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Spin and orbital ordering in bilayer Sr3Cr2O7
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Using maximally localized Wannier functions obtained from density functional theory calculations, we derive
an effective Hubbard Hamiltonian for a bilayer of Sr3Cr2O7, the n = 2 member of the Ruddlesden-Popper
Srn+1CrnO3n+1 system. The model consists of effective t2g orbitals of Cr in two square lattices, one above the
other. The model is further reduced at low energies and two electrons per site to an effective Kugel-Khomskii
Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbital
degrees of freedom, respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators
and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering
is antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets,
although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics
behind this rather unexpected behavior.
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I. INTRODUCTION

Some decades ago, Kugel and Khomskii studied theo-
retically the interplay between orbital and spin degrees of
freedom in compounds like KCuF3 and K2CuF4 [1]. They
showed that in these compounds the eg orbital degrees of
freedom (leaving the hole in the 3d9 configuration of Cu in the
orbital with symmetry being either x2 − y2 or 3z2 − r2) can
be described by a pseudospin, and these pseudospins interact
with each other and with the spins of the Cu ions in such a
way that the preferred ordering is antiferromagnetic for the
pseudospins and the spin ordering is ferromagnetic in the ab
plane and antiferromagnetic in the c direction. The staggered
ordering of the orbitals leads to a staggering of quadrupolar
distorted CuF4 units in the ab planes, as expected from any
electron-phonon interaction [2].

The interest in systems with spin and orbital degrees
of freedom has risen over the years (see, for example,
Refs. [2–21]). A rich physics has been observed in the
n = 2 members of the Ruddlesden-Popper series of the form
An+1BnC3n+1, where B denotes transition-metal atoms that
form two square lattices in the xy plane, one displaced with re-
spect to the other in the z direction [5,12,15,21]. In the layered
colossal magnetoresistance manganite La2−2xSr1+2xMn2O7,
different spin and orbital orderings are observed as x is varied,
indicating that eg orbital polarization is the driving force
behind spin ordering [5]. Particularly interesting is K3Cr2O7,
where distortions reveal antiferromagnetic orbital ordering,
while the system presents a spin gap due to spin dimers in
the z direction [12]. This is an exotic ordering involving spins
and pseudospins both of magnitude 1/2. In Sr3Ru2O7, an
applied magnetic field induces domains with distorted lattice
parameters likely related to orbital ordering [15].
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Recently, the compound Sr3Cr2O7 was studied by several
experimental and theoretical techniques [21]. The resistivity
and specific heat measurements indicate that the system is
insulating. The calculations using density functional theory
(DFT) with local-density approximation (LDA) +U approx-
imation indicate that occupancy of Cr is consistent with an
oxidation state of Cr+4 (two electrons in the 3d shell) and
there is an orbital degeneracy between d1

xyd1
xz and d1

xyd1
yz.

Hund’s rules favor a total spin S = 1. There is a magnetic
transition at 210 K with a huge total entropy change near
R ln(6) indicating a simultaneous spin and orbital ordering.
The magnetic structure observed by neutron diffraction is
consistent with the DFT results and corresponds to anti-
ferromagnetic alignment between nearest neighbors in the
plane and ferromagnetic alignment between planes. Orbital
ordering is usually not detected in DFT with LDA and derived
potentials due to the difficulties of these techniques to obtain
orbital polarization [2,22]. LDA +U is able to capture orbital
ordering [2] but not singlet ordering because it is based on
a single Slater determinant. The LDA +U calculations of
Ref. [21] do not detect any orbital ordering. Nevertheless, the
absence of observable distortions that accompany the orbital
ordering (as in KCuF3 and K2CuF4 mentioned above) is
consistent with the formation of vertical singlet orbital dimers,
so that quantum fluctuations destroy long-range pseudospin
ordering. This spin/pseudospin state has some analogy to the
case of K3Cu2O7 (with both spin and pseudospin S = 1/2)
mentioned in the previous paragraph with spin and pseudospin
(orbital) degrees of freedom interchanged.

Jeanneau et al. also derived a Kugel-Khomskii Hamilto-
nian from a multiband Hubbard model containing the rel-
evant orbitals of Cr and O [21]. Solving this Hamiltonian
by Lanczos in a cluster containing eight sites, they found
that, effectively, the ground state corresponds to the ob-
served magnetic ordering and vertical pseudospin singlets if
t ′
z/t ′

p > 0.85, where t ′
z (t ′

p) is the hopping between nearest-
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neighbor Cr and O orbitals perpendicular to (in) the CrO2

planes. Since t ′
z is expected to be smaller than t ′

p because of
the larger distances in the plane and the size of the cluster is
very small, further theoretical work is necessary to confirm
that the proposed exotic spin and orbital ordering is, in fact,
the ground state. Note that for a spin-1/2 Heisenberg model in
a bilayer system (our bilayer system for only pseudospins, i.e.,
S = 0) with interplane interaction J and vertical interaction
J ′, the quantum phase transition from a Néel ordered phase
to the quantum disordered dimer-singlet phase takes place for
J ′/J ≈ 2.522 [23,24], and for the three-dimensional extension
with two cubic sublattices the transition moves to J ′/J ≈ 4.84
[25]. Therefore, naively, one would expect a phase with long-
range pseudospin ordering in Sr3Cr2O7 for t ′

z ∼ t ′
p.

In this work we first construct a tight-binding model for
effective t2g orbitals at the Cr sites, using maximally local-
ized Wannier functions (MLWFs), and add to it the on-site
interactions [9,26]. This leads to a three-band Hubbard model.
This starting approach is similar to that followed by Ogura
et al. to study the possible occurrence of superconductivity in
hole-doped Sr3Cr2O7 and Sr3Mo2O7 [27]. These effective t2g

orbitals are not pure Cr 3d orbitals of xy, xz, and yz symmetry
but contain an important admixture with O orbitals. Next,
we derive a Kugel-Khomskii Hamiltonian for the low-energy
subspace of two electrons per site by degenerate perturbation
theory in the hopping terms. We explain the meaning of
the different terms and the expected physics. Finally, this
Hamiltonian is solved for the infinite system, using a com-
bination of bond operators and spin waves. For the resulting
parameters we find that the state of singlet dimers and the spin
ordering proposed in Ref. [21] is, in fact, the ground state.
To destabilize it, one would need to reduce the hopping t ′

z
mentioned above by a factor close to 1/2.

This paper is organized as follows. In Sec. II we describe
the atomic and electronic structures. Section III describes the
ab initio method used to obtain the effective hoppings and on-
site energies used in Sec. IV to derive an effective multiband
model for the system. In Sec. V we use this model to derive
an effective Kugel-Khomskii Hamiltonian to describe the spin
and orbital degrees of freedom of the model. This model
is solved in Sec. VI using a generalized spin-wave theory.
Section VII contains a summary and discussion.

II. THE SYSTEM

As a starting point we calculate the electronic structure
of the Sr3Cr2O7 system within the framework of DFT. The
structure has I4/mmm symmetry, which is tetragonal with
lattice parameters a = 3.796 Å and c = 19.846 Å [21], and
we include the asymmetric deformation of the CrO6 octahedra
as reported in Ref. [21]. We distinguish three types of O
atoms according to their bonding role. As shown in Fig. 1,
the structure is a stacking of CrO2 layers and SrO layers. We
label as O1 the O atoms inside the CrO2 layers, O2 denotes
the O atoms in the SrO layers between two CrO2 layers, and
O3 refers to the O atoms of the SrO layers that lie between
another Sr-O3 layer and a CrO2 one. Two consecutive Sr-O3

layers are displaced by a vector (a/2, a/2, d ), where d is the
interlayer Sr-O3 distance, as can be seen in the small scheme
on the right of Fig. 1. In the CrO2 layers, both O1 and Cr atoms

FIG. 1. Tetragonal structure of Sr3Cr2O7. The stacking is made
of three types of layers. The unit cell (shown on the right) contains
two blocks of five layers shown on the left; the second is displaced
in the x, y direction by (a/2, a/2) with respect to the first one. d2

and d3 denote the distances Cr-O2 and Cr-O3, respectively. The ratio
d3/d2 = 1.016 [21].

form a square lattice. Each Cr atom has four nearest neighbors
that are O1 atoms in the x, y plane and two more O neighbors
in the z direction; the one between CrO2 layers is type O2, and
the other is type O3. Note that the distances between Cr and
O2 and between Cr and O3 are different, as shown in Fig. 1.

Since we are looking for the hopping parameters, the
DFT calculations are performed as spin unpolarized but using
both cell parameters and atomic coordinates obtained from
the spin-polarized case. The band structure calculations are
done using the WIEN2K code [28], with precision parameters
RMT Kmax = 7, which reads as the product between the small-
est muffin-tin sphere radius and the plane-wave cutoff Kmax.
The Brillouin zone was sampled with a regular mesh contain-
ing 800 irreducible points, and we use the generalized gradient
approximation for the potential of the exchange correlation.

The band structure and the atom-projected density of states
are shown in Fig. 2, where band character is emphasized by
color; red means a strong Cr component, and blue stands for
the O component. The electronic structure close to the Fermi
energy is dominated by Cr d states, which are split by the
tetragonal component of the crystal field into t2g and eg states.
The Cr t2g states are the partially filled states and share a peak
with O3 at −0.7 eV; they also hybridize with in-plane O1

atoms. Above the Fermi level, the states of Cr share a peak
with O2 at 0.09 eV. These characteristics in the DOS expose
the bridging character of the O2 between the next CrO2 layers.
The band structure presents a region around the Fermi level,
where the t2g states of the Cr prevail. The eg-type orbitals are
located at 0.9 eV above the Fermi level.

Note that the band structure predicts a metallic state, while,
actually, the compound is an insulator [21]. This is corrected
when the interactions are included, as we do in Sec. IV.

III. HOPPING PARAMETERS FROM MAXIMALLY
LOCALIZED WANNIER FUNCTIONS

The maximally localized Wannier function (MLWF)
approach provides a physically intuitive and also rigorous
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FIG. 2. Spin-unpolarized band structure of Sr3Cr2O7 (left panel)
along with the atom-projected density of states (right panel). The
bands are plotted with character in order to show the strong hy-
bridization between Cr and O close to the Fermi energy. Red means
mainly d Cr character, and blue means p O character. Also shown
are the DOSs projected on each nonequivalent O atom and each Cr
orbital. The two horizontal dashed lines delimit the energy window
where the Wannierization process takes place.

representation of the electronic band structure of a system in
an energy region of interest, which defines a Hilbert subspace.
Then, the Hamiltonian expressed in the base of MLWFs
includes de effect can be mapped to a tight-binding-based
model which describes the system in the target Hilbert sub-
space. These MLWFs can be derived from Bloch states of a
DFT calculation by the so-called Wannierization process as
implemented in the WANNIER90 code [29]. However, the input
of WANNIER90 requires the overlap matrices and projections
to the Hilbert subspace, so we use the WIEN2WANNIER [30]
routine as an interface among them.

The target Hilbert subspace is chosen in order to describe
the Cr d orbitals near the Fermi energy, which are responsible
for the magnetic ordering in the system. In Fig. 2, the horizon-
tal dashed lines at −1.5 and 1 eV delineate the chosen energy
window where the Wannierization process takes place. Within
the selected energy window, the number of desired Wannier
functions is equal to the number of t2g orbitals multiplied by
the number of Cr atoms in the unit cell, which in our case
is 12 (3 t2g orbitals times 4 Cr atoms per unit cell). Also, we
have to take into account that there are 14 bands lying inside
the chosen energy window, meaning that the disentanglement
procedure must be used before the Wannierization procedure
takes place. Nevertheless, fast and accurate Wannierization
can be done using as an initial guess the expected t2g-like
wave functions. Our results fulfill the convergence criteria
established in Ref. [29]. The tight-binding fit, if included in
Fig. 2, would be indistinguishable from the DFT results, and
therefore, we omit it for the sake of clarity

The obtained MLWFs confirm the expected t2g-type sym-
metry and are centered at Cr atoms, as shown in Fig. 3.
Nevertheless, the isosurface plot in the real space of the
MLWFs reveals the strong hybridization between Cr and O
orbitals, in agreement with the projected density of states
shown in Fig. 2. The amount of covalency that the MLWFs
represents can be estimated by integrating the projected den-

FIG. 3. Isosurface plot of two maximally localized Wannier
wave functions centered at the Cr atom (blue circle). (a) and (b) Two
views of the wave function with xy symmetry, showing strong
hybridization with in plane oxygens (O1). (c) and (d) Two views
of the wave function with symmetry near xz + yz. Note in (d) the
different hybridizations between oxygen on top of chromium (O2)
and the one at the bottom (O3). The Sr atoms are not shown.

sity of states of orbitals with different symmetries inside the
chosen energy window where the Wannierization procedure
has been performed. We find that 78.4% of the states corre-
spond to Cr t2g orbitals, 2.3% correspond to Cr eg orbitals, and
19.3% correspond to O p orbitals, where the majority of them
(14.6%) are px and py orbitals. In addition, note that the point
group at the Cr atoms does not contain the reflection through
the CrO2 layers (in particular, the distances between O2 and
O3 atoms and the Cr atoms, d2 and d3 in Fig. 1, are different),
a fact that is evident in the different contents of O2 and O3 p
orbitals in the Wannier functions with approximate xz and yz
symmetries. The aforementioned facts allow us to conclude
that the hoppings obtained from the Hamiltonian in the base
of MLWFs includes de effect of O atoms in the effective Cr-Cr
hopping processes.

This suggests that a simplified multiband model can be
proposed (as we do in the following section) without the need
to include crossed terms between d and p orbitals.

IV. THE MULTIBAND HUBBARD MODEL

The multiband model is constructed from effective t2g

orbitals at each Cr site, the difference between on-site energies
and the effective hopping between orbitals at different sites
calculated with DFT + MLWFs, and the interactions between
electrons at the same site. The Hamiltonian is

Hm =
∑
i,r

(
Hir

CF + Hir
I

) + Hh. (1)

Here i = 1, 2 indicates the upper or lower square sublat-
tice at positions z = ±3.87 Å/2, and r = a(nx̂ + mŷ), with
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a = 3.796 Å and n, m being integers, denotes the position
of a Cr atom within the plane. The creation operators of
effective t2g orbitals at site i, r with spin σ are denoted by
d†

irασ , where α = xy, xz, or yz. As discussed in the previous
section, these effective orbitals contain some admixture with
2p O orbitals (and probably other orbitals) and do not have a
definite symmetry under the reflection z → −z. However, for
simplicity we keep the notation corresponding to t2g orbitals
in cubic symmetry (xy, xz, or yz).

The first term in Eq. (1) corresponds to the tetragonal
crystal field, which raises the energy of an electron in the dxy

orbital with respect to the other two:

Hir
CF = −δ

∑
σ

nirxyσ , (2)

where nirασ = d†
irασ dirασ . The second term of Hm contains the

on-site interactions and takes the form [9,26,27]

Hir
I = U

∑
α

nirα↑nirα↓ + 1

2

∑
α �=β,σσ ′

(U ′nirασ nirβσ ′

+ Jd†
irασ d†

irβσ ′dirασ ′dirβσ )

+ J
∑
α �=β

d†
irα↑d†

irα↓dirβ↓dirβ↑. (3)

In the following we will take U ′ = U − 2J , which corre-
sponds to spherical symmetry [26] (like for the free atom).

The hopping between t2g orbitals is mediated by Cr-O
hopping through O 2p orbitals, and the symmetry of the
orbitals imposes restrictions on the allowed processes. As a
consequence, the xy orbitals cannot hop in the z direction.
Similarly, the xz (yz) orbitals cannot hop in the y (x) direction.
Then, the hopping term of the multiband model has the form

Hh =
[

− tz
∑

r

∑
α �=xy

d†
1rασ d2rασ − txy

∑
i,r

d†
ir+a,xyσ dir,xyσ

− tp

∑
i,r

(d†
ir+ax̂,xzσ dir,xzσ + d†

ir+aŷ,yzσ dir,yzσ )

+ H.c.

]
, (4)

where a is a vector connecting two nearest Cr atoms in the +x
or +y direction.

The crystal-field splitting δ and the hopping parameters tz,
tp and txy were determined from the MLWFs, as described in
Section III.

The resulting crystal-field splitting is δ = 0.040 eV. This is
likely an underestimation because orbital polarization, which
is not properly taken into account by DFT, leads to larger
splittings [26]. In any case, its detailed value affects very
little our results and does not change our conclusions as long
as δ > 0. A negative δ would lead to a trivial pseudospin
singlet configuration d1

xzd
1
yz at each site and is inconsistent

with a change in entropy near R ln(6) observed in the magnetic
transition [21].

The resulting hopping parameters are tz = 0.235 eV,
tp = 0.214 eV, and txy = 0.248 eV. They are of the same order
of magnitude. The fact that txy > tp is expected in perturbation

theory in the Cr-O hopping because in the expression for
txy, the denominator involves the energy necessary to take an
electron from the O atom and put it in an xy orbital, and this
is smaller than the corresponding denominator for tp. Instead,
the fact that tz > tp is rather unexpected because the interlayer
distance is almost 2% larger than a, the shortest distance
between Cr atoms in the plane. However, different on-site
energies of the O orbitals lying in between the Cr atoms and
the fact that the effective orbitals are deformed with respect
to the ideal shape (as evidenced in Fig. 3) can modify the
result. The deformation of the orbitals can also explain an
effective hopping between xz (yz) orbitals in the y (x) direction
with a magnitude of 0.035 eV absent in perturbation theory
in the Cr-O hopping because of symmetry. We neglect this
contribution.

Concerning the values of the interactions U and J , a fit
of the lowest-atomic-energy levels along the 3d series gives
J = 0.70 eV [31]. We take this value as a basis for our
study. Since J does not involve charge transfer, it is usually
not screened in the solids, in contrast to U . However, in
our case since the effective t2g orbitals contain some orbital
admixture, J can be smaller. A reasonable value for U for
early transition metals, already used to study the orbital Kondo
effect in V-doped 1T-CrSe2 [17], is ∼4 eV. We shall analyze
the dependence of the results on U .

V. THE KUGEL-KHOMSKII HAMILTONIAN

For two electrons per site and large enough U the sys-
tem described by the multiband Hamiltonian (1) leads to an
insulating ground state, in agreement with the experimental
evidence in Sr3Cr2O7 [21]. In this case, the hopping term
Hh can be eliminated from Hm by means of a canonical
transformation (similar to the derivation of the Heisenberg
model from the Hubbard one [32]), leading to an effective
Kugel-Khomskii Hamiltonian for the spin-1 and pseudospin-
1/2 (orbital) degrees of freedom. The eigenstates and corre-
sponding energies of Hm − Hh that we need [see Eqs. (1), (2),
and (3)] were calculated in Ref. [9]. We restrict ourselves to
second order in Hh and denote the spin at each site by Sir and
the pseudospin by Tir, with T z

ir = −1/2 (1/2) corresponding
to the d1

xyd1
xz (d1

xyd1
yz) configuration. The resulting effective

Hamiltonian can be written as

HKK =
∑

r

H⊥
r +

∑
i

H p
i , (5)

where H⊥
r contains the vertical interactions (in the z direction)

for each two-dimensional position r in the xy plane and
H p

i describes the interactions in plane i = 1, 2. Dropping
irrelevant constants, one has

H⊥
r = IS

4
S1r · S2r + IT T1r · T2r

+ IST (S1r · S2r )(T1r · T2r ), (6)

where the factor of 1/4 in the first term is introduced to
compensate for factors of ±1/4 that come from T1r · T2r
in classical orderings and renders the qualitative discussion
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below easier. The coefficients are
IS

t2
z

= − 4

3U0
+ 7

3U3
+ 1

U5
,

IT

t2
z

= 8

3U0
+ 1

3U3
− 1

U5
, (7)

IST

t2
z

= 4

3U0
− 1

3U3
+ 1

U5
,

with

Un = U0 + nJ,

U0 = U − 3J. (8)

U0 is the energy necessary to take a dxz (dyz) electron from the
ground state of the d1

xyd1
xz (d1

xyd1
yz) configuration and add it to

the d1
xyd1

yz (d1
xyd1

xz) configuration of a neighboring site to build
the ground state of the d1

xyd1
xzd

1
yz configuration.

Similarly, for the interactions in each plane

H p
i =

∑
ra

[
I p
S

4
Sir · Sir+a + I p

T T z
irT z

ir+a

+ I p
ST (S j · S j+a )T z

irT z
ir+a

]

+ IA

∑
r

[ − (Sir · Sir+ax̂ )
(
T z

ir + T z
ir+ax̂

)

+ (Sir · Sir+aŷ)
(
T z

ir + T z
ir+aŷ

)]
, (9)

where

I p
S = Ixy + t2

p

(
− 2

3U0
+ 7

6U3
+ 1

2U5

)
,

Ixy

t2
xy

= 2

(
1 + δ/r

U4 − r
+ 1 − δ/r

U4 + r

)
, r =

√
δ2 + J2,

I p
T

t2
p

= 4

3U0
+ 1

6U3
− 1

2U5
,

I p
ST

t2
p

= 2

3U0
− 1

6U3
+ 1

2U5
,

IA

t2
p

= 1

2U3
+ 1

2U5
. (10)

At this point we discuss qualitatively the meaning of
HKK and the expected physics. We begin discussing the
two-site vertical interactions H⊥

r [Eq. (6)]. For J = 0, all
interactions are equal [see Eq. (7)]: IS = IT = IST = I =
2t2

z /U0. This means that without the spin-pseudospin in-
teraction IST both spins and pseudospins minimize the en-
ergy for an antiferromagnetic (AF) alignment, but the term
in IST is minimized for one ferromagnetic (FM) alignment
and a second AF alignment. As a consequence, from the
four classical possibilities of orienting the spin and pseu-
dospin as FM or AF, all of them are part of the degen-
erate ground state with energy −I/2 except for the FM-
FM one. This result is easy to understand: the second-
order correction to the energy of these states contains virtual
processes in which one electron in the xz (pseudospin ↓)
or yz (pseudospin ↑) orbital and spin ↑ or ↓ jumps to the

other site and comes back. The corresponding gain in energy
is the same for any alignment of spin and pseudospin except
in the case in which the same orbital with the same spin is
occupied at both sites because of the Pauli principle. If the
xy orbitals were absent, leaving spins 1/2, this picture would
not be modified by quantum fluctuations. Actually, in this
case the model would have SU(4) symmetry with spin and
pseudospin playing a similar role [19]. In our actual case with
S = 1, the pseudospins 1/2 are more quantum than the spins
1, and the ground state of the dimer is a pseudospin singlet and
spin triplet with energy (IS − 3IT − 3IST )/4 = −5I/4. The
first excited state is a pseudospin triplet and spin singlet with
energy (−2IS + IT − 2IST )/4 = −3I/4.

When J (the interaction responsible for the Hund rules) is
increased, as expected, the ferromagnetic spin interactions are
favored. From Eqs. (7) it is apparent that IS decreases more
strongly than the other two, clearly favoring the pseudospin
singlet and spin triplet. A disadvantage of the pseudospin
singlet is that it cannot take advantage of the pseudospin
interactions in the plane (except for some fluctuations).

Leaving aside for the moment the contribution Ixy due to
the hopping of the dxy orbitals, the interactions in the plane I p

S ,
I p
T , and I p

ST are exactly half of the corresponding ones in the
vertical direction if tp = tz. This factor is due to the fact that
for a given direction in the plane, only one of the degenerate xz
and yz orbitals can hop. The anisotropy in direction is reflected
by the term proportional to IA. Another consequence of the
fact that xz (yz) orbitals can hop only in the x (y) direction in
the plane is the absence of pseudospin flip terms in Hk [see
Eq. (9)].

For txy = J = 0 one has I p
S = I p

T = I p
ST = IA = t2

p/U0.
From the influence of J on the parameters (similar to the
case of the vertical interaction) one would expect AF pseu-
dospin ordering and FM spin ordering to be favored. How-
ever the contribution due to the hopping of the dxy orbitals
dominates the spin ordering. For J = 0, Ixy = 4t2

p/(U0 − δ).
The prefactor 4 with respect to the other interactions in the
plane is due to a factor of 2 because the dxy orbitals can
hop in both the x and y directions and another factor of 2
because the FM spin alignment cannot gain energy even for
AF pseudospin ordering. For hoppings of the same order of
magnitude, clearly, Ixy dominates over the other interactions,
and one expects AF spin ordering within the planes. From
the argument given above, one expects in addition FM spin
ordering between planes, in agreement with the spin ordering
observed by neutron scattering and calculated with ab initio
methods [21].

Concerning pseudospin ordering, from the values of IT

and I p
T given above and results in the literature [23,24] for

S = 0 (neglecting spins) one would expect the quantum phase
transition between an AF Neel ordered phase and the phase
with vertical singlet dimers to take place for t2

z /t2
p ≈ 2.522/2

or tz/tp = 1.123. However, for the actual spin S = 1 of the
system, the observed spin ordering and the effect of the
interactions between spins and pseudospins IST and I p

ST favor
singlet ordering between planes and weaken the effective
intraplane AF pseudospin interaction.

Taking J = 0.7 eV, U = 4.1 eV, which implies U0 = 2 eV,
leads to the values tabulated in Table I for the parameters
of HKK.
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TABLE I. Parameters of HKK (in meV) for U = 4.1 eV, J =
0.7 eV, and other parameters determined by the ab initio calculations

IS IT IST I p
S I p

T I p
ST IA

4.2 68.1 42.4 54.7 28.2 17.6 9.7

From the results (rather expected from the above dis-
cussion), it is clear that the dominant vertical interaction is
IT , which favors pseudospin singlets or possibly AF vertical
order. This, together with the effect of IST , which is about ten
times larger than IS , overcomes the weak antiferromagnetic in-
teraction IS , and FM vertical spin alignment is clearly favored.
Instead, in the planes the dominant interaction is I p

S , which
favors spin AF order. In addition the interaction between
spins and pseudospins I p

ST is smaller than I p
T , and therefore,

AF orbital order in the plane is also expected. Finally, the
anisotropic interaction IA, which favors FM orbital order, is
clearly smaller and has no relevant effect.

It is interesting to note that for the related insulating
compound BaCrO3, calculations using DFT and dynamical
mean-field theory lead to AF spin and orbital ordering in the
CrO2 planes [20].

A detailed study of the competition between vertical pseu-
dospin singlets and long-range pseudospin AF ordering is the
subject of the following section.

VI. THE SPIN AND PSEUDOSPIN ORDERING

In this section, we report on our study of the stability of
two phases, I and II, which are the most likely according to
the analysis of the previous section and a numerical study on
a small cluster [21]. In both of them, the spin ordering corre-
sponds to the experimentally observed one: antiferromagnetic
in the planes and ferromagnetic between planes. In phase I,
the pseudospins form vertical dimer singlets, and in phase II
they order antiferromagnetically in both directions.

To calculate the energy and stability of phase I, we used
the idea of the bond-operator formalism [33–37], but in the
form of a generalized spin-wave theory [38], which allows us
to avoid the use of Lagrange multipliers. For phase II we use
ordinary spin-wave theory.

The vertical pseudospin singlet (| ↑↓〉 − | ↓↑〉)/
√

2,
where the first arrow denotes T z

1r, can be represented using a
boson operator s†

r as s†
r |0〉, where |0〉 represents the boson vac-

uum. The interplane term in the Hamiltonian mixes this state
with the triplet with projection 0, which can be represented
as t†

r |0〉 = (| ↑↓〉 + | ↓↑〉)/
√

2, because T z
1rs†

r |0〉 = t†
r |0〉/2,

T z
2rs†

r |0〉 = −t†
r |0〉/2, and the same interchanging sr and tr.

Following Ref. [38], we assume for phase I that the number of
triplet excitations is small and “condense” the singlets using

s†
r = sr =

√
1 − t†

r tr. (11)

For the spins we use the usual Holstein-Primakoff bosons,
proceeding in a similar way [38]. Performing a rotation of the
spins in half of the sites by π around the x axis to convert the
AF order in the plane in a translationally invariant FM order
[39] and retaining as usual terms up to quadratic in the bosonic
operators, the Hamiltonian HKK [see Eqs. (5), (6), and (9)] for

phase I becomes

HKK(I) � N
[
IS − 3(IT + IST ) − 4I p

S

]
/4

+
∑

r

(IT + IST )t†
r tr

+
∑
r,a

(
I p
T − I p

ST

2

)
(t†

r t†
r+a + H.c.)

+
∑
i,r

(−IS + 3IST + 4I p
S

4

)
b†

irbir

+
∑

r

(
IS − 3IST

4

)
(b†

1rb2r + H.c.)

×
∑
i,r,a

I p
S

4
(b†

irb†
ir+a + H.c.), (12)

where N is the number of sites in a plane and b†
ir creates a spin

excitation at the two-dimensional position r of plane i.
Diagonalizing the Hamiltonian by means of a standard

Bogoliubov transformation, the ground-state energy becomes

E (I) � N
[
IS − 3(IT + IST ) − 4I p

S

]
/4

+
3∑

k, j=1

λ
j
k − Aj

2
, (13)

with

λ
j
k =

√
A2

j − B2
j [cos(kxa) + cos(kya)]2,

A1 = IT + IST , B1 = I p
T − I p

ST ,

A2 = I p
S ,

A3 = −IS + 3IST + 2I p
S

2
,

B2 = B3 = I p
S /2. (14)

Note that when 2B1 > A1, the system becomes unstable
against the creation of triplet excitations of long wavelength
kx, ky → 0 and Eq. (13) becomes meaningless. In general,
if for some parameters the assumed pseudospin or spin ar-
rangements become unstable, the situation is detected in the
numerical algorithm used to calculate the two-dimensional
integral over (kx, ky) by the nonanalyticity of some expression
for small (kx, ky). In fact, as we show below, phase I becomes
unstable near the transition to phase II (as might be expected).

For phase II with long-range spin and pseudospin ordering,
a treatment similar to that above using Holstein-Primakoff
bosons leads to the following energy:

E (II) � N
[
(IS − IT − IST )/4 − I p

T − I p
S + I p

T S

]

+
5∑

k, j=4

μ
j
k − Aj

2
+

7∑
k, j=6

λ
j
k − Aj

2
, (15)

where

A4 = A5 = IT + IST

2
+ 2I p

T − 2I p
T S,

μ
j
k =

√
A2

j − C2
j ,
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1 1.5 2 2.5 3 3.5 4U0
0.35

0.4

0.45

0.5

0.55

f
I

II

FIG. 4. Factor in which the vertical hopping tz has to be reduced
to destabilize the dimerized pseudospin singlet phase I for J =
0.7 eV. The solid line denotes the crossing of the energies E (II) =
E (I), and the dashed line is the limit of the stability of phase I (see
text).

C4(5) = (
I p
T − I p

T S

)
[cos(kxa) + cos(yxa)]

+ (−)
IT + IST

2
,

A6(7) = −IS + IST

4
+ I p

S − I p
ST

+ (−)
IS − IST

4
,

B6 = B7 = I p
S − I p

T S

2
. (16)

As a test of our procedure we have compared the energy
of the two phases when all interactions involving spin are
zero (this is equivalent to taking S = 0), leaving only IT and
I p
T . We obtain a transition between the long-range ordered

phase II for small IT to the phase of vertical dimers I for
large IT at IT /I p

T = 2.947, 17% larger than the value near
2.522 obtained by Monte Carlo calculations [23,24]. Thus, our
approach underestimates the stability of phase I.

For the parameters listed in Table I, we find that the energy
of the dimerized phase I is lower than the long-range-ordered
phase II by 19.8 meV. This agrees with the structural mea-
surements, which do not detect any distortion of the lattice or
displacement of the O atoms expected for long-range orbital
ordering. As a test of the stability of this phase, we have
lowered the vertical hopping tz by a factor f and searched
for the value of f that leads to the equality of both energies
[E (II) = E (I)] for different values of U . The results are
shown by the solid line in Fig. 4. For the expected value of
U ∼ 4.1 eV (U0 = U − 3J ∼ 2 eV), the resulting value of
f is slightly larger than the value of f that corresponds to
the instability of the dimerized phase against the formation of
triplet excitations [given by A1 = 2B1; see the discussion after
Eq. (13)], corresponding to the dashed line in Fig. 4. Both
values of f are of the order of 0.5, reflecting the fact that the
real system is far from the boundary of the phase diagram. For

1 1.5 2 2.5 3 3.5 4U0
0.3

0.35

0.4

0.45

0.5

f
I

II

FIG. 5. Same as Fig. 4 for J = 0.4 eV.

larger values of U , the dimerized phase is stabilized further.
For U0 > 3.5 eV (U > 5.6), the dimerized phase I becomes
unstable at a point at which its energy is still lower than that
of the long-range-ordered one II. This is probably a shortcom-
ing of the approximations. From the physics of the case of
spin S = 0 [23,24] and its extension to two cubic sublattices
[13], one would expect a second-order transition between
both phases and a coincidence of both transitions (solid and
dashed lines).

In Fig. 5 we show how the previous results change when
J is reduced from 0.7 to 0.4 eV. We consider that this value
is a lower bound of the interaction responsible of the Hund
rules due to the fact that the effective t2g orbitals are not pure
Cr ones but have some admixture of neighboring O atoms
with smaller interactions. In particular, from the O content
estimated at the end of Sec. III and the fact that O sites with
two 2p holes are very rare, we estimate J = 0.57 eV.

As one can see, the changes with respect to Fig. 4
are minor. We conclude that for the calculated values of
the hopping terms obtained as described in Sec. III and
reasonable values of the interactions, the dimerized phase I
is the stable one.

VII. SUMMARY AND DISCUSSION

Using maximally localized Wannier functions in bilayer
Sr3Cr2O7, we have derived a six-band Hubbard model for
effective Cr t2g orbitals (three per Cr site) which contain some
admixture with neighboring O atoms, estimated to be nearly
19%, as discussed in Sec. III.

Using the resulting hopping and on-site energy parameters
and reasonable values of the Coulomb interaction U and
interaction responsible for the Hund rules J , we have de-
rived an effective Kugel-Khomskii Hamiltonian HKK using a
procedure equivalent to degenerate second-order perturbation
theory in the hopping terms.

A similar HKK was derived in Ref. [21] using fourth-order
perturbation theory in the Cr-O hopping, but the parameters
were not determined, and it was not clear where the system
lies in the phase diagram, although the absence of observable
distortions is consistent with same phase that we obtain here.
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Our analysis of HKK and calculations based on bond-order
operators and spin waves show that the ground state of the
system has long-range spin order, with antiferromagnetic
order in the layers and ferromagnetic order between layers,
in agreement with experiment and ab initio calculations [21].
Instead, the orbital degrees of freedom form singlet dimers
perpendicular to the planes. This rather exotic arrangement
of the orbital degrees of freedom is rare. For interplane and
intraplane interactions of the same order of magnitude, one
expects long-range antiferromagnetic ordering of the pseu-
dospin (orbital) degrees of freedom. Although the methods
used to solve HKK are semiquantitative, with errors of the
order of 17% for a known case, the obtained ground state is
rather far from the phase boundary to the phase of long-range
antiferromagnetic pseudospin ordering.

The reason for the stability of the dimerized phase is
twofold. On the one hand, the intraplane pseudospin interac-

tions are smaller due to restrictions of the xz and yz orbitals
to hop in certain directions of the plane. On the other hand,
for the spin ordering observed, the interactions between spins
and pseudospins strengthen (weaken) the antiferromagnetic
pseudospin correlations normal to (in the) layers. This aspect
has some similarities to the physics of some V oxides, for
which calculations suggest that ferromagnetic couplings are
particularly strong due to singlet orbital fluctuations [14].
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