ν is defined by the scaling relation ξ ∼ δB−ν + . . . ,
where the dots represent corrections to scaling. Since ξ is not
directly observable, we need to swap it for another scaling
variable that is more accessible.

1. Numerical scaling

Figure 9 shows the toroidal flow rates y+
n = −y−

n =
(n/4) ytor derived in the previous section, evaluated at
integer values c⊗ = n of the central charge (black dots), and
measured in the natural toroidal flow unit ytor = 1/νtor =
0.3838 . . . . This should be compared to the best available
numerical values, y+

num/ytor = 0.9993 ± .0015 (ν +
num =

2.607 ± .004) (horizontal red line), and y−
num/ytor =

−0.99 ± .05 (ν −
num = −2.63 ± .14) (horizontal blue
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FIG. 7. Comparison of the toroidal model T2
R with experimental

conductivity data reconstructed from Ref. [55] (colored plotmarkers
on top face), obtained for temperatures ranging over two decades
from 4.2 K down to 40 mK. The surface inside the box is the potential
|ϕ−(σ )| discussed in the Appendix, whose gradient generates RG
flow lines (black curves) and phase boundaries (red semicircles)
shown on the top and bottom of the box. (The iconography is
explained in Fig. 6.) In this case it is the quantum phase transition
between the unpolarized plateau σ⊕ = 2 and the insulator phase
(σ⊗⊕ = 0) that is being probed (cf. Fig. 11), revealing a quantum
critical point very close to the modular prediction ⊗− = 1 + i.

line) [36]. The uncertainty in y +
num is smaller than the

thickness of the red line in the main diagram. If one of the
toroidal models is in the same universality class as the CC
model, then the “experimental” line should pass near one
of the theoretical black dots, and it does in fact appear to
intersect one of them.

The inset shows a small part of the intersection region
covered by a white square in the main diagram, greatly
magnified to appreciate the accuracy of the numerical work.
The red band covers one standard deviation from the mean of
y +

num. The relevant exponents y+
4 = ytor and y+

num agree at the
per mille level.

Similarly, the blue band is the uncertainty in y −
num. This

shows that the value of the irrelevant flow rate y −
num is con-

sistent with the antiholomorphic scaling relation y− = −y+
(within experimental uncertainty), predicted by any holomor-
phic modular symmetry [7].

FIG. 8. Comparison of experimental conductivity data recon-
structed from Ref. [57] (black plotmarkers on top face) with the
toroidal model T2

T. RG flow lines (black curves) and phase bound-
aries (red semicircles) on the top and bottom of the box are derived
from the potential surface |ϕ(σ )| inside the box. (The iconography
is explained in Fig. 6.) The experimental flow reveals a quantum
critical point consistent with the modular fixed point σ⊗ = (1 + i)/2

for the quantum phase transition 0 = ⊗⊕ ⊗←→ ⊕ = 1 between the
plateau σ⊕ = 1 and the insulator phase σ⊗⊕ = 0 (cf. Fig. 11). The
geometry of the experimental flow is in good agreement with the
modular prediction (black curves on the top face).

2. Temperature scaling

The easiest and most common approach is to study the tem-
perature (T ) dependence of y(T ) = y(T,w, B, . . . ), where y
is either the inverse half-width �B−1 of the peak in ρD or the
maximum slope ρ ′

H = max (∂ρH/∂B) of ρH in the transition
region between two plateaus, while holding all other variables
fixed (size w of the Hall bar, magnetic field B, etc.) Provided
the sample is not too hot or too cold (0 < Ts < T < Tq <

∞), both are observed to scale with temperature, �B−1 ∼
T −κD and ρ ′

H ∼ T −κH , with the same exponent κD ≈ κH , but
the value of this exponent does not appear to be universal
(cf. Fig. 10).

Another disadvantage of this approach is that a third expo-
nent is needed to relate κ to ν. This is most easily seen from
the scaling relation κνz = 1, where the dynamical frequency
exponent z seems to be as inaccessible as ν. We can use the
scaling relation pz = 2 to swap z for the temperature exponent
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FIG. 9. Toroidal flow rates |y±
n | evaluated at integer values c⊗ =

n ∈ N of the central charge of the conformal symmetry at critical
points of the elliptic model (black dots), compared to the best
available numerical values y±

num obtained from the CC model [36]
(red and blue lines). The inset shows a small part of the white
box surrounding a bullet in the main diagram, hugely magnified so
that the value of the toroidal exponent y+

4 = 1/ν+
4 (white ⊕) can

be distinguished from the numerical result y+
num = 1/ν+

num (red line
bisecting the pink ±1σ band, which is thinner than the red line in the
main diagram).

p of the inelastic scattering length, but this is not much help.
Even if z and p are no more universal than κ , it is still possible
that ν is universal.

3. Finite-size scaling

To investigate this, Koch et al. [59,60] devised a method
to measure ν directly in a finite-size scaling experiment. The
idea is that we expect the width w of the physical Hall bar to
be the most relevant scale at sufficiently low temperature, so
that we can use w as the scaling variable in this regime. As
the temperature is lowered into the quantum regime (T < Tq),
temperature scaling has been observed over two decades in
some quantum Hall devices, but this must eventually stop
at some finite saturation temperature Ts > 0, because the
inelastic scattering (phase coherence) length Lin depends on
temperature. When the material is cold enough this length
exceeds the size w of the Hall bar, so temperature scaling
should saturate and the response functions should become
independent of T < Ts.

This is indeed what they observed in a GaAs-AlGaAs
heterostructure etched with several Hall bars of different size
w (constant aspect ratio), cf. the bottom three panels on the
right in Fig. 10, where some of the data from Refs. [59,60] has
been reconstructed and replotted so as to facilitate comparison
with other experiments.

FIG. 10. Compilation of finite-size scaling data, reconstructed
from Refs. [59] (bottom), [60] (rows 3 and 4), and [53,62] (top).
The meaning of the various scaling exponents is explained in the
text. Each panel is labeled by the delocalization transition n⊗σ n + 1
(n = 2, 3, 4) for which the data were obtained. The slope of high-
temperature (Ts < T < Tq) data on the right gives κ , while scaling
in w of the saturation data (T � Ts) on the left allows ν to be
determined independently. The inset in the top right panel shows how
the published data [53] collapse after using the double scaling law
(revealed by the top left panel, where τ = 1/ν − μ) to rescale the
data [9]. Observe that the delocalization exponents ν appears to be
more or less universal, but that the temperature scaling exponent κ is
not (see the text for more details).
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They also found that in this material all the unsaturated data
(Ts < T < Tq) collapse to a single line in a log-log plot, sug-
gesting some kind of universality, but the slope κ of this line
is not universal. However, provided the high-temperature data
collapse, as they do in this experiment, the scaling argument in
Ref. [59] predicted that the saturation value ys(w) = y(Ts,w)
(y = �B−1 or ρ ′

H ) should be directly related to ν by a scaling
relation ys(w) ∼ w1/ν , allowing the delocalization exponent
to be measured independently of κ . Their data verifies this,
cf. the bottom three panels on the left in Fig. 10, and for this
exponent they observed a remarkable degree of universality,
with ν = 2.3 ± 0.2 for a number of different samples and Hall
transitions.

Subsequent work has shown that the type of disorder
determines if the temperature scaling exponent κ is uni-
versal [53,61,62]. The top right panel in Fig. 10 shows a
reconstruction of more recent finite-size scaling data, ob-
tained for an AlGaAs-AlGaAs heterostructure suitably doped
so that the disorder potential is dominated by short-range
fluctuations [53,62]. For each width w of the Hall bar, high-
temperature scaling of ρ ′

H was again observed, with what
appears to be a reasonably universal value κ = 0.42 ± 0.01
of the scaling exponent. But now a new problem has surfaced:
the high-temperature data for different widths w no longer
collapse to a single line (in a log-log plot), so a direct and
independent determination of ν no longer seems possible.

A way around this was proposed in Ref. [9], by observing
that the high-temperature data (T > Ts) satisfy a double scal-
ing law ρ ′

H ∼ w−μT −κ , where μ is a new scaling exponent
(cf. top two rows of Fig. 10). The best fit of this scaling form
to the 71 unsaturated data points in Refs. [53,62] is obtained
with κ = 0.428 ± 0.004 and μ = 0.230 ± 0.004. We have
μ≈ 0 in the older experiments on materials with long-range
disorder [59,60] because the data above saturation collapse.

The exponent μ is perhaps related to a scaling exponent
μmf that is expected to appear in systems with multifractal
wave functions, which includes the numerical CC model [34]
and systems with short-range disorder [63–65]. A range of
values μmf ∈ {0.22 − 0.26} have been reported for the CC
model [35,36,66–70]. Long-range interactions break the self-
similar scale invariance giving rise to multifractals, so pre-
sumably μmf = 0 in materials with long-range disorder. If
μ = μmf this would explain why the value of μ is different in
materials with long-range [59] and short-range [53] disorder.

Since all the rescaled high-temperature data ρ̃ ′
H =

wμρ ′
H ∼ T −κ collapse to a single line, we can now apply the

original scaling argument to the saturation value ỹs(w) ∼ w1/ν

of ρ̃ ′
H . This is equivalent to the scaling relation ys(w) ∼ wτ

for the raw saturation value of ρ ′
H , where τ = 1/ν − μ =

0.22 ± 0.02 can be read off directly from the data, cf. top
row of Fig. 10. Combined with the best-fit value of μ this
gives νexp = 2.24 ± 0.09, consistent with the approximately
universal value previously found in materials with long-range
disorder [59,60].

Since these experiments show that both y(T ) and ys(w)
(y = ρ ′

H or �B−1) are log-log-linear, it follows that the sat-
uration temperature also scales with sample size, Ts ∼ w−z,
where z satisfies the scaling relation κνz = 1. This is con-
sistent with standard scaling theory if z is the dynamical
frequency scaling exponent.

We therefore expect the inelastic scattering length to scale
as Lin ∼ w ∼ T −1/z

s ∼ T −p/2
s , where p = 2/z is the tempera-

ture scaling exponent of Lin. Combining this with κνz = 1,
we obtain a scaling relation κ = p/2ν that is consistent with
standard scaling theory.

The values of z and p given in Fig. 10 are derived from
the independently measured values of κ and ν by using the
scaling relations κνz = 1 and pz = 2. Notice that z ≈ 1 and
p ≈ 2 only when the disorder is short-range (top row). We
observe that the delocalization exponent ν appears to be fairly
universal (independent of material and experimental details),
but neither κ , z nor p are found to be universal in these finite-
size scaling experiments [71].

4. Concordance?

The excellent agreement between the exact toroidal
value νtor = 18π2 ln 2/π4

∞ = 2.6051265833 . . . , and the nu-
merical value ν +

num = 2.607 ± .004 obtained from the CC
model [34–36], presumably means that these two theoretical
(mathematical) models are in the same universality class
(νtor/ν

+
num = 0.999 . . . ).

It was argued in Ref. [9] that this theoretical value close to
2.61 not necessarily is in conflict with the experimental value
νexp = 2.24 ± 0.09 of the delocalization exponent (extracted
from finite-size scaling data) because the two flow rates are
obtained at different points in moduli space. These points
appear to the naked eye to be quite close together, but they
are not close enough. When the modular flow rate is evaluated
at the same point in parameter space where the experiments
were performed, the new value 2.23 is consistent with the
experimental flow rate (cf. Ref. [9] for a more detailed quanti-
tative discussion). This suggests that the theoretical (toroidal
and numerical) models are in the quantum Hall universality
class.

In other words, it is possible that the size of the scaling
domain has been overestimated in the past, in which case
real experiments have yet to reach the proper scaling domain
required for a reliable estimate of the critical exponent. If this
is true, improved scaling data should see νexp trailing ν +

num,
which in recent years has crept upwards until it now agrees
with the toroidal value νtor ≈ ν +

num ≈ 2.61, within a very small
uncertainty in the numerical value [36] (cf. Fig. 9).

V. DISCUSSION

In summary, in the toroidal sigma model discussed here,
Hall quantization is protected by slope-stable holomorphic
vector bundles over a target torus with spin structure (σ⊕

H =
μ ∈ Q). In the equivalent mirror model topological protection
is provided by more familiar winding numbers. The nonin-
teracting case is modeled by line bundles L (r = 1), from
which a familiar looking topological statement σ⊕

H = c1(L) ∈
Z about the IQHE is recovered [31], albeit in the context of
effective field theories.

The connection to the first-quantized theory, which is based
on hugely simplified but explicit plateau wave functions, is
not completely obvious, but if the holomorphic vector bundles
discussed here can be identified with “vacuum bundles” on
the so-called “flux torus” (a section of this bundle is a ground
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state), then μ is presumably the same as the topological invari-
ant first discussed by Thouless et al. in 1985 [31]. Although it
took another decade before a connection to stable bundles was
recognized [72,73], with hindsight we now see a remarkable
mathematical similarity with some aspects of the stringy ideas
that were used in the construction of the toroidal model. This
does not include modular and mirror symmetry, and it would
be interesting to find a first-quantized interpretation of the
topology (winding numbers) of the mirror model.

If a relationship of this kind could be firmly established,
it would provide an appealing convergence of the “bottom-
up” approach based on wave functions, and the “top-down”
approach based on effective (emergent) quantum fields that
has been discussed here. This would mean that they provide
complementary descriptions of the plateaus, as they should,
because the idea that powers both the first- and second-
quantized approach is that universality can be exploited to
give a simplified description that retains only the most relevant
information.

Universality means that the macroscopic response is ro-
bust, i.e., insensitive to microscopic details, which is why a
simplified wave function can stand in for the messy real wave
function. Although they are quite different microscopically,
provided that they are in the same universality class the san-
itized avatar will emulate the long-distance properties of the
real system. Usually it is sufficient to respect the particle type
and symmetry of the real system, but in the QHE there seems
to be a stronger version of universality at work, enforced by
modular symmetry.

In the model discussed here quantum phase transitions
are associated with topology change, rather than sponta-
neous symmetry breaking. Furthermore, the experimentally
observed emergent modular symmetry polices a “superuni-
versality” that forces all critical points to have the same
exponents. In essence, for each spin structure (polarized vs.
unpolarized spins, etc.) there is only one quantum Hall uni-
versality class.

The first- and second-quantized approaches are not, how-
ever, in general equivalent since the EFT is much more
ambitious. It aspires to describe the global structure of the
compactified moduli space M = M ∪ ∂M, including quan-
tum critical points deep inside M, not only the local structure
at or near plateaus on the boundary ∂M of M.

The sigma model discussed here is not an ad hoc con-
struction, although this would have been quite acceptable
as long as the model is falsifiable. We have been guided
in its construction by two powerful empirical observations
about universal properties of the QHE, by discovering that
the mathematics capable of modeling these observations more
or less naturally leads us to consider holomorphic structures
on elliptic curves. The simplest viable sigma model therefore
appears to be toroidal, which is superficially similar to, but
much richer than, the more familiar spherical sigma model.

This “leap of faith” is arguably no worse than what is
done in first-quantized theory to arrive at the conventional
topological interpretation of Hall quantization. Both physical
and mathematical assumptions are needed, regarding the de-
generacy, boundary conditions, and universality of the sani-
tized many-particle wave functions used in the computation
of transport coefficients, and the validity of these assump-

tions is not easy to check. The bird’s-eye view provided
by “macroscopic phenomenology” reveals new features that
are not apparent in the first-quantized approach. Crucially,
experimental data force us to consider the emergence of an
infinite global discrete symmetry that appears to be wed to a
rigid holomorphic structure.

As mentioned in the Introduction, there have been other
attempts to construct an EFT for the QHE. Although they look
quite different, because there is an intricate web of “duali-
ties” between low-dimensional theories that we do not fully
understand, it is not obvious that they are (all) inequivalent.
Of course, if they model the same physics they must in some
sense (or some domain) be equivalent.

At first sight the tensor sigma model [14–16] looks like
a relative of the toroidal model, but sharp predictions in the
scaling region between plateaus that can be falsified have yet
to be obtained from this model. Nor does it seem to be rich
enough to model the FQHE, so there is little to compare to
experimental data, or the modular model. The toroidal model
degenerates to a similar model in the weak coupling limit, in a
sense that can be made mathematically precise, but the latter is
irrelevant for the strongly coupled physics that is responsible
for quantum phase transitions [74].

A Chern-Simons Landau-Ginzberg (CSLG) theory was de-
veloped in Ref. [75], independently and around the same time
as the modular model [1]. By identifying a so-called “law of
corresponding states” in this model, heuristic phase diagrams
that look (very) roughly modular may be constructed. The
“law” is superficially similar to a modular transformation act-
ing on the filling factor (a real number). It is, in fact, quite dif-
ferent, not least because the modular symmetry acts directly
on response functions, and only makes contact with the filling
factor at trivial fixed points (plateaus). A careful analysis of
the experimental discovery of duality in the QHE [76] shows
that this “law” does not sit well with the duality data [8].
Modular duality, on the other hand, is in complete agreement
with the data (within experimental uncertainty).

An important difference between these models is that
although the CSLG-model provides an appealing physical
picture of anyonic quasiparticles, it appears to be an uncon-
trollable mean-field description that does not address scaling
(renormalization) since it only describes plateaus. One conse-
quence of this is that the CSLG-model does not respect any
complex structure, while in the modular model this is, as we
have seen, one (actually two) of the main ingredients.

We here relied heavily on some results from string theory,
both in the conception and analysis of the toroidal model.
This is perhaps not ideal, but when we need a new paradigm
in physics, as we surely do in the QHE, this often requires
that we expand our mathematical vocabulary. Strings gifted
us a cornucopia of new mathematical tools for analyzing non-
perturbative properties of quantum field theories, and many of
these we barely know how to use. Central to several important
developments in string theory are two novel and exotic types
of symmetry that are inextricably linked to the geometry and
topology of Calabi-Yau manifolds. They have so far not been
much used in condensed matter physics, but in our narrative
here modular and mirror symmetry take center stage.

We believe that the QHE is the first real system to exhibit
an infinite discrete (modular) symmetry, and we have argued
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that when this is combined with the mirror symmetry that
is hardwired into toroidal models, then the geometry and
topology of the EFT is so severely constrained that a simple
viable model presents itself.

The rigidity of this model is arguably its greatest virtue.
Experimental predictions extracted from the model are sharp
and nonnegotiable, rendering it extremely vulnerable to “the
untimely intrusion of reality.” As technology has improved
and error-bars have shrunk, it could easily have been falsified
by experimental results obtained over the past three decades,
but this has not happened. We have seen that the geometry
of scaling flows extracted from quantum Hall experiments is
in good agreement with modular predictions, including the
location of several quantum critical points and the shape of
some RG flow lines.

The mirror symmetry of toroidal models is not observable
because it is a quantum equivalence that essentially amounts
to a change of field-variables in the functional integral. It
equates two mathematical models that appear to be quite
different, but which in fact are completely equivalent, so they
model the same physics and no experiment can tell them
apart. However, we have seen that mirror symmetry takes us
to an intriguing “alternate reality” on the other side of the
looking glass, i.e., a different way of looking at the role of
topology in the QHE. Mirror symmetry is also very useful for
calculations, allowing us to sidestep difficult non-perturbative
computations and conclude that the toroidal model ap-
pears to include the universality class of the numerical CC
model [34–36].

The alleged experimental value of the delocalization expo-
nent may be seen as another vindication of the toroidal model
because if the modular flow rate is evaluated at the same point
in parameter space where experiments have been done, then it
is consistent with the experimental value. This experimental
number may therefore not be the true value of the critical
exponent, if real experiments have yet to reach the proper
scaling domain near a critical point.

This tentative agreement with available experimental data
is encouraging, but in the absence of a derivation that makes
direct contact with microphysics there is only one way to
determine if the theoretical (analytical and numerical) models
really are in the quantum Hall universality class(es): improved
finite size scaling experiments are urgently needed.
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APPENDIX: MODULAR MATHEMATICS

1. Modular phase diagrams

To facilitate the comparison of experimental data with
modular symmetries, an “atlas” of modular conductivity and
resistivity diagrams is provided in Fig. 11. In general, if mod-
ular symmetries are discovered outside the QHE, “resistivity”
is any complex parameter z on which modular symmetries act
by holomorphic fractional linear (Möbius) transformations.

We always use the top row of the transport matrix to define
the corresponding complex parameter, so ρ = ρ12 + iρ11 =
−ρH + iρD, since it is ρH = ρ21 = −ρ12 that is measured
when the current vector (I, 0)t is aligned with the horizon-
tal axis [Ohm’s law in matrix form: (VD,VH )t = (V1,V2)t =
(R11, R21)t I = (RD, RH )t I]. Defining the Hall and magneto-
conductivities as σH = ρH/|ρ|2 and σD = ρD/|ρ|2, matrix
inversion gives σ = σ12 + iσ11 = σH + iσD.

Observe that in addition to the obvious arithmetic simpli-
fication obtained by converting matrices into numbers, these
complex variables are tailor-made for modular mathematics,
because ρ and σ are related by a modular duality transforma-
tion, σ = S(ρ) = −1/ρ and ρ = S(σ ) = −1/σ . S is its own
inverse, so S2 = 1, which is one of the two relations used to
give an abstract definition of the modular group [the other
is (ST )3 = 1]. This greatly facilitates the transposition of
modular conductivity diagrams into resistivity diagrams, and
vice versa. For the full modular group �(1) = PSL(2,Z) =
〈T, S〉, and any subgroup containing S, the dual diagrams
are identical (cf. left column in Fig. 4, and third column in
Fig. 11), but if S is not a symmetry they are different (cf. first
two columns in Fig. 11).

�(1) is too strong for the QHE, but its largest subgroups are
not. They are obtained by relaxing the translation symmetry
(T → T n), or the duality symmetry [S → Rn = (T ST )n], or
both. Three of these so-called “congruence subgroups at level
two” preserve parities, which means that each of them groups
the fractions into two equivalence classes. Because p and q
in ⊕ = p/q are relatively prime, there are only three types of
fractions with well-defined parities. With “o” representing odd
integers and “e” representing even integers, we have p/q ∈
o/o, o/e or e/o, and it is easy to verify that the equivalence
classes are:

�T = 〈T, R2〉:
{e

o
,

o

o

}
⊕ ∪

{o

e

}
�,

�R = 〈R, T 2〉:
{e

o

}
⊕ ∪

{o

o
,

o

e

}
�,

�S = 〈S, T 2〉:
{o

o

}
⊕ ∪

{o

e
,

e

o

}
�.

A class is indexed by ⊕ if the fractions are sinks (attractive
fixed points) for the scaling flow in the σ -plane, and by �
if they are sources (repulsive fixed points). This assignment
follows from the requirement that the direction of the flow is
downward at the top of the conductivity plane. The fixed point
at vanishing coupling must therefore be repulsive, i∞ = �.
Since ∞ = 1/0 ∈ o/e, and all fixed points in a given class are
mapped into each other by the symmetry, all fractions in the
class containing o/e must be repulsive.

Because the duality transformation S swaps e/o and o/e,
leaving o/o unchanged, the direction of the flow in the ρ =
S(σ )-plane is reversed if the symmetry acting on σ is �T or
�R, but not if the symmetry is �S (which contains S).

The fixed point at the origin of the σ -plane (at i∞ in the
ρ-plane) has a special significance. If it is attractive this means
that the system has an insulating phase, which we call the
quantum Hall insulator (QHI) and assign the special symbol
⊗⊕. Since 0 = 0/1 ∈ e/o, we conclude that a model with �T or
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FIG. 11. Phase diagrams with modular symmetry in the space of complexified conductivities C+(σ ) (top row), and equivalent diagrams
in the space of resistivities C+(ρ ) (bottom row), for the congruence subgroups �T, �R, and �S of the modular group �(1). Notice that the
�R-diagram is the �T-diagram rescaled by a factor of 2, and that the �S-diagram does not have an insulator phase (⊗⊕). Black arrows are RG
flow lines, which cannot cross the red phase boundaries (the iconography is explained in the text).

�R symmetry does have this phase, but that a �S-symmetric
model does not.

Any symmetry � ⊆ �(1) partitions the parameter space
into universality classes, with each phase “attached” to a
unique attractive fixed point ⊕ (plateau) on the (extended) real
line. A phase is by definition the set of all points in H that
flow to a given plateau ⊕ (IR fixed point), and is uniquely
labeled by this limit point on the real axis. A direct phase
transition between two plateaus ⊕ = f = p/q and ⊕′ = f ′ =
p′/q′ is permitted by the symmetry iff there is a saddle point ⊗
(quantum critical point) located on the semicircle (separatrix)
in H connecting ⊕ and ⊕′, which we write as ⊕ ← ⊗ → ⊕′.
If one of the attractors is at i∞ = 1/0 this “semicircle” has
infinite radius, i.e., it is a vertical line. If we let kX be the
minimum translation in �X (so kT = 1 and kR = kS = 2) and

0 < f < f ′, then two phases share a critical point iff∣∣∣∣p′ p
q′ q

∣∣∣∣ = p′q − q′ p = kX ⇒ ⊗ = p + ip′

q + iq′ . (A1)

If f or f ′ is negative the signs are tricky and it is easier to
exploit the reflection symmetry of the phase diagram.

Consider first the symmetry �T and the transition in the
conductivity plane between the insulator σ⊗⊕ = 0 and the
first integer plateau σ⊕ = 1. Since ⊗ = (1 + i)/2 is fixed by
T R−2 ∈ �T, and also belongs to the semi-circle connecting
σ⊗⊕ and σ⊕ (cf. top left panel in Fig. 11), we expect spin
polarized experiments to show a direct transition between
these two phases. Since there are no fixed points of �T on the
semicircles connecting σ⊗⊕ to the other integer plateaus, we
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do not expect to find direct transitions between these phases.
These predictions are consistent with a recent comprehensive
analysis of scaling data [2], some of which is shown in Figs. 5
and 8.

Having found one allowed transition we have them all
because �T maps 0 ← (1 + i)/2 → 1 to all other allowed
transitions, and vice versa. For example, since both T n(σ ) =
σ + n and R2n(σ ) = σ/(1 + 2nσ ) belong to �T for all n ∈ Z,
the “image” transitions

n ← 1 + 2n + i

2
→ 1 + n,

0 ← 1 + 2n + i

2(1 + 2n + 2n2)
→ 1

1 + 2n

are also allowed (cf. top left panel in Fig. 11). This includes
the n = 1 transition 0 ← (3 + i)/10 → 1/3, in agreement
with the experimental flow data shown in Fig. 6.

When this modular symmetry acts on the resistivity the
attractive QHI fixed point is ρ⊗⊕ = i∞. The transition 1 ←
1 + i → i∞ to the integer plateau ρ⊕ = 1 is now mediated
by the fixed point at ρ⊗ = 1 + i, and the transitions become

1

1 + n
← 1 + 2n + i

1 + 2n + 2n2
→ 1

n
,

1 + 2n ← 1 + 2n + i → i∞
(cf. bottom left panel in Fig. 11).

The analysis of the unpolarized �R-symmetric case is very
similar to the preceding spin polarized case. The simplest way
to obtain the phase diagrams shown in the middle column in
Fig. 11 is to apply the substitutions σ → 2σ and ρ → ρ/2 to
the diagrams in the left column. The principal critical point of
the conductivity flow is now ⊗− = 1 + i.

Since �S has a saddle point at ⊗+ = i, it admits a direct
transition −1 ← i → 1 between the plateaus σ⊕ = −1 and
σ ′⊕ = 1 (cf. top right panel in Fig. 11). Since both T 2n and

R2n belong to �S for all n ∈ Z, the transitions

2n − 1 ← 2n + i → 2n + 1,

1

2n − 1
← 2n + i

1 + 4n2
→ 1

2n + 1

are also allowed. The simplest way to obtain the �S-
symmetric phase diagram shown in the top right panel in
Fig. 11 is to apply the substitution σ → σ − 1 to the top
middle panel. The resistivity diagram is the same in this case
because S ∈ �S.

2. Modular potentials

We collect here more details about the spin polarized
potential ϕ(σ ) = ϕT (σ ) = ln η(2σ ) − ln η(σ ) analyzed in the
main part of this paper, which is symmetric under the sub-
group �T = �0(2) of the modular group �(1) = PSL(2,Z).
By the Hall group �H we mean the full symmetry of the
spin polarized QHE: �H = Aut �T = Aut �0(2) = {J, T, R2},
where J is the nonholomorphic generator of outer automor-
phisms (“particle-hole symmetry”), which is reflection in the
vertical axis, J (z) = −z̄.

To extract critical exponents from the beta function we
need to expand the potential ϕ = ϕT at ⊗ = σ⊗ = (1 + i)/2

as a power series in δσ = σ − σ⊗ [cf. Eq. (18)]. The co-
efficients an = ∂nϕ(⊗) (n � 0) can be evaluated by exploit-
ing transformation properties of modular and quasimodular
forms. It is convenient to introduce

E±
w (σ ) = 1 ± 2w

Bw

∞∑
n=1

nw−1qn

1 ± qn
, w � 2,

where B2 = 1/6, B4 = −1/30, B6 = 1/42, . . . are Bernoulli
numbers, and observe that [cf. Eq. (13)]

E±
2 (σ ) = 12

π i
∂ ln η±(σ ),

E+
w (σ ) = 2E−

w (2σ ) − E−
w (σ ). (A2)

Notice that η−(σ ) = η(σ ) and η+(σ ) η−(σ ) = η(2σ ), where
η is Dedekind’s η-function. Ew = E−

w are the conventional
Eisenstein series, which are modular forms,

Ew(T σ = σ + 1) = Ew(σ ),

Ew(Sσ = −1/σ ) = σwEw(σ ),

iff the weight w � 4. The η-function and its log-derivative
E2 = E−

2 are not modular forms, because they have “anoma-
lous” transformation properties:

η(T σ ) = eπ i/12η(σ ), E2(T σ ) = E2(σ ),

η(Sσ ) = √−iση(σ ), E2(Sσ ) = σ 2E2(σ ) + 6σ

π i
.

These transformations allow us to evaluate functions at σ = i
instead of at ⊗ = ST −1i.

Notice that E2 transforms like a connection on moduli
space, rather than a modular form (tensor), and is sometimes
called a quasimodular form. The reason for this is that a proper
modular form of weight two derives from a weightless form,
and for the full modular group there are no such invariant
holomorphic forms (potentials).

This is intimately related to the existence of cusp forms,
i.e., forms that vanish at infinity. For the full modular group
the ring of all modular forms is generated by the two
Eisensteine E4 and E6, which are normalized so that their
leading (constant) term in the q-expansion is one. The first
cusp form is therefore � ∝ E3

4 − E2
6 , and this is the only

one. E2 is the log-derivative of � = η24, but this form is
not weightless [w(�) = 12]. By contrast, for submodular
symmetries there are at least two independent cusp-forms,
whose ratio provides a weightless potential. For example,
we saw above by explicit calculation that E+

2 ∝ ∂ ln η+(σ ) =
∂ ln[η(2σ )/η(σ )] ∝ ∂ ln[�(2σ )/�(σ )]. Since �(2σ ) is a
new (independent) cusp form on the modular subgroup �T,
E+

2 is a modular form on �T of weight two (a vector-field).
The most spectacular consequence of this fact is that Fer-

mat’s last theorem is true since any would-be counterexample
implies that this form does not exist. Fortunately it does,
since it is our only viable candidate beta function (up to
normalization) for the QHE.

Observe that ϕ(σ ) = [ln �(2σ ) − ln �(σ )]/24, where the
discriminant (of the elliptic curve in Weierstrass form) � =
η24 = (E3

4 − E2
6 )/123 is the cusp form (vanishing at infinity)

of weight 12 that plays a very special role in the theory of
modular forms. From the transformation laws �(T σ ) = �(σ )
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and �(Sσ ) = σ 12�(σ ) it follows that

�(2⊗) = �(i), �(⊗) = �(S(i − 1)) = −26�(i).

This gives a0 and the normalization of the partition function
ζT = exp(− fT):

Rea0 = Reϕ(⊗) = − ln 2

4
, fT(⊗) = − ln ζT(⊗) = ln 2.

These observations immediately give the holomorphic
derivative

∂ϕ(σ ) = ∂ ln η+(σ ) = ∂ ln

[
η(2σ )

η(σ )

]
= π i

12
E+

2 (σ ). (A3)

While E2 is only quasimodular on � ⊆ �(1), because ϕ is a
weightless form on �T, E+

2 ∝ ∂ϕ is a modular form of weight
2 on �T. To evaluate this form at the critical point we use

E2(⊗) = 12⊗
π

− 2iE2(i),

E2(2⊗) = E2(Ti) = E2(i).

Since i is fixed by S, the transformation property of E2 under
S gives

E2(i) = E2(Si) = 6

π
− E2(i) = 3

π
,

E2(⊗) = 2E2(2⊗) = 6

π
, (A4)

a1 = ∂ϕ(⊗) = π i

12
E+

2 (⊗) = 0,

which shows that ⊗ and all its �T-images are critical points of
ϕ. Since we know from the C-theorem that ∂ϕ is essentially
the beta function, we also located the quantum critical points
of our model. A simple and constructive way of calculating
the exact location of these points is given by Eq. (A1).

The second derivative of ϕ is obtained by using the first
Ramanujan identity

∂E2(σ ) = π i

6

[
E2

2 (σ ) − E4(σ )
]
,

which gives a polynomial in quasimodular forms

∂2ϕ(σ ) = π2

72

[
E2

2 (σ ) − E4(σ ) − 4E2
2 (2σ ) + 4E4(2σ )

]
.

The simplest way to evaluate E4 is to exploit

E3
4 (σ ) = 123J (σ ) �(σ ),

where J (σ ) is Klein’s modular invariant function. Using the
well-known value J (i) = 1, and Gauss’ constant

G =
√

2 η(i)2 = �(1/4)2

(2π )3/2
= 0.8346 . . . ,

it follows that

E4(2⊗) = E4(i) = 3 G4,

E4(⊗) = −4E4(i) = −12 G4.

Combined with the values of E2 obtained above, we get the
second expansion coefficient

a2 = ∂2ϕ(⊗) = E4(i)

E2
2 (i)

= π2G4

3
= π4

∞
3π2

. (A5)

FIG. 12. Geometric meaning of the fundamental mathematical
constant π∞. The polar curve r2 = cos(2θ ) is a lemniscate, i.e., a
“bow-tied” closed curve that looks like ∞. It is shown here as the
intersection of a square torus with a plane tangent to the hole of the
torus, circumscribed by a unit circle of length 2π . The length 2π∞
of this lemniscate, where π∞ = 2.6220575542 . . . , is shorter than
the circle by a factor G = π∞/π = 0.8346268416 . . . ≈ 5/6 that is
called Gauss’ constant.

The geometrical meaning of the lemniscate constant
π∞ = πG is explained in Fig. 12. It has a rational approxi-
mation π∞ ≈ 21/8 that is surprisingly similar to Archimedes’
result π ≈ 22/7 for the circle; both accurate to about 1‰.
Notice also the useful mnemonic: νtor ≈ π∞ ≈ 21/8 (they
differ by less than 1%).

With hindsight it is perhaps not too surprising that the
lemniscate constant makes an appearance. It is a basic math-
ematical constant, as fundamental to the torus as π is to the
circle. They are geometric siblings: the total arc length of
the unit lemniscate is 2π∞ = �(1/4)2/

√
2π = 2×2.62 . . . ,

which is analogous to the circumference 2π = 2�(1/2)2 =
2×3.14 . . . of the unit circle. The doubly periodic lemniscate
functions have periods 2π∞ and 2iπ∞, similar to the trigono-
metric functions that have period 2π . It is a historical fact that
the problem of computing the arc length of the lemniscate
(∞), dating back to the seventeenth century, catalyzed the
theory of elliptic functions. The lemniscate is therefore one of
the corner stones of modern algebraic geometry (and the only
mathematical figure to be found in Abel’s work). Elliptic
functions are genuinely new since they cannot be reduced to
elementary functions, and π∞ cannot be reduced to elemen-
tary constants.

This suffices for our objective here, which is to compute
the critical exponents of the family of T̃2

T-models at ⊗, but for
completeness we show how to evaluate the expansion coeffi-
cient at any order for any of the main congruence subgroups
of the modular group.

The third derivative of ϕ is obtained by using the second
Ramanujan identity:

∂E4(σ ) = 2π i

3
[E2(σ )E4(σ ) − E6(σ )] ⇒

∂3ϕ(σ ) = π3i

216

[
E3

2 (σ ) − 3E2(σ )E4(σ ) + 2E6(σ )

− 8E3
2 (2σ ) + 24E2(2σ )E4(2σ ) − 16E6(2σ )

]
.
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TABLE I. Some useful values of the modular invariant function J (J is not a form because it is not entire), the quasimodular form E2 = E−
2 ,

the (sub)modular forms E+
2 , E4, E6, and the weight 12 cusp form �. The top row shows the symmetry of the function below it. The rings of

modular and quasimodular forms on �(1) = PSL(2,Z) are generated by (E4, E6) and (E2, E4, E6), respectively. The ring of modular forms
on �T = �0(2) is generated by (E+

2 , E4, E6). G is Gauss’ constant, and a = 1/πG2 = π/π 2
∞ parametrizes the anomalous contribution to

quasimodular forms. Notice that the “dimension” of a form of weight w is Gw .

�(1) ∅ �T �(1) �(1) �(1)
σ J (σ ) E2(σ )/G2 E+

2 (σ )/G2 E4(σ )/G4 E6(σ )/G6 �(σ )/G12

i 1 3a 3/2 3 0 2−6

(1 + i)/2 1 6a 0 −12 0 −1
i/2 1331/8 6a − 3 3 33 −189 2−3

2i 1331/8 3a/2 + 3/4 33/16 189/64 2−15

Evaluating � = (E3
4 − E2

6 )/1728 at σ = i we find

E6(2⊗) = E6(⊗) = E6(i) = 0.

Together with the values of E2 and E4 obtained in above this
gives the third expansion coefficient

a3 = ∂3ϕ(⊗) = 2π3i

9
E2(i)E4(i) = 2iα,

where α = 1/a2 = π2G4 = π4
∞/π2.

The fourth derivative of ϕ is obtained by using the third
Ramanujan identity

∂E6(σ ) = π i
[
E2(σ )E6(σ ) − E2

4 (σ )
]
.

Note that no new forms are generated this time; a consequence
of the fact that the ring of quasimodular forms is generated by
E2, E4 and E6. We find

∂4ϕ(σ ) = − π4

432

[
E4

2 (σ ) − 6E2
2 (σ )E4(σ ) + 8E2(σ )E6(σ )

− 3E2
4 (σ ) − 16E4

2 (2σ ) + 96E2
2 (2σ )E4(2σ )

− 128E2(2σ )E6(2σ ) + 48E2
4 (2σ )

]
.

Inserting the values of E2, E4, and E6 obtained above, we get
the fourth expansion coefficient

a4 = ∂4ϕ(⊗) = −4π4

9
E2

2 (i)E4(i) = −12α.

In summary, we carried out the expansion of the RG
potential ϕ to fourth order in δσ . It is clear that this procedure
can be iterated to any desired order, using only the values of
the forms that we already have, collected in Table I for easy
reference. The expansion coefficients are always polynomials
of odd degree in α, and for weights less than 12 (where the
cusp form � appears) they are linear in α. The coefficients
given by quasimodular forms of weight w � 24 are

a0 + ā0 = −ln 2/2,

a1 = 0, a12 = −8363520α(105 + 294α2 + α4),

a2 = α/3, a11 = 126720iα(525 + 882α2 + α4),

a3 = 2iα, a10 = 1152α(4725 + 4410α2 + α4),

a4 = −12α, a9 = −32256iα(15 + 7α2),

a5 = −80iα, a8 = −9408α(5 + α2),

a6 = 8α(75 + α2), a7 = 336iα(15 + α2).

For �R and �S the partition functions Z− = ZR and Z+ = ZS

are Z± = |ζ±|4, with potentials

ϕ±(σ ) = ln ζ±(σ ) = ln η±(σ/2) − ln η±(σ )

given by the instanton forms η± defined in Sec. III C
[cf. Eq. (A2)]. The expansion of the �R-symmetric potential
ϕ−(σ ) = −ϕ(σ/2) near the saddle point ⊗− = 1 + i is very
similar to the expansion of ϕ, since no additional values of
modular forms are needed.

The �S-symmetric potential ϕ+ satisfies ϕ + ϕ− + ϕ+ = 0,
and to expand it near the saddle point ⊗+ = i we need the two
bottom rows in Table I. These may be obtained by using the
doubling formulas

�(2σ )

�(σ )
= 1

28

λ2

1 − λ
, J (2σ ) = 1

108

(λ2 − 16λ + 16)3

λ4(1 − λ)
,

where the elliptic modular lambda function λ = (θ2/θ3)4

(sometimes called the “hauptmodul”) is a weightless form
on �(2) = 〈T 2, ST 2S〉 [77]. Using λ(i) = 1/2 gives �(i) =
29�(2i) and J (2i) = (11/2)3. S(2i) = i/2 gives �(i/2) =
23�(i), while J is invariant, J (2i) = J (i/2). Combining this
with previous expressions gives the missing values of E4 and
E6.

To calculate the required values of E2 we derive a doubling
formula by differentiating the doubling formula for �,

E2(2σ ) = 1

2
E2(σ ) + 1

4
θ4

4 (σ )
2 − λ(σ )

1 − λ(σ )
,

where we used the well-known relation iπ θ4
4 = λ′/λ. Using

θ4
4 (i) = G2 we find the rest of the table. This gives expansion

coefficients ∂nϕ±(⊗±) = −an/2n(n � 0), and we find in both
cases the same critical exponents as obtained above for the
�T-symmetric case.

3. Modular and quasimodular beta functions

The observed modular target space symmetry is so con-
straining that we in simple cases can find the exact beta func-
tion (up to an overall normalization), mainly because it must
transform as a modular (co)vector field, i.e., a modular form
of weight w = ±2. This includes nonperturbative corrections,
and it is instructive to try to anticipate how these will affect the
beta function.

Expanding a gauge theory with coupling constant e [and
fine structure constant α = e2/(4π )] around the weak cou-
pling limit (α → 0), the amplitude of the leading instanton
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contribution is exponentially damped, with a phase that is
determined by the vacuum angle θ . In an EFT of the QHE
it is the conductivities σD and σH that are playing the roles
of e and θ [16], and the effective action should be a Fourier
expansion in

q = eiθ e−2π/α = e2π iσ , σ = σH + iσD = θ

2π
+ i

α
,

and q̄ = exp(−2π iσ̄ ).
Our first guess might be that the physical beta function

βσ = σ̇ = dσ

dt
= dσH

dt
+ i

dσD

dt
= βH + iβD

is a modular vector field whose nonperturbative part has a
holomorphic Fourier expansion in q. There are at least two
reasons why this is a nonstarter: a holomorphic beta function
does not have saddle points, which are needed to model
quantum critical points, and the contravariant beta function
βσ would transform with weight w = −2. No such modular
form exists.

It is therefore only the covariant beta function βσ that
can be a modular form (w = 2) since such forms (ususally)
do exist. According to the C-theorem we can obtain the
contravariant beta function βσ = gσ σ̄

Z
βσ̄ by using Zamolod-

chikov’s moduli space metric gZ , which is nonsingular and
nonholomorphic [21]. In our (toroidal) case this is the hyper-
bolic metric gH on the upper half of the complex conductivity
plane, so gσ σ̄

Z
= gσ σ̄

H
= σ 2

D. We therefore expect the physical
quantum Hall beta function βσ to have an antiholomorphic
Fourier expansion in q̄, rather than a holomorphic expansion
in q [5,78].

Because renormalization (the RG flow and its beta func-
tions) must respect the symmetries of the model under consid-
eration, modular symmetry implies that the Fourier expansion
of the beta function sums to a modular 2-form Ē2(σ̄ ).

For example, if the modular symmetry is �T (appropriate
for the spin polarized QHE), then ET

2 (σ ) = NE+
2 (σ ) is, up

to an overall normalization N = iN (N > 0) [79], a unique
2-form E+

2 [cf. Eq. (A2)], and the beta function is

βσ = gZ N̄ Ē+
2 = gZ N̄

(
1 + 24

∞∑
n=1

nq̄ n

1 + q̄ n

)
= −igZ N [1 + 24(q̄ + q̄ 2 + 4q̄ 3 + · · · )]. (A6)

In more conventional component notation this gives

βH wcl−→ −24Nσ 2
D sin(2πσH ) e−2πσD + · · · , (A7)

βD wcl−→ −Nσ 2
D [1 + 24 cos(2πσH ) e−2πσD + · · · ]. (A8)

Notice that the weak coupling limit (wcl) σD → ∞
(σ → i∞, q → 0) exhibited in Eqs. (A7) and (A8), which
is where perturbative calculations might be useful, leaves no
trace of the modular symmetry of the exact, nonperturbative
functions. The leading [O(q̄)] instanton contribution, also
shown, is periodic in σH , i.e., invariant under translations
T ∈ �T : σH → σH + 1 (as is observed in the spin polarized
QHE). But it is not invariant under the other generator D of
�T, which is a duality transformation [cf. Eq. (11)]. More
generally, duality symmetry, and therefore modular symmetry,

is lost if the instanton expansion (Fourier expansion in q or q̄)
is truncated at any finite order.

Notice also that Eq. (A6) does not do justice to the
perturbative beta function, because perturbation theory is an
expansion around a singular geometry, i.e., a degenerate torus
that is “nodal” or “pinched.” This generates nonholomorphic
contact terms that are polynomial in σD, which in string the-
ory are called holomorphic anomalies [80]. This is captured
by quasiholomorphic forms (or, equivalently, quasimodular
forms) [4,39,81], first studied by Ramanujan (who called them
“mock theta functions”) [82], and by Hecke [83].

A quasiholomorphic form transforms like a modular form,
but because it is not holomorphic it is not a modular form. An
example is provided by the quasiholomorphic 2-form under
�T, which gives the beta function [4]

βσ
∞ = −ig∞N

(
1

πσD
+ 16

∞∑
n=1

nq̄ n

1 − q̄ 2n

)

= −16ig∞N

(
1

16πσD
+ q̄ + 2q̄ 2 + 4q̄ 3 + · · ·

)
,

βH
∞

wcl−→ −16g∞N sin(2πσH ) e−2πσD + · · · ,

βD
∞

wcl−→ −16g∞N

[
1

16πσD
+ cos(2πσH ) e−2πσD + · · ·

]
.

(A9)

The new notation (gZ → g∞) signals that it is not clear which
metric should be used in this singular asymptotic expansion.

An explicit evaluation of the leading order instanton cor-
rection to beta functions in the tensor model of the IQHE
was carried out in Ref. [15]. Although their dilute instanton
gas approximation seems to be fraught with difficulties, it is
perhaps of interest to observe that with a suitable normal-
ization [corresponding to g∞N = 1/(2π )] their beta function
(transcribed to our notation)

βσ
� ∝ −i

(
1

16πσD
+ σDq̄ + · · ·

)
(A10)

only differs from the �T-symmetric quasiholomorphic beta
function βσ

∞ in Eq. (A9) by the factor σD in the leading
instanton term. It is not clear if the beta functions βσ

∞ and βσ
�

in Eqs. (A9) and (A10) can be fully reconciled.
Since the perturbative part of the beta function is a poly-

nomial in σD with no modular signature, we conclude that
neither perturbation theory nor dilute instanton gas approxi-
mations can detect a modular symmetry.

The C-theorem presents a potentially lethal threat to modu-
lar beta functions since it requires the RG flow to be a gradient
flow [cf. Eq. (2)]. In the example with �T-symmetry discussed
above, given that the covariant beta function is uniquely given
by the 2-form E+

2 (up to normalization), it follows that E+
2

must be the derivative of some scalar modular function ϕT

that is invariant under �T ⊂ �(1). No such function exists
for �(1), but it does exist for the congruence subgroups we
consider, and lo and behold, E+

2 ∝ ∂ϕT [cf. Eq. (A3)], so
CT ∝ ϕT + c.c. satisfies the C-theorem.

If the beta functions are harnessed by a modular symmetry,
then the critical (delocalization) exponents are also severely
constrained. They are obtained by expanding the beta function
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near a critical point σ⊗ (where it by definition has a simple
zero) in δσ̄ = σ̄ − σ̄⊗ = δσ⊗

H
− iδσ⊗

D
,

βσ ⊗−→ g⊗

∞∑
n=1

bnδσ̄
n ≈ yδσ̄ = y+δσ⊗

H
+ iy−δσ⊗

D .

For simplicity we here assumed that the principal flow direc-
tions at ⊗ are aligned with the coordinate axes of M, as in
the IQHE. Observe that these flow rates satisfy the antiholo-

morphic scaling relationy+ = −y− = y = b1g⊗ > 0, which
is inherited by the delocalization exponents ν+ = −ν− = ν =
1/y > 0 [7].

Furthermore, since modular symmetry identifies all critical
points, even without knowing the value of ν modular sym-
metry makes a strong prediction: there is only one possible
(absolute) value of the delocalization exponents in the QHE
(ν± = ±ν), for any quantum phase transition. This prediction
is easy to falsify, but so far it appears to be consistent with
experimental data [7].
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