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Influence of static disorder and polaronic band formation on the interfacial
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Understanding the interfacial charge separation mechanism in organic photovoltaics requires, due to its high
level of complexity, bridging between chemistry and physics. To elucidate the charge separation mechanism,
we present a fully quantum-dynamical simulation of a generic one-dimensional Hamiltonian, whose physical
parameters model prototypical Phenyl-C61-butyric acid methyl ester or C60 acceptor systems. We then provide
microscopic evidence of the influence random static and dynamic potentials have on the interfacial charge-
injection rate. In particular, we unveil that dynamic potentials, due to strong electron-vibration interactions, can
lead to the formation of polaronic bands. Such dynamical potentials, when compared to random static potentials,
can provide the main detrimental influence on the efficiency of the process of interfacial charge separation.
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I. INTRODUCTION

Organic photovoltaic devices are currently attracting in-
tense interest due to their potentially cheap production and
their ability for environmentally friendly power generation
[1–3]. The efficiency of these organic photovoltaic (OPV)
devices strongly depends on the charge separation process
between materials that transport electrons (usually a fullerene
derivative) or holes (usually a polymer). The energy offset
caused by this interface drives electrons from the donor to
the acceptor, while leaving holes behind. Once the charges
are in separate phases, they need to overcome their mutual
Coulomb attraction. This binding energy is in the range of
0.1 to 0.5 eV [4–6], which is much larger than the thermal
energy of about 25 meV at room temperature. Surprisingly,
the charge separation process and, eventually, the formation
of free charges that can be extracted at the electrodes are
still very efficient [7,8]. In particular, experimental studies
have shown that the charge separation occurs on ultrafast
timescales in the 10 to 100 fs range [9–11]. At present, the
mechanism responsible for charge separation is not well un-
derstood and is still actively debated.

An obvious question in organic materials relates to the
relative importance of static and dynamic potentials and their
effect on the charge separation process. The static (time-
independent) potential reflects the electron-hole Coulomb in-
teraction and the spatial disorder caused by electrostatic in-
teractions resulting from the different environments in which
each molecule is placed. This is particularly true for or-
ganic devices made up of two different disordered materials
[12,13] where the spatial disorder usually originates from the
rather large permanent electric dipole of Phenyl-C61-butyric
acid methyl ester (PCBM). However, we stress here, that
in contrast to PCBM, molecular dynamic simulations have
shown that C60, which has no permanent dipole, exhibits
extremely limited disorder, which thus can, to a good extent,
be neglected [14,15]. On the contrary, the dynamic potential

is related to electron-vibration interactions that result in a
time-dependent variation of microscopic transport parame-
ters. Although debated [16,17], there are indications that,
for charge separation, this effect could contribute [18,19].
Thus, the consideration of static and dynamic potentials seems
unavoidable for a fully microscopic understanding of the
charge separation mechanism in OPV devices. However, such
microscopic descriptions are computationally challenging.
To tackle these challenges, various numerical methods such
as exact diagonalization [20,21], diagrammatic Monte Carlo
[22,23], time-dependent density functional theory [24], and
other approaches [25,26] have been proposed. However, either
these methods are quite expensive from a computational point
of view, or their application to nontranslationally invariant
systems remains unclear.

To overcome these difficulties the inhomogeneous version
of the dynamical mean-field theory approximation (I-DMFT)
[27–33], a powerful nonperturbative technique for strongly
interacting systems, has been introduced. By applying the
I-DMFT approximation to a generic one-dimensional model
Hamiltonian, whose parameters model prototypical PCBM
and C60-based acceptor systems, we provide a fully quantum-
dynamical simulation of the charge separation process tak-
ing static (disorder plus electron-hole Coulomb interaction)
and dynamic potentials (electron-vibration interaction) into
consideration. This provides the possibility to compute the
charge injection rate at the donor-acceptor interface. Our
work provides a step forward to a long-standing challenge in
OPV, thereby bridging chemistry and physics. In particular we
unveil here that dynamic potentials (related to polaron forma-
tion), when compared to random static potentials, present the
main detrimental loss mechanism in OPV devices. Yet dynam-
ical potentials can, in some instances, lead to an enhancement
of the charge transfer process.

This paper is organized as follows. Section II is di-
vided into two parts: In Sec. II A we introduce the generic
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one-dimensional Holstein-based Hamiltonian to model the
charge carrier dynamics across organic model interfaces. In
Sec. II B we briefly introduce the used I-DMFT approxima-
tion and comment on its general numerical aspects. In Sec. III
we apply the I-DMFT approximation to study the charge car-
rier dynamics across donor-acceptor model interfaces. Finally,
we provide a brief conclusion and outlook in Sec. IV.

II. METHODOLOGY

Inspired by the Holstein model used in [34], we use the
following generic one-dimensional Hamiltonian to describe
the microscopic charge-transfer process of an electron at the
molecular donor-acceptor interface:

H = ε0 c+
0 c0 + m c+

0 c1 + m c+
1 c0 +

∑
i=1

εi c+
i ci

−
∑
i=1

V

i
c+

i ci +
∑
i=1

J (c+
i ci+1 + c+

i ci−1)

+
∑
i=1

� a+
i ai +

∑
i=1

gc+
i ci(a

+
i + ai ), (1)

where c+
i (ci) is the creation (annihilation) operator of

electrons, a+
i (ai) is the creation (annihilation) operator of

phonons, � is the relevant phonon frequency (h̄ = 1 through-
out this work), g is the electron-phonon coupling strength,
m is the tunneling amplitude between the lowest unoccupied
molecular orbital (LUMO) of the donor (site i = 0) and the
first site of the LUMO of the acceptor, V determines the
Coulomb potential, J is the electron hopping parameter, ε0

is the energy of the incoming electron, and εi is the energy
level of a molecule on the acceptor site, which is taken to be
a random variable (with a mean ε and a standard derivation
σε) drawn from a rectangular distribution. In this model, the
static potential is given explicitly by the distribution of the on-
site energies εi and the Coulomb potential V between the
electron and hole, while the dynamic potential is caused by
the electron-phonon coupling term

∑
i gc+

i ci(a+
i + ai ).

At this point, we want to note that we make the following
assumptions. First, we do not model the hole dynamics since
the effects of hole diffusion usually lead to a reduction of
only the Coulomb interaction, resulting in an increase of the
electron-hole separation yield [35,36], and since hole transfer
typically occurs on timescales in the 1 to 2 ps range, which
is several orders of magnitude slower than electron transfer
[37]. Second, we use a one-dimensional model to describe
a complex three-dimensional bulk molecular heterostructure
since the main features of the Holstein polaron do not depend
strongly on the dimensionality of the system [38] and since
we expect that the realistic, three-dimensional nature of the
system will lead to mainly quantitative changes in the quan-
tum efficiency. Third, we assume only a single high-frequency
intramolecular mode of vibration (on the order of 1600 cm−1,
i.e., a period of roughly 20 fs), although the involvement of
multiple phonon modes provides additional transfer channels.
However, in this work, we are interested in electron dynamics
that concern the fast electron unbinding from the Coulomb
well, which occurs on timescales of 10 to 100 fs. Therefore,
the impact of weakly coupled low-frequency modes of vibra-

tion (on the order of �80cm−1, i.e., a period of roughly 415 fs)
can be neglected since final equilibration occurs at longer
relaxation times [39]. Fourth, all computations are presented
at zero temperature, taking no entropic effects into consider-
ation, since electronic and vibrational energy scales are much
larger than kBT , where kB is Boltzmann’s constant and T is the
temperature [40], and since we expect that a change in entropy
plays a diminished role in the charge separation process
in one-dimensional systems [41]. The driving force for the
charge separation mechanism is thus entirely of a quantum-
mechanical nature stemming from the coupling of an initially
discrete state (electron at the interface) to a final state in the
continuum (electron on the acceptor side surrounded by a
cloud of phonon excitations). Fifth, we note that in the ab-
sence of electron-phonon interaction, scattering on defects can
lead to Anderson localization [42], and it will hinder electron
transfer across the interface. Since it is well known that in
the case of one-dimensional infinite disordered systems, any
amount of disorder produces Anderson localization, we have
embedded the system into an effective medium which has
been computed using the coherent potential approximation
(CPA). The absence of Anderson localization within CPA [43]
will then mimic a system without localization at moderate
disorder (except very close to the band edges) throughout this
work.

The approach that we propose is the use of the single-
polaron I-DMFT approximation. The aim of I-DMFT is to
fully address the relevant spatial variations of the physical
properties while still affording a good description of the
physical processes of interest. A crucial aspect of I-DMFT
is that it provides an interpolation between the noninteracting
case, in which it gives the exact solution of the problem, and
the strong-coupling limit, in which it also becomes exact. In
I-DMFT the local Green’s function is for one given realization
of disorder and is defined as

Gii(z)−1 = z − εi − �i(z) − �i(z), (2)

where �i(z) and �i(z) are the hybridization function and
the self-energy at site i, respectively, and z = E + iη, with η

being an infinitesimally small number. In standard I-DMFT
procedures a self-consistent solution is obtained iteratively at
each z where one needs to compute repeatedly the diagonal
of the inverse of a complex matrix whose dimension equals
the number of lattice sites. Using conventional linear-algebra
algorithms, this problem becomes cubic with the size of the
system [44].

We use an alternative approach to solve the I-DMFT self-
consistency equations which is based on Haydock’s recursion
scheme applied to suitably defined Hamiltonians and, in par-
ticular, which does not require the inverse of a complex ma-
trix. Instead, the Hamiltonian (1) is solved on the full lattice
under the approximation that the electron-phonon self-energy
is local depending on the frequency of only the local phonon.
Self-consistency equations are then expressed in Hilbert space
such that the recursion technique by Haydock [45] can
be used, which makes this method immediately generalizable
to any lattice geometry and/or disorder distribution while
easily handling inhomogeneous systems of up to 103 lattice
sites in less than 24 h (sequential computation on an Intel
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FIG. 1. Schematic representation of the Hamiltonian (1) describ-
ing the electron dynamics at the donor-acceptor interface. The black
curve represents the Coulomb attraction from the hole (black site),
and the dashed area represents the spread around the mean energy
value ε. We embedded the leftmost nonequivalent site Ni into an
effective medium which was computed using the coherent potential
approximation.

Xeon E5-2670 processor). A detailed explanation of the used
I-DMFT approach can be found in [46].

Finally, let us comment on general numerical aspects of
the proposed I-DMFT formalism. The number of possible
phonon configurations is infinite but can be restricted to
a finite, sufficiently large number in actual calculations by
choosing M � g2/�2 = α2, where M is the maximum num-
ber of phonon excitations per site. Further, we simulate only a
finite part of the total size of the system N . We then embed
the leftmost site into an effective medium which has been
computed using the CPA. We thus define a number Ni < N
of nonequivalent lattice sites along the surface. Choosing
N = 2000, M = 60, and Ni = 300 ensures that all results are
independent of any system size characteristics while keeping
modest computational complexity. A pictorial representation
of the proposed model is depicted in Fig. 1.

III. RESULTS

In the following we express all energies in units of J
(energy unit is J ≈ 0.2 eV and time unit is 1/J ≈ 3.3 fs) and

take m = 0.5, V = 1.5, � = 1.0, ε = 0.0, and σε = 0.0, 0.1
while keeping g and ε0 as independent parameters. All are
chosen such that they are in a realistic experimental range to
model the prototypical PCMB (σε = 0.1) and C60 (σε = 0.0)
acceptor systems [47–51]. We have checked that all results are
qualitatively insensitive to different disorder configurations,
a result that has been found in all tested cases throughout
this work. Finally, we note that throughout this paper our
initial state at time t = 0 will consist of an electron at site
i = 0 having energy ε0 and no phonon modes excited, i.e.,
|ψ (t = 0)〉 = c+

0 |0〉, with |0〉 being the vacuum state for
phonons and electrons.

First, we present in Fig. 2 the probability density of the
wave function |Kγ 〉 on the acceptor

nγ (t ) = |〈Kγ |ψ (t )〉|2, (3)

where |Kγ 〉 is the orthonormal basis vector of the N-
dimensional Krylov space KSN [52]. The Krylov states |Kγ 〉,
which are computed by a Lanczos-based recursion method
[45], represent a basis of excitations of the many-body system
(electron and phonon modes) that progressively spread away
from the interface into the acceptor. The time evolution of the
wave function in Krylov space is then defined as |ψ (t )〉 =
e−iHKSN t |K0〉, with HKSN being the reduced Hamiltonian of the
Krylov subspace KSN . The time evolution is then determined
by an exact diagonalization technique by choosing the first
Krylov-space vector equal to the initial state, i.e., |K0〉 =
c+

0 |0〉 (see the Appendix for a brief introduction to the Krylov
subspace method and computation of wave function |Kγ 〉).
This provides an efficient way to extract the essential character
of the Hamiltonian (1) while using a limited number of basis
sets. We stress here that the size of the system (2000 states in
the Krylov space) is sufficient to prevent the wave packet from
bouncing back at the boundary.

We find, in the limit of sole dynamic potentials (α2 = 0.5,
σε = 0.0) shown in Fig. 2(a), that the probability weight near
the interface progressively decays with time and the particle
is fully delocalized. Upon increasing the electron-phonon
interaction (α2 = 1.5, σε = 0.0), the local density of states
(LDOS) fragments into polaronic subbands (self-trapping)

(a) (b) (c) (d)

FIG. 2. Time evolution of the probability density nγ (t ) at each state γ in Krylov space, where all calculations are shown for an incoming
electron energy ε0 = −0.5 that is taken in the band of delocalized states (time unit is 1/J ≈ 3.3 fs). (a) and (b) are only for dynamic potentials,
while (c) and (d) are for dynamic potentials and static disorder. In fact, molecular dynamics simulations have shown that contrary to PCBM
fullerenes, C60 exhibits extremely limited disorder in its crystalline phase, which can thus, to a good extent, be neglected [14,15]. (b) and
(d) show a localization effect near the interface, which is, however, superposed with outgoing wave packets, resulting in a poor interfacial
charge-transfer efficiency. We did not attempt to estimate the numerical error, but it should be of the order of the fluctuations visible in the plot.
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where the strongly renormalized width of the polaronic sub-
bands arises as the new energy scale [53]. As can be seen
in Fig. 2(b), self-trapping of the electron hinders, in this
case, the interfacial electron transfer drastically as parts of
the wave function remain localized at the interface, resulting
in a poor but finite interfacial charge-transfer efficiency. In
Figs. 2(c) and 2(d) we present the combined effect of static
spatial disorder and weak (α2 = 0.5, σε = 0.1) and strong
(α2 = 1.5, σε = 0.1) dynamic potentials, respectively. As can
be seen, the physical pictures in Figs. 2(c) and 2(d) do not
change quantitatively when compared to Figs. 2(a) and 2(b),
respectively, an outcome we find throughout this work.

Before proceeding we stress here that the LDOS is a key
factor since its shape and, in particular, the energy distribution
of electronic states are found to determine the value of practi-
cally achievable injection energies. This comes in handy when
using the proposed formalism [46]. In particular, we have
found that taking the incoming electron energy outside the
band of delocalized states completely suppresses, as expected,
interfacial charge transfer (an electron becomes localized at
the interface) while the incoming electron energy that is taken
in the band of delocalized states results in interfacial charge
transfer.

By making use of the I-DMFT-computed Green’s function
G11(z) and by applying Fermi’s golden rule we now quantify,
as a function of the incoming electron energy ε0, the quantum-
mechanical donor-acceptor interface transfer rate,

kIn j (ε0) = −2 m2 Im G11(ε0 + iη), (4)

where Im G11(z) is the imaginary part of the Green’s function
G11(z). This presents a simple measure of the efficiency for
charge transfer at the donor-acceptor interface, but note the
transfer rate is related, but not equal, to the internal quantum
efficiency, which is commonly extracted from experiments.
The interface transfer rate is graphically depicted in Fig. 3
for incoming electron energies of −2J � ε0 � 2J , where this
restriction is sufficient to ensure the applicability of Eq. (4)
(weak coupling to a quasicontinuum of states). Although we
do not model the competing electron-hole and/or geminate
recombination processes, we also indicate in Fig. 3 the range
of the experimentally observed recombination rate kRec of
the order of 0.01−1 to 0.05 fs−1 [9–11]. Therefore, efficient
charge transfer from the donor to the acceptor occurs when the
interface transfer rate kIn j is large compared to the competing
process of charge recombination kRec. We start considering
the case of only sole, but weak, dynamic potentials (α2 =
0.5, σε = 0.0). We find that the interfacial transfer rate is
essentially, with the exception of values of ε0 close to the
low-energy edge, higher than the upper experimental recom-
bination rate for all negative values of ε0. On the contrary,
this changes drastically for all positive values of ε0, where
interfacial charge transfer is large only when compared to
extremely low experimental ranges of recombination rates.
This stems from strong relaxation processes (phonon emis-
sion) caused by molecular vibrations which are facilitated
at higher energies. Upon increasing the electron-phonon in-
teraction (α2 = 1.5) multiple gaps throughout the spectrum
arise, and thus multiple values of kIn j occur that are below
the experimental value of kRec. This is readily explained since
upon increasing the electron-phonon interaction the LDOS

FIG. 3. We present the interface transfer rate kIn j (rate unit is
J ≈ 0.3 fs−1) as a function of the incoming electron energy ε0 for
α2 = 0.5, 1.5 (top to bottom). The dashed lines mark the range of
experimentally observed recombination rates kRec of the order of
0.033 J (0.01 fs−1) to 0.167 J (0.05 fs−1) [9–11]. Transfer rates kIn j

below kRec will eventually lead to electron-hole and/or geminate
recombination at the donor-acceptor interface. The bottom panel
shows that by increasing the electron-phonon interaction α, narrow
polaronic subbands separated by � arise, an effect which hinders the
range of suitable incoming electron energies ε0. We note that we did
not attempt to estimate the numerical error, but it should be of the
order of η/J = 5.0 × 10−2 due to Gaussian broadening.

fragments into subbands that are separated by multiples of
�. This effect will drastically hinder the range of suitable in-
coming electron energies since the incoming electron energy
ε0 must be identical to that of the allowed unoccupied state
of the acceptor material. Surprisingly, this picture does not
change qualitatively when considering the combined effect
of static disorder and dynamic potentials. In particular, we
have found that weak but static disorder does not change
drastically the interfacial transfer rate for incoming electron
energies of −2J � ε0 � 2J . Finally, we note that these results
are in agreement with the analysis of the time evolution of the
electron density shown above.

We note here that we confine our analysis of the interfacial
transfer rate by choosing realistic experimental values for all
parameters. However, introducing m → μm, J → λJ enables
the scale transformation of the interfacial transfer rate kIn j →
k′

In j into

k′
In j (ε0) = (μ2/λ)kIn j (ε0/λ), (5)

where μ and λ are the scaling constants of m and J , respec-
tively. Through this scale transformation the results presented
in Fig. 3 can then be adapted to describe physically equivalent
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systems with a different scale k′
In j and set of parameters (�′ =

λ�,V ′ = λV, g′ = λg, σ ′
ε = λσε).

Finally, we note the following: First, we have found that,
contrary to common OPV design suggestions [1,2] in which
the molecular energy level of the LUMO of the donor is
aligned above the LUMO of the acceptor, charge transfer
is more efficient when the opposite molecular energy level
alignment occurs, i.e., when the energy level of the LUMO
of the acceptor is above the energy level of the LUMO of the
donor. Second, we have not found interfacial electron transfer
in the limit of extremely strong electron-phonon coupling
(α2 � 8.0). This is readily explained since in this limit the
coupling between the donor and the first site of the acceptor
becomes much larger than the renormalized bandwidth of the
polaronic subbands. Thus, one is, to a good extent, left with
two eigenstates separated by a larger energy offset, giving rise
to charge localization at the interface.

Third, we note that the results of our time-dependent study
present some similarity to the Dirac-Frenkel time-dependent
simulations in one dimension [34], which focused on the
interplay between electron-vibration interaction and the in-
terfacial Coulomb interaction between the hole and electron.
Yet [34] did not take spatial disorder into consideration and
focused on the quantum yield in the absence of any electron-
hole recombination. The quantum yield, in the absence of
recombination, then simply measures the charge injected at an
infinite distance from the interface; that is, the quantum yield
is simply 1 − P, with P being the weight of the wave function
localized near the interface. Instead, our study quantifies the
charge injection rate, which has more fundamental relevance
since this quantity can be compared to the experimentally ob-
served recombination rate. The quantum yield, in the presence
of recombination, can then be obtained by

Y � kIn j

kIn j + kRec
. (6)

A high quantum yield is then given when kIn j � kRec holds.
Moreover, the applicability of the simulation presented in
Ref. [34] is limited since the approximated treatment of the
many-body nature of the polaronic state (momentum average
approximation) is valid only in the small bandwidth limit.
In contrast to Ref. [34], the proposed I-DMFT approach is
accurate over the entire parameter space [46].

IV. CONCLUSION

To summarize, we have applied the I-DMFT approxima-
tion to a generic one-dimensional model Hamiltonian whose
parameters model the charge carrier dynamics in prototypi-
cal PCBM and C60 acceptor systems. Our results show that
polaronic bands, when compared to spatial disorder, can
provide the main detrimental influence on the efficiency of
charge transfer of electrons across organic interfaces. From
this perspective, organic molecules with moderate reorganiza-
tion energies should be used preferentially in next-generation
materials since increasing the electron-phonon interaction
hinders the range of suitable incoming electron energies due
to the fragmentation of the local density of states into narrow
polaronic subbands. Interestingly, contrary to common OPV
design suggestions [1,2], where the molecular energy level of

the LUMO of the donor is aligned above the LUMO of the
acceptor, we have found that charge transfer is more efficient
when the opposite molecular energy level alignment occurs,
i.e., when the energy level of the LUMO of the acceptor is
above the energy level of the LUMO of the donor. Finally, we
emphasize here that the easy numerical implementation of the
I-DMFT approximation [46] allows one to study a variety of
recently proposed and perhaps more realistic donor-acceptor
model systems. In particular, I-DMFT enables us to inves-
tigate the impact of electric fields induced by energy level
pinning [54], structural heterogeneity as a function of distance
to the interface [55,56], and gradients in the energy landscape
[57,58]. These problems were previously difficult to access
but may help the charge separation process drastically. Open
questions we reserve for future work.
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APPENDIX: KRYLOV SUBSPACE METHOD

We recall here a general definition of the Krylov subspace
method used in this work. The Krylov subspace of dimension
N (KSN ) [52] is the linear subspace spanned by

KSN (|φ0〉) = span{|φ0〉, H |φ0〉, . . . , HN−1|φ0〉}. (A1)

Here |φ0〉 represents a suitably chosen vector of the original
Hilbert space, and we will denote in the following the or-
thonormalized basis vectors in KSN by

|K0〉, |K1〉, |K2〉, . . . , |KN−1〉 ≡ KSN , (A2)

with |K0〉 = |φ0〉 being defined as the initially chosen wave
function. An orthogonal basis of KSN can then be constructed
with the method of Lanczos [59], an iterative procedure that
is capable of constructing the Krylov space via a three-term
recurrence relation:

H |Kn〉 = a(n)|Kn〉 + b(n)|Kn+1〉 + b(n − 1)|Kn−1〉, (A3)

with the initial conditions |K0〉 = 0, b(−1) = 0 and where
|Kn〉 obeys the orthogonality relation 〈Kn|Km〉 = δn,m. The
reduced Hamiltonian matrix HKSN in KSN then reads

HKSN =

⎡
⎢⎢⎣

a(0) b(0) 0 0 · · ·
b(0) a(1) b(1) 0 0 · · ·

0 b(1) a(2) b(2) 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

⎤
⎥⎥⎦.

(A4)
The time evolution of the wave function |K0〉 in the Krylov
subspace KSN is then defined by

|ψ (t )〉 = e−iHKSN t |K0〉

=
N∑

l=0

e−iEKSN (l )t 〈ZKSN (l )
∣∣K0

〉∣∣ZKSN (l )
〉
. (A5)

Here EKSN (l ) and |ZKSN (l )〉 represent the lth eigenvalue and
eigenvector of the Hamiltonian HKSN , respectively, which
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FIG. 4. Top: tight-binding representation of the Hamiltonian
HIDMFT , where HIDMFT and, especially, the coefficients a�n (n) and
b�n (n) were computed using the I-DMFT formalism presented in
Ref. [46]. Bottom: the most outward extension of the Krylov sub-
space vector |KN 〉 for the first three steps of the recursion scheme.

have been determined by exact diagonalization (due to the
greatly reduced size of the Hamiltonian matrix HKSN ).

To further illustrate the extension of the Krylov subspace
vector |KN 〉, we add in Fig. 4 the tight-binding representation
of the Hamiltonian HIDMFT , which was computed with the
I-DMFT method presented in Ref. [46] and has been used

to determine all |KN 〉. Starting Haydock’s recursion from the
initial state |K0〉 = |φ0〉 = |0, 0〉 (the electron at site i = 0 has
energy ε0 and no phonon modes excited), one then finds

HIDMFT |0, 0〉 = m|1, 0〉 + ε0|0, 0〉
= a(0)|K0〉 + b(0)|K1〉. (A6)

Here states in the energy-independent tight-binding represen-
tation of HIDMFT are labeled |x, n〉, with x being the lattice
coordinate and n being the phonon number (see Fig. 4). Pro-
jecting on Eq. (A6) with |K0〉 and |K1〉, one then finds a(0) =
ε0, b(0) = m, and |K1〉 = |1, 0〉. In the second recursion step
one then finds

HIDMFT |K1〉 = t |2, 0〉 + ε1|1, 0〉
+ b�0 (0)|1, 1〉 + m|0, 0〉

= a(1)|K1〉 + b(1)|K2〉 + b(0)|K0〉. (A7)

The set of new recursion coefficients then is a(1) = ε1, b(1) =√
t2 + b2

�0
(0), and the new wave function reads

|K2〉 = t |2, 0〉
b(1)

+ b�0 (0)|1, 1〉
b(1)

. (A8)

This iterative three-term recurrence procedure is repeated
until all recursion coefficients a(n), b(n) and Krylov subspace
wave functions |KN 〉 are determined.

To conclude, apart from |K0〉 and |K1〉, which correspond
to an electron localized at site i = 0 and site i = 1 with
zero phonon modes excited, respectively, all other vectors
|KN 〉 represent excitations of the many-body system (electron
and phonon modes) that progressively spread away from the
interface into the acceptor (see Fig. 4).
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