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Anomalous Hall viscosity at the Weyl-semimetal–insulator transition
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We show that three-dimensional Lifshitz fermions arising as the critical theory at the Weyl-semimetal–
insulator transition naturally develop an anomalous Hall viscosity at finite temperature. We discuss how to
couple the system to nonrelativistic background sources for stress-tensor and momentum currents via a form of
Newton-Cartan geometry with torsion and derive the Kubo formulas for the Hall viscosities. While the Lifshitz
system that arises most naturally has scaling exponent z = 1

2 , we also generalize the theory for arbitrary Lifshitz
scaling z and show that, in the limit z → 0, it may be given a Chern-Simons interpretation by dimensionally
reducing along the anisotropic direction. The Hall viscosities are expressed in terms of Dirichlet eta functions
and their temperature dependence is dictated by the scaling exponent.
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I. INTRODUCTION

In recent years, an increasing amount of interest has been
devoted to understand the emergence of nondissipative (Hall)
viscosity in quantum many systems [1,2].1 In particular, two-
dimensional Lifshitz fermions have been shown to possess a
nonvanishing Hall viscosity both at finite temperature and at
finite magnetic field [4,5], while a similar analysis in the case
of the three-dimensional (3D) fermions in magnetic field has
been carried out in [6]. However it is not clear whether such
features are a universal property of critical Lifshitz theories or
not. In the latter case, the presence of Hall viscosity may be a
definite macroscopic signature of the quantum critical point.
In parallel, a considerable amount of effort has been devoted
to the formulation of effective field theory of nonrelativistic
quantum systems. The most prominent example of this is
the use of Newton-Cartan geometry [7,8] to construct the
effective action for quantum Hall systems [9,10]. Even in
the absence of the full Galilei group, Lifshitz and anisotropic
theories have been extensively investigated [11–13].

We will study 3D critical Lifshitz fermions with broken
time-reversal symmetry. By Lifshitz fermions we mean a
fermionic system with anisotropic scaling in one spatial di-
rection. The scaling exponent will be denoted by z. This
is in slight contrast to the usual nomenclature in which the
time direction scales with a different exponent. Recent studies
using AdS/CFT [14] have suggested that such systems de-
velop a finite Hall viscosity in a thermal bath characterizing
the quantum critical region. In the AdS/CFT theory the Hall
viscosity is proportional to the mixed gauge/gravitational
anomaly of the high-energy fermionic theory. While this is
intriguing, it is hard to explain from quantum field-theoretical
considerations since at the critical point, no obvious notion of

*christian.copetti@uam.es
†karl.landsteiner@csic.es
1This should be distinguished from the appearance of odd viscosity

in classical plasma in external magnetic fields [3].

chiral symmetry is present. In particular, we will be interested
in the z = 1

2 theory, which is expected to describe the quan-
tum critical point of a Weyl-semimetal–insulator transition
[15].2 We also study the z → 0 limit, which is amenable to
some extent to an effective field-theory treatment. The Weyl-
semimetal–insulator transition and the critical point can be
described by starting from the UV Dirac-type Lagrangian [17]

L = ψ̄ (iγ μ∂μ − m + γ μγ5bμ)ψ . (1)

This simple model is known to have two quantum phases.
When b2 + m2 < 0, the low-energy physics is described by
two Weyl nodes displaced in momentum space, whereas for
b2 + m2 > 0 a gap is present.3 At the critical point, the system
develops a quadratic energy dispersion in the b direction, and
its low-energy physics may be described by an anisotropic
two-component fermionic Hamiltonian. This can be seen ex-
plicitly by choosing a convenient basis of gamma matrices
γ μ = {τ3 ⊗ σ3, iτ3 ⊗ σ2,−iτ3 ⊗ σ1, iτ2 ⊗ 1} with τi and σi

denoting two copies of the standard Pauli matrices. Assuming
bμ to be spacelike, we chose coordinates such that it points in
the 3 direction. The Dirac-type Hamiltonian is then

H =
(

σ⊥k⊥ + (b + m)σ3 σ3k3

σ3k3 σ⊥k⊥ + (b − m)σ3

)
. (2)

For large |m + b| � |k|, the four-component spinor (φ,ψ )
can be reduced to a two-component spinor by setting φ =
−k3ψ/(m + b). In the case |b − m| � |k| one solves instead
for the spinor components ψ . We note that the charge-
conjugation matrix in this representation is C = i1 ⊗ σ2. In
particular, this means that charge conjugation is a symmetry of
the effective two-band Hamiltonian acting on ψ (see Fig. 1):

H = σ⊥ p⊥ + σ3
(
sp2

3 + �
)
. (3)

2The stability of the Lifshitz point under interactions has been
shown in [16].

3See Appendix A for further discussion.
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FIG. 1. Phases of the two-band Hamiltonian (3). The figure
shows the dispersion relation as function of p⊥ and p3. The left figure
is the insulating phase. The right figure is deep in the Weyl-semimetal
phase and the middle figure shows the critical point in-between the
two.

Compared to the four-band model, we have rescaled momenta
by setting k2

3/|b + m| → p2
3 and k⊥ → p⊥ and wrote � =

b − m and s = −sgn(b + m). The model is gapped for s� >

0, in a Weyl-semimetal phase for s� < 0. At � = 0 there
is a critical point with anisotropic Lifshitz scaling symmetry
p3 → λ1/2 p3, (ω, p⊥) → λ(ω, p⊥). Here, s = ±1 sets the
direction of fusion between the chiral Weyl points. One may
say that s acts as a remnant of the emergent chiral symmetry
of the model. From now on we will study the critical theory at
� = 0.

To discuss symmetries and coupling to background fields,
it is slightly more natural to switch to a Lagrangian formu-
lation. Since the rotation group is broken, we need to work
with fermionic degrees of freedom transforming under the
reduced rotation group SO(1, 2) only. These are just familiar
(2 + 1)-dimensional fermions ϕ. The appropriate γ matrices
γA, A ∈ {0, 1, 2}, up to unitary equivalence are taken to be
γ A = (σ3,−iσ2, iσ1). It is well known that the Lorentzian
Clifford algebra in (2 + 1) dimensions allows a Majorana
representation consistent with the already stated invariance
of the Hamiltonian under charge conjugation with charge-
conjugation matrix C = iσ2. The Lagrangian is

L = ϕ̄(−p)[γA pA + μ(p)]ϕ(p) , (4)

where ϕ̄ = ϕ†γ 0. In this language, the anisotropic term will
act as a momentum-dependent mass μ(p) = sp2

3 whose sign
is given by s. Time reversal flips the sign of the fermion
mass in 2 + 1 dimensions, which in our case amounts to s →
−s. Thus, a time-reversal-invariant system has at least two
copies of the Lagrangian (4) with opposite choices for s. The
minimal model is one of a single Majorana fermion χ obeying
Cχ̄T = χ .

A generalization is to take the Lifshitz scaling expo-
nent arbitrary (ω, p⊥, p3) → (λω, λp⊥, λz p3). In this case,
the momentum-dependent mass term takes the form μ(p) =
s|p3|1/z. As emphasized before, our Lifshitz scaling differs

from the one usually employed in the literature in that the
anisotropic direction is a space direction and not time, as is
the case for example in Galilean physics. We also note that
in the limit z → 0, the momentum in the third direction
P3 becomes a central element of the Lifshitz algebra since
[D, P3] = −zP3 and P3 commutes with the other generators.

Our theory in the limit z → 1 does not reduce to the case of
Weyl fermions with linear isotropic dispersion. Formally, this
is because the relevant term in the Lagrangian μ(p) = s|p3|1/z

is defined by taking the absolute value of the momentum. The
theory at z = 1 is still essentially anisotropic (i.e., it cannot
be deformed to the isotropic case by stretching the axis or
similar). We also note that our theory at z = 1 still breaks time
reversal whereas the usual theory of Weyl fermions breaks
parity.

We will compute the Hall viscosity tensor for this class of
models in the linear response regime, showing that indeed it
is nonzero at finite temperature. In order to do this, we will
couple the system to a curved space-time with nonvanishing
torsion that will allow us to properly define the stress genera-
tors and the Kubo formulas in the Lifshitz case.4 The paper is
organized as follows. In Sec. II we present the nonrelativistic
Newton-Cartan–type geometry. In Sec. III we discuss the
derivation of the relevant Kubo formulas and in Sec. IV
we give the main steps in the Kubo formulas computation,
summarize the results on Hall viscosities, and comment on the
simplifications happening in the z → 0 limit of (4) from the
point of view of effective field theory. In Sec. V we conclude
with a few remarks and open questions for further discussion.
The (many) technical details are relegated to the Appendices.
Throughout we use greek letters μ, ν, ρ . . . for space-time
indices, lower-case latin letters a, b, c . . . for SO(1, 3) tangent
space indices, and upper case latin letters A, B,C . . . for the
unbroken SO(1, 2) tangent space indices.

Let us also briefly remark on the presence of additional
gapped bands as is generically the case in a crystal. We are
not aware if it has been established that such bands can give
rise to Hall viscosity in the way it happens in 2D. Even if
this happens, the contribution of a gapped band is necessarily
independent of the temperature (as long as the temperature
is much smaller than the gap). In contrast, our work will
focus on the unique temperature-dependent contribution that
arises in the anisotropic ungapped theory. This temperature
dependence should also be a unique signature to be tested in
an experiment.

II. COUPLING TO CURVED SPACE-TIME

A first step in determining the properties of a system is to
examine its symmetries. In particular, we will be interested
in the way the symmetry currents of our Lifshitz system
couple to (external) gauge fields. This allows us to derive the
most general form for the conserved currents and to compute
their responses to external perturbation through the Kubo
formalism.

While standard relativistic systems with the full Lorentz
symmetry couple to a pseudo-Riemannian geometry, this is in

4A similar approach in the 2D case was developed in [18,19].
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general not possible for their nonrelativistic analogs. In this
section we review the geometric structure to which a Lifshitz
theory should couple and explain how it can be recovered
as a limit of Newton-Cartan geometry. As a by-product, we
will see that a curved space-time version of theory in (4)
emerges as the lowest-order derivative action which breaks T
symmetry with Lifshitz scaling.

What we want to implement is a diffeomorphism covariant
geometry with a preferred and covariantly constant one-form
field lμ, which reduces to δ3

μ in the flat limit. Once this one
form is specified, there are various ways to approach the prob-
lem. One is to follow the standard treatment of Newton-Cartan
geometry [7,8] and then restrict the set of geometric data to be
compatible with the Lifshitz scaling symmetry. We will follow
an ultimately equivalent prescription, commenting in the end
about the connection with Newton-Cartan geometry.

A. Geometry

The starting point for us will be a space-time metric gμν

and a one-form field lμ which is normalized to one lμlμ = 1,
with lμ = gμν lν . This defines a splitting of the metric

gμν = lμlν + hμν, (5)

where hμν lμ = 0. To specify the geometry, we further need
to define the parallel transport of tensors. This requires the
introduction of a connection � to build a covariant derivative
∇. It acts as

∇μV α
β = ∂μV α

β + �α
γμV γ

β − �
γ

βμV α
γ . (6)

We will require the metric to be covariantly constant
∇μgαβ = 0. This fixes the connection to the Levi-Civita
form plus the undetermined contorsion tensor [20] Kλ

μν =
1
2 (T λ

μν − Tμ
λ
ν
− Tν

λ
μ), and T λ

μν being the torsion

�ρ
μν = 1

2 gρτ (−∂τ gμν + ∂μgντ + ∂νgμτ ) + Kρ
μν. (7)

We will suppose that the torsion is purely of the form T λ
μν =

lλTμν . Then, demanding lμ to be covariantly constant fixes the
torsion

Tμν = −(∂μlν − ∂ν lμ). (8)

Covariant constancy of the metric and lμ also implies
∇μhαβ = 0, which in turn gives

Ll hμν = 0, (9)

with L denoting the Lie derivative. Even so, lμ will not be a
Killing vector for the metric in the presence of torsion

Ll lμ = Tαμlα ≡ Gμ. (10)

After some algebra, one can write the connection as

�ρ
μν = lρ∂ν lμ + 1

2 hρσ (∂μhσν + ∂νhσμ − ∂σ hμν )

= lρ∂ν lμ + �̂ρ
μν[h]. (11)

For a bosonic system, this is enough to determine the coupling
to geometry completely. Since we are dealing with fermions,
we will also need vielbein fields eA

μ coupling to the inter-
nal spin degrees of freedom. These are defined through the
splitting hμν = eA

μeB
ν ηAB. They also satisfy eA

μlμ = 0. We will

also introduce inverse vielbein fields Eμ
A defined through the

orthonormality conditions

eA
μEμ

B = δA
B , lμEμ

A = 0. (12)

As customary, we also introduce a spin connection ωμ
A

B
which acts on fermionic fields and on the vielbein. Given the
connection � this is uniquely determined as a function of the
geometric data by demanding the vielbein to be covariantly
constant

∇μeA
ν = ∂μeA

ν − �γ
νμeA

γ + ωμ
A

BeB
ν = 0 (13)

as

ωμ
AB = −E νB

(
∂μeA

ν − �̂ρ
νμ[h]eA

ρ

)
. (14)

Notice that in this case the spin connection is torsionless, in
form language deA + ωA

B ∧ eB ≡ T A = 0.
Let us compare this construction to the one in the Newton-

Cartan formalism. We start by defining a Newton-Cartan
structure through a one-form lμ and a symmetric twice con-
travariant tensor hμν whose kernel is spanned by lμ, namely,
hμν lν = 0. One can further define the vector lμ and the
symmetric twice covariant tensor hμν through the algebraic
relations

lμlμ = 1 , lμhμν = 0 , hμαhαν = δμ
ν − lμlν, (15)

such that hμαhαν = Pμ
ν is a projector orthogonal to both lμ and

lμ. The ambient metric is then defined as

gμν = lμlν + hμν. (16)

To define our geometric setup, we further need to specify a
connection to parallel transport tensors. The standard way of
doing this is by demanding the original data to be covariantly
constant

∇μlν = ∇μhαβ = 0, (17)

with the further restriction that the torsion tensor T λ
αβ satisfies

hτλT λ
αβ = 0. (18)

Solving these equations fixes the connection to the same form
we have found apart from an undetermined two-form Fμν :

�μ
νρ = lμ∂ρ lν + �̂μ

νρ[h] + hμσ l(νFρ)σ . (19)

Our data are not completely specified, indeed the Milne boosts

l ′μ = lμ + hμν�ν, (20)

h′
αβ = hαβ − 2l(αPν

β )�ν + lαlβhμν�μ�ν (21)

leave the orthonormality relations invariant. These two pieces
of data are problematic for our Lifshitz effective theory. They
are responsible for the U(1) particle number (for which Fμν is
interpreted as a field strength) and Galilean boost symmetries
of nonrelativistic theories. We will be interested in theories
that are invariant under charge conjugation, so that a real
representation of the relevant degrees of freedom should exist.
This suggests that we should set Fμν = 0. In parallel, Lifshitz
theories with z 
= 1

2 do not seem to be compatible with the
Milne redefinition above [21]. We should thus fix the Milne
frame by some physical consideration. A useful way to fix �ν
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is to notice that, with our choice for the connection, neither lμ

nor hαβ are covariantly constant. A quick calculation setting
Fμν = 0 gives [9]

∇μlν = 1
2 hανLl hαμ, (22)

∇μhαβ = l(αLl hβ )μ. (23)

These equations are not independent, but one implies the other
once the orthogonality condition lμhμν = 0 is imposed. One
then sees that our geometry corresponds to a Newton-Cartan
setting in which no boost symmetry is allowed and no U(1)
symmetry is present either.

Of course, it would be interesting to understand if general-
izations are possible in order to still accommodate fermionic
Lifshitz systems with z 
= 2, but for this work we will not
need them. Torsion appears in this geometry as a necessary
tool to make the one-form lμ covariantly constant. It is not
independent data.5

B. Ward identities

Now we have defined the geometric background. This
allows us to derive the Ward identities obeyed by the currents
which couple to the set of external fields {eA

μ, lμ, ωμ
A

B, Tμν}.
Since the spin connection and the torsion are functions of
eA
μ and lμ, they automatically lead to improved conserved

currents. In the following, we will stay faithful to the quantum
field-theory literature, in which the improved currents are used
as generators for the symmetries. This is the natural choice if
the spin connection is torsionless.

We begin by writing a general variation of the effective
action

δS = −
∫ √

g
(
tμ
A δeA

μ + pμδlμ + Sμ
ABδωμ

AB + �μνδTμν

)
.

(24)

Here, tμ
A is the unimproved energy-momentum tensor, Sμ

AB

the spin current, and pμ the anisotropic momentum current.
The inverse vielbein and the vector lμ are treated as dependent
objects, whose variations are

δE ν
B = −Eμ

B E ν
AδeA

μ − lνEμ
B δlμ, (25)

δlν = −lμE ν
AδeA

μ − lν lμδlμ. (26)

The Ward identities follow from the local invariance of the
action under diffeomorphism and tangent space rotations on
the independent fields

δξ lμ = ∇μ(ξν lν ) − Tνμξν, (27)

δξ eA
μ = ∇μ

(
ξνeA

ν

) − ξλωλ
A

BeB
μ, (28)

5This differs from the setup in [18,19] in which torsion plays the
role of an independent external field.

for the diffeomorphism generated by ξμ and

δ�lμ = 0, (29)

δ�eA
μ = �A

BeB
μ (30)

for tangent space rotations generated by �AB = −�BA. The
last term in (28) is not covariant under tangent space trans-
formations, as is the case for connections. However, we may
combine it together with a Lorentz variation with �AB

ξ =
ξλωλ

AB to cancel it. We will use such “covariantized” vari-
ation in what follows.

In view of the application of the Kubo formalism, we will
find it useful to saturate the space-time indices of the objects
by contracting either with the vielbein or the vector lμ in order
to better distinguish Lorentz-invariant objects. Thus, we will
often use splittings of the form V μ = lμv + Eμ

A vA. Doing this
for the diffeomorphism generator ξμ = θ lμ + Eμ

A ξA gives for
the covariant diffeomorphism variation

δθ lμ = ∂μθ − θGμ, (31)

δθeA
μ = 0, (32)

δξ lμ = −TAμξA, (33)

δξ eA
μ = ∇μξA. (34)

The variation of the spin connection is recovered by using the
identity

δωμ
AB = − 1

2

(
E νA∇μδeB

ν + E νB∇νδeA
μ − E νAEμBeμC∇νδeC

ρ

)
− (A ↔ B) . (35)

This, together with the explicit dependence of Tμν on lμ,
defines the improved currents

τμ
A = tμ

A + 1
2 lμ(∇B − GB)σBA

+ 1
2 [EμB(∇C − GC )(sCBA + sBAC − sABC ) + ∇lσBA]

(36)

and

πμ = pμ − (∇ν − Gν )�νμ, (37)

where ∇l ≡ lμ∇μ, whereas sABC and σAB are defined through
the splitting of the spin connection by

Sμ
AB = EμCsCAB + lμσAB. (38)

To derive the conservation laws, one needs the identity

1√
g
∂μ

√
g = �ν

μν = �ν
νμ + Gμ, (39)

to integrate by parts in our torsionful geometry. Plugging in
the variations of the independent fields we get the diffeomor-
phism and Lorentz Ward identities

(∇μ − Gμ)τμ
A = TAμπμ, (40)

(∇μ − 2Gμ)πμ = 0, (41)

eμ[Aτμ
B] = 0, (42)
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which can be recast by further saturating the contracted space-
time indices through

τμ
A = EμBτBA + lμ�A, (43)

πμ = EμAπA + lμπ (44)

into the form

(∇A − GA)τAB + ∇l�
B = T B

AπA + GBπ, (45)

(∇A − 2GA)πA + ∇lπ = 0, (46)

τ[AB] = 0. (47)

Since the theory is also Lifshitz invariant, one may intro-
duce the following transformation rule under Weyl rescalings:

δσ lμ = −zσ lμ, (48)

δσ eA
μ = −σeA

μ, (49)

which give rise to the Lifshitz Ward identity

τA
A + zπ = 0. (50)

The improved stress tensor τAB, anisotropic momentum πA,
and anisotropic strain �A will be the quantities used in the
linear response formulation.

III. LIFSHITZ HYDRODYNAMICS AND KUBO
FORMULAS FOR ANISOTROPIC HALL VISCOSITY

Now, we develop a linear response formalism to changes
in the external vielbein eA

μ and lμ. This will give us a
clear definition of the relevant Kubo formulas, together with
the necessary contact (seagull) terms that may arise dur-
ing the computation. In doing this, we also make contact
with the hydrodynamic expansion for a fluid in a Lifshitz
space-time, in which case the viscosity tensor is defined
through the response of the stress tensor to a velocity gradient.
Since the systems we are going to study have a spacelike,
rather than timelike, vector field dictating the anisotropic
direction, we will end up with a system quite different from
previous studies [11,12] and from Galilean hydrodynamics.
The reason is that we cannot identify our vector field lμ
with the velocity field of the long-distance hydrodynamic
description as it is customarily done. Rather, the two have
to be introduced separately and with a reduced tangent space
bundle in order to consistently couple a Lifshitz space-time.
In the end we will see that the link between viscosity (that
is response to velocity gradients), from the perspective of an
external relativistic observer, and time variation of the vielbein
is not accurate for gradients of the lμ components of the veloc-
ity field. Instead, the geometric response to such gradients is
encoded in the torsion. We provide physical intuition behind
this picture at the end of the section.

As always, one should start the hydrodynamic formulation
by introducing a velocity vector field. In a fully relativistic
theory this may be thought of as a tangent vector ua nor-
malized to uaua = −1. This is related by a local Lorentz
boost to the rest-frame field ua = (1, 0). The hydrodynamic

equations then follow by substituting in the Ward identities
for the conserved current the most general expansion for their
one-point functions in terms of gradients of the velocity vector
and (possibly) external gauge fields.

In our case, however, the boost symmetry is restricted, so
that, if we define a velocity field

uμ = θ lμ + vAEμ
A , (51)

only the latter part of the above expression may be brought in
a canonical form vA = (v, 0̃) via local Lorentz boosts. Thus,
in our case the anisotropic velocity θ should be viewed as an
intrinsic property of the flow and it will be instructive to divide
such flows in two parts, depending on whether or not θ = 0.

Another, probably more intuitive, interpretation is as fol-
lows. In a flat geometry with eA

μ = δA
μ and lμ = δ3

μ we have
the conservation equation ∂AπA + ∂3π = 0. This shows that∫

d3x π0 is a conserved charge and we can define a grand
canonical ensemble with chemical potential conjugate to this
charge. In fact, this charge is nothing but the momentum in
the 3 direction. This chemical potential should be identified
with the parameter θ in the same way as fluid velocity vA is
the chemical potential for the other momentum components.
In this interpretation, then we define the rest frame as vA =
(1, 0, 0) and θ = 0.

Let us start by considering the case θ = 0. We will work
in a derivative expansion around the rest frame vA = (1, 0, 0)
and in metric perturbations around the “flat” geometry eA

μ =
δA
μ, lμ = δ3

μ. We are interested here only in the viscosity tensor
that appears at first order in derivatives and will not discuss
lower-order terms.

To first order in derivatives, we of course need to take into
account the covariant derivative of the velocity field ∇μvA.
However, at the same order in derivatives we should also keep
track of other independent data in our chosen geometry. This
is the background torsion

Tμν = −(∂μlν − ∂ν lμ). (52)

These data are now to be projected such that they are orthog-
onal to the velocity field vA, through the projector

PA
B = δA

B + vAvB, (53)

which we often leave implicit to avoid cluttering of notation.
Furthermore, space-time indices, when present, will be satu-
rated using the geometric data eA

μ, lμ and then projected. This
gives the following set of data:

∇μvA = lμ∇lvA + eB
μ(σ̂AB + ηAB� + εABω), (54)

having defined the shear σ̂AB = ∇(AvB) − 1
2ηAB∇CvC , the ex-

pansion � = ∇CvC , and the vorticity ω = εABCvA∇BvC , with
εAB = εABCvC . In much the same way, the torsion tensor also
has an electric-magnetic decomposition through

Tμν = 2
[
l[μeA

ν]GA + eA
[μeB

ν](ζ[BvA] + εABm)
]
, (55)

where ζA and m are the analogs of electric and magnetic field
for three-dimensional electrodynamics, with torsion playing
the role of field strength. From an ambient metric point of
view, the magnetic component is somewhat analogous to a
gravitomagnetic field. Note that contrary to the usual case
here this “gravitomagnetic” field is a covariant tensor and can
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appear independently in the response. In this sense it seems
related to a response pattern that is familiar from the chiral
vortical effect [22]. For now we defer study of anomalous
transport patters analogous to chiral vortical (and chiral mag-
netic) effects in the Lifshitz model to future investigation,
although we present some partial results in the discussion
section.

At this point, we would be ready to develop the most
general hydrodynamic response formalism for our Lifshitz
theories. However, for this work we focus on the nondissi-
pative, time-dependent responses in the strain tensor and the
anisotropic momentum current.

First, let us briefly recall the basic definitions of the viscos-
ity tensor. In isotropic theories it is defined as the response of
the strain to gradients of the velocity fields

〈τμν〉 = ημνρσ∇ρuσ + O(∇2), (56)

due to the symmetry of the strain tensor it satisfies ημνρσ =
ηνμρσ = ημνσρ where the last equality follows from the fact
that the viscosity may be computed as a two-point function of
strain tensors. The viscosity tensor, furthermore, may be di-
vided in a dissipative and nondissipative (Hall) part according
to the symmetry of the two couples of indices

η
μνρσ
D = η

ρσμν
D , η

μνρσ
H = −η

ρσμν
H . (57)

The dissipative part of the viscosity may be further decom-
posed in symmetric traceless (shear) and trace-part (bulk)
viscosities, while the Hall viscosity requires the introduction
of a dimension-dependent tensor. In 2D this is given by the
projector

PH
μνρσ = 1

4 (hμρενσ + hνρεμσ + hμσ ενρ + hνσ εμρ ), (58)

with εμν = εμνρuρ and hμν = gμν + uμuν . It is clear that, in
3 + 1 dimensions, one then needs also the presence of an
additional vector field, say bμ, orthogonal to the velocity field
to mimic this construction, now using ε̃μν = εμνρσ bρuσ to
construct the projector

P̃H
μνρσ = 1

4 (hμρε̃νσ + hνρ ε̃μσ + hμσ ε̃νρ + hνσ ε̃μρ ). (59)

This is not, however, the only tensor structure with the re-
quired properties, in fact,

�(1)
μνρσ = bμbρ ε̃νσ , �(2)

μνρσ = �(1)
νμσρ,

�(3)
μνρσ = �(1)

μνσρ + �(1)
νμρσ (60)

also satisfy the required conditions. Thus, one expects four
independent Hall viscosity components to be present. In our
formulation, the fixed vector bμ is substituted by lμ and
the corresponding indices are automatically saturated, thus,
we remain with only two projectors PABCD = ε (A(CηB)D) and
εAB = εABCvC , while we have to explicitly distinguish the
operators τAB, �A, πA due to the lack of Lorentz invariance.

The most general expansion for the Hall coefficients then
reads as

〈τAB〉 = ηABCD
τ σ̂CD, (61)

〈πA〉 = ηπεABζB + ηπ�εAB∇lvB, (62)

〈�A〉 = η�εAB∇lvB + ηπ�εABζB, (63)

where ηABCD
τ = ητ PABCD. Notice that at this stage we have not

included gradients of θ since these terms are captured in the
response to torsion ζA as we will argue in the following.

To derive Kubo formulas for the above coefficients, we
expand to first order in the external geometric data, setting
vA = (1,0) to its rest-frame value. By using

∇μvA ∼ ∂t e
A
μ, ζA ∼ Eμ

A ∂t lμ, (64)

and with ∂t = vA∂A denoting the time derivative, this gives

〈τAB〉 = ηABCD
τ Eμ

C ∂t eμD, (65)

〈πA〉 = ηπεABEμ
B ∂t lμ + ηπ�εABlμ∂t eμB, (66)

〈�A〉 = η�εABlμ∂t eμB + ηπ�εABEμ

b ∂t lμ. (67)

Upon functional differentiation with respect to eA
μ, lμ, we find

the Kubo formulas:

ητ = lim
ω→0

−i

ω
PABCD

H

[
Gττ

ABCD(ω, 0) + CABCD(ω, 0)
]
, (68)

ηπ = lim
ω→0

−i

ω
εABGππ

AB (ω, 0), (69)

η� = lim
ω→0

−i

ω
εAB

[
G��

AB (ω, 0) + CAB(ω, 0)
]
, (70)

ηπ� = lim
ω→0

−i

ω
εABG�π

AB (ω, 0), (71)

where we have defined the retarded Green’s function

GUV (ω, k) =
∫

d4x ei(ωt−k·x)tr(ρβ[U (x, t ),V (0, 0)])θ (t ) ,

(72)

and CABCD, CAB stand for contact terms which arise due to the
explicit connection dependence of the strain generators. For
our specific model, they are computed in Appendix B.

We will use such formulas in the next section to compute
the odd viscosities. Let us stop for a moment to examine what
we have found so far. Contrary to the isotropic case, there are
four independent Hall viscosities

ητ , ηπ , η� , ηπ�. (73)

In 3D such coefficients can arise only because we have broken
the full rotational symmetry. Under time reversal, all of the
above coefficients have to be odd in order to be nonvanishing.
Thus, the microscopic theory supporting them should break
this discrete symmetry.

In our formulation of hydrodynamics we have not gauged
the Lifshitz scaling symmetry. Imposing it on the viscosities
(73) through the Weyl scalings lμ → e−z�lμ, eA

μ → e−�eA
μ.

This gives the following Lifshitz scaling dimensions for the
viscosities:

[ητ ]L = 2 + z, [ηπ ]L = 3z, [η�]L = 4 − z,

[ηπ�]L = 2 + z. (74)

Thus, nonvanishing Hall viscosities need the state in which
our theory is in to break the scaling symmetry. In our case, the
breaking will be due to finite temperature.

It may seem that from the point of view of the Lifshitz
theory, only ητ and η� can be interpreted as viscosities since
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they are explicitly related to gradients of the velocity field
vA. The coefficients ηπ and, in part ηπ� , instead, are related
to the torsional response, which is more akin to an electric
conductivity. However, a moment of thought shows that the
response to electric torsion needs to go together with the
gradients of θ in the hydrodynamic expansion. There are
two ways to justify this dual description. First, one uses
the embedding in the full relativistic UV system to perform
an SO(1, 3) frame redefinition. In particular, at the linearized
level

lμ → l ′
μ = lμ + ξAeA

μ. (75)

Suppose we start with a geometry with vanishing θ but
nonvanishing torsion. Then, the transformation above sends
us to a geometry with torsion

T ′
μν = Tμν + 2eA

[μ∂ν]ξA + O(e3) (76)

and θ component

θ = uAξA, (77)

we may thus choose ξA to make the torsion vanish, ending up
with a nontrivial velocity gradient and vice versa.

Another, perhaps, clearer way to see this is to remember
that in a boosted frame the hydrodynamic ensemble is con-
structed by coupling the conserved momentum charges Pμ to
the fluid velocity uμ. In particular, we may define

τμν = τABEμ
A E ν

B + πμlν + lμ�ν + lμlνπ, (78)

putting all of the conserved currents in the same multiplet.
The conserved momentum is obtained by integrating the
conserved charge τμνuν on a spatial surface of the foliation
generated by uμ:

uμPμ = vA
∫

τAt + θ

∫
πt , (79)

so that θ behaves as a chemical potential for the momentum in
the anisotropic direction. Recall that, in the electromagnetic
case, the chemical potential appears in conjunction to the
electric field so that together they form the Lie derivative
of the vector potential along the velocity flow (provided
we choose a gauge such that At = μ). Then, at fixed temper-
ature LuA = ∇μ − E as expected. In our case, the role of the
connection is played by lμ (more precisely by δlμ = lμ − δ3

μ),
its Lie derivative reads as

Lulμ = ∇μθ + θGμ − ζA. (80)

Vanishing of the right-hand side of this equation should
be seen as the expression of “chemical equilibrium” for
anisotropic translations. Notice that, in this way, the viscosity
coefficients that enter though the response to the gradient of θ

will also be expressible as conductivities for the electric part
of the torsion.

With this understanding we can now give the physical
interpretation of the different Hall viscosities in a flat back-
ground eA

μ = δA
μ, lμ = ez

μ, A ∈ {t, x, y}, and μ ∈ {0, 1, 2, 3}.
To this end, we first note that τAB contains the energy density
and the pressures in the diagonal. Its off-diagonal entries can
be interpreted either as the x, y components of the energy
current or the momentum densities in the x, y direction. En-
tries with two spatial indices are components of the strain

tensor. The momentum density in the z direction is π t , π is
the zz component of the pressure. The current �t is the energy
current in the z direction, etc.

The first viscosity component ητ is the analog of the well
known two-dimensional Hall viscosity; it is activated if the
flow and gradients are all orthogonal to lμ. If the flow is in
the x direction but has a gradient in the z direction, ηπ� and
η� describe the generation of the strain components π y and
�y. If the flow is in the z direction and has a gradient in
the x direction, ηπ� and ηπ describe the generation of π y

and �y. We note that these last viscosities are chiral in the
sense that they involve all three directions x, y, z and have a
definite handedness that is determined by the parameter s in
the microscopic Lagrangian.

IV. HALL VISCOSITY OF LIFSHITZ FERMIONS

Let us now come to the question of determining whether or
not the viscosities (73), even though allowed by the symme-
tries of the problem, are nonzero for a quantum critical theory
such as Lifshitz fermions. Also, if they are nonvanishing,
it is interesting to ask if such coefficients contain universal
information about the nature of the critical point.

We will explicitly compute the value of the coefficients
(73) below, while at the end of the section we give a partial
answer to the question of universality, at least in a partic-
ular limit. To this end, we consider the following effective
description of the Lifshitz system, which is the minimal model
compatible with anisotropic Lifshitz scaling and breaking
time reversal while preserving charge conjugation and parity.

A. Microscopic model

The action in the curved geometry of Sec. II reads as

Sz =
∫
M

√−g
(
χ̄ iγ AEμ

A

↔
∇μχ + sχT M(∇l )

1/2zC−1χ
)
, (81)

with γ A denoting a Majorana representation of the three-
dimensional Clifford algebra Cl (1, 2), M(∇l ) = ←−∇ l

−→∇ l and
s = ± the T -odd parameter. The covariant derivative acts
on fermions through ∇μχ = ∂μχ + ωμ

ABγABχ where γAB =
1
4 [γA, γB] are the Lorentz generators.

Notice that, strictly speaking, the Lagrangian is local only
when z = 1/2n. In particular, z = 1

2 represents the critical
point of the Weyl-semimetal–insulator transition and z =
1/2n can be adiabatically reached from this by tuning infrared
irrelevant couplings (see Appendix A). To work in a unified
way with Majoranas is expedient to introduce the matrices
βA = C−1γ A which may be represented as β0 = −1, β1 =
−σx, β2 = σz. For A a spatial index these fulfill {βA,C−1} = 0,
[β1, β2] = 2C−1.

Notice also that M(∇l ) is a positive operator, which can
be seen as a mass term for 2D Majorana fermions. From
this perspective, the sign of s is the sign of the mass of the
fermionic excitations. We will be interested in defining a strain
tensor and an anisotropic momentum current for the theory in
question. Using (25) one can first compute the unimproved
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currents tμ
A , pμ:

tμ
A = iEμ

B χT βB
↔
∇Aχ + s

2z
lμχT [

←−∇ lM(∇l )
1/2z−1−→∇ A + ←−∇ AM1/2z−1(∇l )

−→∇ l ]C
−1χ, (82)

pμ = iEμ
A χT βA

↔
∇ lχ + s

z
lμχT M(∇l )

1/2zC−1χ. (83)

The spin current is given by Sμ
AB = eμCsCAB + lμσ AB with

sCAB = iχ̄ (γCγAB + γABγC )χ, (84)

σAB = − s

2z
χT M(∇l )

1/2z−1(
←−∇ lγABC−1 − −→∇ lC

−1γAB)χ, (85)

while the torsion current �μν vanishes identically.
The improvement procedure has been explained in Sec. II and can be carried out in a straightforward way. To this end, notice

that the spin current entering in τAB has the same structure as the isotropic free-fermion one, plus contributions from σAB. Since
these are by nature antisymmetric but τ[AB] = 0 by the Lorentz Ward identity they will cancel on shell against contributions
coming from the covariant derivative acting on sCAB. The final result will be equal to the one obtained for the isotropic fermion.
On the other hand, the momentum current receives no further contribution. We thus have

τAB = iχT β(A

↔
∇B)χ, πA = iχT βA

↔
∇ lχ, (86)

�A = s

2z
χT [

←−∇ lM(∇l )
1/2z−1−→∇ A + ←−∇ AM1/2z−1(∇l )

−→∇ l ]C
−1χ + 1

2
∇BσBA. (87)

Notice that in the above the order of the covariant derivatives matters since, in our geometry,

[∇μ,∇ν] = 2∂[μlν]∇l + Rμν
ABγAB , (88)

when acting on fermions. Even though these expressions look complicated, they simplify considerably in momentum space and
we will be able to analytically extract the viscosities. In order to compute them, we follow the standard technique for computing
retarded Green’s functions from analytic continuation of Euclidean ones. For this we analytically continue the Majorana fermions
to Euclidean signature [23].

The Euclidean correlators are given by the following (imaginary time) Feynman diagrams:

Gππ
AB (ω) = 1

β

∑
n

∫
d2k dk3

(2π )3
tr
[
S(k, ωn)βAS(k, ω + ωn)βBk2

3

]
, (89)

Gττ
ABCD(ω) = 1

β

∑
n

∫
d2k dk3

(2π )3
tr[S(k, ωn)β(AS(k, ω + ωn)β(CkB)kD)], (90)

CABCD(ω) = −δAC

16

1

β

∑
n

∫
d2k dk3

(2π )3
tr[β[BβD]ωβ0S(k, ωn)] + A ↔ B ,C ↔ D, (91)

G�π
AB (ω) = 1

β

∑
n

∫
d2k dk3

(2π )3
tr

[
S(k, ωn)C−1kA

s

2z
|k3|1/zk−1

3 S(k, ω + ωn)βB

]

+ ω

4

∑
n

∫
d2k dk3

(2π )3
tr

[
S(k, ωn)

s

2z
|k3|1/zk−1

3 βBS(k, ωn)C−1βAS(k, ωn)

]
, (92)

G��
AB (ω) = 1

β

∑
n

∫
d2k dk3

(2π )3
tr

[
S(k, ωn)C−1kA

s

2z
|k3|1/zS(k, ω + ωn)C−1kB

s

2z
|k3|1/z

]

+ω
∑

n

∫
d2k dk3

(2π )3
tr

[
S(k, ωn)C−1kB

s

2z
|k3|1/zk−1

3 S(k, ω + ωn)|k3|1/zk−1
3

s

z
βAC−1

]
, (93)

CAB(ω) = 1

β

∑
n

∫
d2k dk3

(2π )3
tr

[
|k3|1/z−2 1

4z2
(ωnC

−1βAβB + kAC−1βB)S(k, ωn)

]
, (94)

where we have introduced the Majorana propagator S(p) =
[βA pA + sM(p)1/2zC−1]

−1
. The form of the contact terms,

which require quite a lengthy computation, is justified in

Appendix B. At this point, the external ω = 2πnT is a bosonic
Matsubara frequency, and the Lorentzian continuation is de-
fined by the substitution ω → i(ωL + iε) after the sum over
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internal frequencies has been performed. The retarded and
Euclidean Green’s functions are related by

G(ω, k) = −iGE (ω + iε, k). (95)

The Matsubara sum over fermionic frequencies is evaluated
using the integral representation of the fermionic sums

1

β

∑
n

f (ωn) = 1

2

∫
C

dz

2π i
tanh (βz/2) f (z), (96)

where C is a contour encircling the poles of the hyperbolic
tangent. By contour deformation the sum is expressed as a
sum over the residues of the poles of the function f (z). Notice
that in the case of Majorana fermions no antiparticles are
present, so that the sum over frequencies gives half of the
result of that for a Dirac fermion. Following the analysis of
the previous section, we expect the viscosities to scale as

ητ ∼ T 2+z, ηπ ∼ T 3z, η� ∼ T 4−z, ηπ� ∼ T 2+z. (97)

Thus, we may safely drop all of the vacuum contributions to
the thermal sums since they have no intrinsic parameter which
scales under the Lifshitz symmetry.

After this has been done, one can divide by the external
frequency and take the limit of ωL → 0. The remaining
momentum-space integrals are evaluated using the represen-
tations

ηD(s) = 1

�(s)

∫ ∞

0
dt t s−1nF (t ) (98)

for the Dirichlet eta function and

B(a, b) = �(a)�(b)

�(a + b)
= 2

∫ π/2

0
dφ sin(φ)2b−1 cos(φ)2a−1

(99)

for the Euler beta function. We give details of the various
computations in Appendix C.

The final results are

ηπ = s

4π2

z

3z + 1
T 3z�(3z)ηD(3z), (100)

ητ = s

4π2
T 2+z z(z + 4)

(z + 1)(z + 3)
�(z + 2)ηD(z + 2), (101)

ηπ� = s

4π2
T 2+z (z + 4)

(z + 1)(z + 3)
�(z + 2)ηD(z + 2), (102)

η� = s

4zπ2
T 4−z (6 − z)

(5 − z)(3 − z)
�(4 − z)ηD(4 − z). (103)

Notice that it holds ητ = zηπ� . Furthermore, by rescaling
� → z� the last three viscosities obey the compact relation

ηHall(ξ ) = z
s

4π2
T ξ (ξ + 2)

(ξ + 1)(ξ − 1)
�(ξ )ηD(ξ ), (104)

being ξ their Lifshitz scaling dimension. Notice that all of
the coefficients are proportional to the time-reversal-breaking
parameter s, as it should be.

B. A Chern-Simons interpretation as z → 0

The values of the viscosities do not seem to bear any
universality since they explicitly depend on the Dirichlet eta

function which regulates the thermal sums. However, at least
for the anisotropic momentum current, a suggestive interpre-
tation of the result may be given when the scaling exponent z
approaches zero. In this case, the temperature dependence of
ηπ vanishes and one may hope to derive an effective action for
the result within the framework of effective field theory. Also,
if one uses Eq. (104) for the remaining three viscosities, they
all vanish in this limit. On the other hand,

lim
z→0

ηπ = s

24π2
. (105)

The intuition behind the z → 0 limit is that the system actually
undergoes a dimensional reduction. This can be seen, for
example, by computing the density of states with energy for
the single-particle excitations ρ(ε) ∼ ε1+z.

In this case, the effective action is described by a (2 + 1)-
dimensional field theory on a manifold which is obtained
by integrating over the (possibly noncompact) anisotropic
direction. Indeed, (105) is consistent with a Chern-Simons
type of action

SCS = κ

∫
l ∧ dl, κ = s

48π2
(106)

as can be checked by functional differentiation. In this case,
the Chern-Simons level needs not to be quantized since the
symmetry it is associated with is noncompact.

There are various way to interpret this phenomenon, and
we give two complementary explanations. They are both
based on the idea that our model can be seen as an (infinite)
tower of massive Majorana fermions. Notice that as z → 0 the
mass μ(k3) = |k3|1/z is either arbitrarily small or big depend-
ing on whether k3 < 1 or k3 > 1. However, such masses are
all mapped between each other by the Lifshitz symmetry, and
should give the same contribution to the effective action.

This is analog to the fact that, once a massive Dirac fermion
is integrated out in 2 + 1 dimensions, it generates a Chern-
Simons theory with half-quantized level −sgn(m)/2. The
half-quantization in our case is still present since the fact that
our fermions are Majoranas balances the double occurrences
of positive masses (for k3 > 0 and k3 < 0). As usual, one
should extract the value for the Hall coefficients by comparing
the result with the one with inverse sign for the mass (s → −s
in our case) and subtract them.

The coefficient 1
48 is explained as follows. Imagine that the

anisotropic direction is compact, in the limit z → 0 its radius
is a number which we may set to one. Fermionic modes on
this circle have quantized momenta in half-integer units k3 =
2n − 1, n = 1, 2, . . . . These numbers can be interpreted as the
charge of the particle under the translation current πA. They
enter the Chern-Simons action through their value squared as
in the case for e2 in the quantum Hall effect. This gives an
infinite sum

κ = − s

4π

1

2π

∞∑
n=1

(2n − 1)2, (107)

where the further factor 1/2π comes from the dk3 integral
converted into a sum. The sum over charges may be regu-
lated by zeta function regularization to give

∑∞
n=1(2n − 1)2 =
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4[ζ (−2) − ζ (−1)] + ζ (0) = 1
3 − 1

2 = − 1
6 so that

κ = s

48π2
, (108)

as anticipated.
Another way to find the same result is to use the quadratic

form for the Chern-Simons coefficient at finite temperature
[24]:

κ (μ(q)) = − 1

8π
s tanh (βμ(q)/2)q2, (109)

where we take μ(q) = qz and take the limit z → 0 afterward;
in this way, the temperature acts as a UV regulator. Integrating
over the modes gives

κ = −
∫ ∞

0

dq

2π

1

8π
s tanh (βμ(q)/2)q2, (110)

and regulating to zero the vacuum contribution this reduces to

κ = T 3z s

8π2
z
∫ ∞

0
dt t3z−1nF (t ) = s

24π2
η(3z)�(3z + 1)T 3z,

(111)

which tends to the previous value as the limit of small z is
taken.

In the case of a complex Lifshitz fermion, one could go one
step further and take the quantized Hall conductivity of the
single fermion e2σ 2D

H . Summing over the momentum in the
anisotropic direction, one is led to conjecture the relationship

ηπ = 2κ = − 1

6π
σ 2D

H + O(z). (112)

We were not able to find such a nice interpretation for the
remaining viscosities.

Why is the Chern-Simons interpretation valid in such
limit? A partial explanation comes from the symmetry algebra
of our Lifshitz system. In fact, apart from the ISO(1, 2)
commutation relations, the anisotropic momentum P3 = ∫

πt

appears only through the nontrivial commutator with the
Lifshitz generator D:

[D, P3] = −zP3 , (113)

and is otherwise a central element. One thus clearly sees
that, as z → 0, this commutator vanishes and P3 behaves
effectively as an Abelian charge, which is dimensionless.
Since in this limit the system dimensionally reduces to 2D,
it is possible that a nonzero Hall conductivity may develop for
such Abelian charge in the presence of massive fermions.

Incidentally, the fact that such a Chern-Simons interpreta-
tion may be given tells us that a magnetic torsion m will induce
a momentum density πAvA ≡ πt in the anisotropic direction
given by

πt = 2κ m. (114)

Integrating the above equation relates the total anisotropic
momentum with the line integral of the Burgers vector in the
anisotropic direction.

This is reminiscent of the chiral vortical conductivity for
Weyl fermions once the torsion is rewritten in terms of the
ambient metric gμν . For z 
= 0, κ does not coincide with
(twice) the viscosity ηπ , as the finite-temperature summation

is not the same if the limits of zero frequency and momentum
are interchanged. It can, however, be easily computed to be

κ = s

8π2
T 3zz�(3z)η(3z) = 2(3z + 1)ηπ . (115)

V. DISCUSSION

We have shown that the anisotropic fermionic Lifshitz
theory possesses a nonvanishing Hall viscosity. Due to its
dissipationless nature it is possible compute these particular
transport coefficients at weak coupling. It should therefore
give rise to measurable effects even when an essentially
noninteracting quasiparticle description applies. Signatures of
two-dimensional Hall viscosity in graphene in a magnetic
field have recently been reported in [25]. It will be interesting
to see if the Hall viscosities reported here can be measured in
three-dimensional materials along similar lines.

While the Hall viscosities found here do not seem to bear
any universality in general, one of its components may be
given a Chern-Simons interpretation in the limit z → 0. In this
case, we have related it to the intrinsic 2D Hall conductivity
of the dimensionally reduced system.

Also, the kind of torsional response we have uncovered
is extremely reminiscent of the (much debated) torsional
contribution to the mixed anomaly in 3D by the Nieh-Yan term
[26,27]

NY[e] = T a ∧ Ta − R(ω)ab ∧ ea ∧ eb, (116)

which in our case should reduce to

NY[l] = T ∧ T . (117)

Such contribution has been studied in the context of quan-
tum Hall systems and Weyl semimetals in various occasions
[18,19]. Because of dimensionality reasons it always comes
together with an unspecified UV scale which makes its inter-
pretation very difficult.

The Lifshitz theory may provide a more natural setup to
relate torsion to the underlying anomalies of the quantum field
theory. In particular, as the exponent z approaches zero, it
makes sense (on dimensional grounds) to write an equation
like

(∇μ − 2Gμ)πμ = cπεμνρσ TμνTρσ (118)

since in this limit l does not scale under the Lifshitz symmetry,
as an Abelian connection should. Consistency of this Ward
identity demands cπ = ηπ/8.

We have studied a broad class of Lifshitz critical points,
with arbitrary scaling exponent z � 1. We can obtain such
models as relevant (in the UV) deformations of the Weyl-
semimetal model, although subject to an increasing num-
ber of fine-tuning conditions (see Appendix A for further
discussion). It would be interesting to see whether a lattice
realization of such low-energy theories may also be given.

Finally, we note that it should be interesting to work out the
full Lifshitz hydrodynamics including all the dissipative and
possible additional nondissipative transport coefficients.
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APPENDIX A: DETAILS OF THE FOUR-BAND MODEL

In this Appendix we review some details about the four-
band model for the Weyl-semimetal–insulator transition, to-
gether with some of the salient features of the critical theory.
We start with the four-band Lagrangian

L = ψ̄ (iγμ∂μ − m + γμγ5bμ)ψ, (A1)

which can be interpreted as a massive Dirac fermion in an
axial background 〈A5

μ〉 = bμ. Standard computations lead to
the spectrum of the theory

ε(k)2
± = k2 + m2 + b2 ± 2|b|

√
m2 + (b̂ · k)2. (A2)

The bands responsible for the low-energy behavior are those
for which the minus sign is chosen above. The low-energy
phase is determined by the respective magnitude of b, m.
For |b| > |m| the lowest bands touch at k± = ±αb, being
α =

√
1 − m2/b2 the screening factor for the chiral charge.

In the opposite case, the system is gapped, with the gap given
by �gap = 2

√
m2 − b2. Since we will mostly give an effective

description of the two lowest bands, we should notice that the
gap between these and the upper one is given by

�EFT = min
k

ε+(k) − ε−(k) = 2 max(|m|, |b|), (A3)

thus we should always think of our results as valid below these
scales. This means, for example, that in the thermal case the
temperature should always be much smaller than �EFT . Of
particular interest for us will be the point |m| = |b| at which
the lowest bands have the approximate dispersion relation
(near k = 0)

ε2/m2 = k2
⊥

m2
+ (k · b̂)4

4m4
+ O((k · b/m)6), (A4)

which exhibits z = 1
2 Lifshitz scaling as long as we lie below

�EFT . As one can clearly see, the parameter m has no dimen-
sions from the point of view of the Lifshitz scaling and was
thus omitted in the main text. However, in order to connect the
results presented with the complete field theoretical answer
one needs to reintroduce it explicitly. This simply amounts
to have all the quantities scale in the right way according
to the UV counting, in which m has dimensions of energy.
In particular, the matrix M1/2z in the fermionic Lagrangian
gets replaced by 1

m1/z−1 M1/2z. The viscosities also scale with
m. In this case, the trick is to substitute T with the UV
dimensionless quantity τ = T/m and remember that viscosity

has dimensions of energy cubed, then,

ητ ∼ m1−zT 2+z, ηπ ∼ m3−3zT 3z, (A5)

η� ∼ mz−1T 4−z, ηπ� ∼ m1−zT 2+z. (A6)

While for our realization of the z = 1
2 theory we have a defi-

nite interpretation for the parameter m, for different values of
the anisotropic scaling exponent m will in general depend on
the particular UV completion one will choose. The appearance
of an ultraviolet scale should not be surprising as this is often
the case when dealing with torsionful theories. However, we
stress that from the perspective of the critical point alone, such
scale does not play any physical role.

We may furthermore generalize the model (A1) to support
critical points with critical exponent z = 1/2n, n � 1. The
idea is to add couplings to the higher-spin counterparts of the
chiral current jμ5 :

jμ1...μs

5 = Str
[
ψ̄γ5γ

μ1
↔
∂

μ2

. . .
↔
∂

μs

ψ
]
, (A7)

where Str refers to the symmetric traceless projection of the
tensor. As for the chiral current, such higher-spin counterparts
are not conserved in the presence of a nonvanishing mass
and will in general be irrelevant deformation of the infrared
physics. However, let us examine

L = ψ̄ (iγμ∂μ − m)ψ +
∑
s=1

bμ1...μs jμ1...μs

5 ; (A8)

the requirement of maintaining at least SO(1, 2) symmetry
forces bμ1...μs = bsbμ1 . . . bμs . The energy dispersion relation
then becomes

ε(k)2
± = k2 + m2 + b(k)2 ± 2|b(k)|

√
m2 + (b̂ · k)2, (A9)

where we have defined b(x) = ∑
s=1 bs(x · b̂)s−1. We would

like to choose the b function such that a critical point of
Lifshitz scaling z = 1/2n is reached for small momenta. Fur-
thermore, we would like to have to tune only a finite number
of current couplings bs to achieve such result. We thus put the
momentum in the orthogonal directions to zero and solve the
scaling equation (k3 = k · b̂)

k2
3 + m2 + b(k3)2 − 2|b(k3)|

√
m2 + k2

3 = k2n
3 f 2(k3), (A10)

for b(k3), subject to the requirement that f 2(k3) is finite at
k3 = 0. This gives, supposing b, f > 0,

b(k3) =
√

m2 + k2
3 − kn

3 f (k3). (A11)

At this point, we may series expand b(k3) and f (k3) =∑
s fsks

3 and fix the first 2n coefficients to match the ex-
pression on the right-hand side. Furthermore, without loss
of generality, we may set bs = 0 for s > 2n and thus fix the
function f . The final result is a low-energy Lifshitz fixed point
with z = 1/n, obtained by tuning 2n parameters through

b2s = m2 (1/2)s

s!

(
k3

m

)2s

, s � n (A12)

f2s = m2 (1/2)s+n

(s + n)!

(
k3

m

)2s

. (A13)
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Of course, such a critical point still has a huge amount of fine
tuning. Also, it can be continuously reached by deforming the
z = 1

2 critical point without breaking any further symmetries.
In this sense, we expect the physics at different z to belong to
the same universality class.

It could be interesting to see whether less fine-tuned ver-
sions of such critical points exist, and if so what is their lattice
realization.

APPENDIX B: SEAGULL TERMS

Before moving to the calculation itself, it is, however,
important to verify whether any contact (seagull) term may
arise from the dependence of the strain tensor on connection
and torsion. Seagull terms typically arise in quantum field
theory due to the explicit dependence of the curved space-
time stress tensor and currents on the spin or Christoffel
connection. This causes functional differentiation to give rise
to terms proportional to

δρ
μδA

D

δ

δeD
ρ (x)

ων
BC (y) ≡ ZABC

μνα ∂αδ(x − y), (B1)

where, in the flat space-time limit,

ZABC
μνα = 1

2

(
ηναδB

μδC
A + δC

α δB
Aδμ

ν − δB
αδC

μδA
ν

) − (B ↔ C). (B2)

These contribute to the linear response theory with finite
terms, that are computed from a one-loop diagram with no
external momenta present. In particular, the external momen-
tum is carried by the derivative of the delta function, so that in
order to compute viscosities we set α = 0. Apart from these,
other contact terms may arise by functional differentiation of
the vielbein itself.6 These terms do not carry any derivative of
the vielbein and so do not contribute to the viscosity tensor.
We will disregard such contributions.

Let us start from the correlators of two τ . In this case, one
has to compute the classic contact term of a free-fermionic
stress tensor. This is a well-known computation (see, for
example, [28]) and the final result gives

CABCD(x, y)

= − i

16
δABχT (x)

({
1

4
[βB, βD], β0

})
χ (x)∂0δ(x − y)

+ A ↔ B ,C ↔ D (B3)

which in momentum space gives the contact term integral we
will compute in the next section. There are three further cases
to be examined. The first is the correlator of two anisotropic
momentum currents πA, πB. Seagull terms in this case arise
from the dependence of the anisotropic current on torsion.
Since we work with the SO(1, 2) connection only, no such
dependence arises in the covariant derivative and the contact
term vanishes.

6They arise because we consider the basic object to be the energy-
momentum current that is obtained by variation with respect to the
vielbein, i.e., τ

μ
A but we use τA

B to calculate the viscosity and this
introduces a trivial dependence on the vielbein since τA

B = eA
μτ

μ
B . This

dependence on the vielbein therefore is not related to the viscosity
tensor.

A second contact term may contribute to the �A�B corre-
lator due to the vielbein dependence of �. To start, recall that
in position space this reads as

CAB = ∂�A

∂ων
CD

ZBCD
μνα ∂αδ(x − y)lμ, (B4)

where the last lμ projects on the right component of the
vielbein variation. We will be interested of the part of said
contact term which is proportional to εAB, thus encoding
the nondissipative viscosity. First, one may notice, using the
expression above for Z , that

ZBCD
μνα lμ = 1

2 lνδ
D
α δBC − (B ↔ C), (B5)

thus the only contributions to the contact term will come from
derivatives ∇l in �. The contributions may be divided in two
parts, the first stemming from the unimproved strain �̂ and
the latter from the improvement term coming from the spin
current.

For the first term we have, using (82),

∂�̂A

∂ωCD
ν

= s

z

(
1

2z
− 1

)
lνχT [

←−
∂ l

↔
∂ AC−1βCC−1βDC−1

+−→
∂ l

↔
∂ AβCC−1βD]M1/2z−2χ

+ s

z
χT [

←−
∂ AC−1βCC−1βDC−1

+−→
∂ AβCC−1βD]M1/2z−1χ (B6)

up to terms orthogonal to lν . Going to momentum space and
remembering that one of the two β matrices is the identity
because of (B5), one is left with an anticommutator βDC−1 +
C−1βD = 0 if D is spatial. So, the whole contribution van-
ishes. Thus, the possible contact terms may come from the
improvement only.

The second term gives

∂�A
imp

∂ωCD
ν

= s

z
lν∂BχT

[(
1

2z
− 1

)
M1/2z−2

↔
∂ l (

←−
∂ lγ

BAC−1γCD

− −→
∂ lγ

CDγ BAC−1)

]
χ

+ s

z
lν∂BχT [M1/2z−1(γ BAC−1γCD+γCDγ BAC−1)]χ.

(B7)

This simplifies in a considerable way in momentum space,
where the two contributions above sum if the external fre-
quency is set to zero. The result is

∂�A
imp

∂ωCD
ν

(q) = lν s

2z2
qBχT |ql|1/z−2XCD

AB χ, (B8)

with

XCD
AB = γ BAC−1γCD + γCDγ BAC−1; (B9)

the expression for X can be recasted as either a commutator or
an anticommutator depending on whether CD = 0i or CD =
i j. In our case, the relevant part will be

XCD
AB = [γCD, γAB]C−1

(
δC

0 − δD
0

)
, (B10)
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one may now use the Lorentz algebra

[γCD, γAB] = ηCAγDB + (cyclic) (B11)

to simplify the expression further. The final result taking into
account the fact the either C or D are in the time direction
reads as

∂�A
imp

∂ωCD
ν

(q)= lν s

4z2
χT |ql|1/z−2(q0C

−1βAβD + qDC−1βA)δC
0 χ.

(B12)
We will use this term in the next section for the computation
of the linear response.

One last contact term may come from the �A πB correlator,
and can be seen either through the torsion dependence of �A

or through the spin connection dependence of πA. The first
of the two is simpler to compute, in this case, in fact, the
only dependence on torsion comes from the GBσBA term in
the definition of �, recalling the definition of Gμ one has

δGμ = −lν (∂νδlμ − ∂μδlν ) − δlν (dl )νμ; (B13)

this gives a seagull contribution to ηπ� only if the derivative
is in the time direction and δlμ is in a spatial direction.
This is, however, not possible since the only time derivative
comes with the anisotropic component of lμ which does not
contribute to the correlator we are interested in.

APPENDIX C: RELEVANT FEYNMAN GRAPHS
AND MATSUBARA SUMS

In this Appendix we review the detailed calculations of
the 3D Hall viscosity. The main steps of the procedure have
already been outlined in the main text in Sec. IV. Here, we
reproduce the essential details of the computations.

1. Computation of ηπ

We start with the computation of the πAπB correlator.
Since we are interested only in the contributions to the Hall
viscosity tensor, we will always implicitly extract the part of
the correlators that goes like the appropriate projector. The
πAπB correlator is computed by the Lorentzian continuation
of the following Euclidean diagram:

〈πA(−ω, 0)πB(ω, 0)〉

= 1

β

∑
n

∫
d2k dk3

(2π )3
tr
[
S(k, ωn)βAS(k, ω + ωn)βBk2

3

]
,

(C1)

where ω = 2πmT is a bosonic Matsubara frequency, while
the discrete sum runs over fermionic frequencies ωn = (2n +
1)πT . In Majorana notation, the fermionic propagator is

S(p) = (βA pA + sM(p)1/2zC−1)−1, βA = C−1γ A. (C2)

Due to the Majorana nature of the computation and thus the
absence of antiparticles, the Matsubara sums will only give
half of the expected result, as it can be explicitly checked
that the poles for particles and antiparticles give the same
contributions to the odd viscosity.

To begin, we have to evaluate the trace over the Dirac
indices to extract the odd projector. We will often encounter

such traces in the various computations, in this case the key
result is that

tr[βAβBC−1] = 2εAB, (C3)

where εAB = εABCuC and uC represents the time direction.
This can be readily checked via the representation β0 = −1,
β1 = −σx, β2 = σz, C = −iσy, which we will use in practical
computations.

In (C1) one readily sees that the trace can be saturated only
in the case in which we have an M(k) contribution from the
first propagator and a βCωC ≡ −ω one from the second. The
contribution from the internal Matsubara frequency cancels
because of the ordering of the matrices.

The Hall contribution then reads as

〈πA(−ω, 0)πB(ω, 0)〉H

= εABω
4s

4π2

∫ ∞

0
dk3k1/z+2

3

∫ ∞

0
dk kg(ε, ω), (C4)

where

g(ε, ω) =
∑

n

1

ω2
n + ε2(k, k3)

1

(ω + ωn)2 + ε2(k, k3)
,

ε2(k, k3) = k2 + k2/z
3 (C5)

is the Matsubara sum. Its evaluation of the Matsubara sum is
straightforward and gives

g(ε, ω) = − tanh(βε/2)

8ε(ε2 + ω2/4)
, (C6)

where we stress that ω must be kept as a bosonic Matsubara
frequency.

We will be eventually interested in continuing the result
to the Lorentzian sector to extract the retarded propagator.
This is done as customary by the replacement ω = 2πmT →
i(ωL + i0), followed by the ωL → 0 limit. However, in this
case, since the transport we are interested in is nondissipative,
we expect the density of states ρππ

AB (ω) = ImGππ
AB (ω) to vanish

as the frequency is set to zero. This can be explicitly checked
by computing the residue of the integrand of Gππ , which
scales as ω3z+1, so that both its value and its derivatives vanish
in the zero-frequency limit. A similar reasoning holds for the
other integrals. We may then take the naive ω → 0 limit inside
the integral after performing the Matsubara sums.

At this point, we divide vacuum from thermal contributions
through the identity

tanh(x/2) = 1 − 2nF (x), (C7)

where nF (x) = 1/(1 + ex ) is the Fermi-Dirac distribution.
Since the vacuum has no intrinsic Lifshitz scaling parameter,
its contribution vanishes in any sensible regulation scheme.
On the other hand, the thermal part gives the Hall conductivity
to be

ηπ = s

4π2

∫ ∞

0
dk3k1/z

3

∫ ∞

0
dk k

nF (βε(k, k3))
ε(k, k3)3

. (C8)

We now change variables to u = βk1/z
3 , v = βk to get

ηπ = s

4π2
T 3zI3z, (C9)
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where

I3z = z
∫ ∞

0
du u3z

∫ ∞

0
dv v

nF (
√

u2 + v2)

(u2 + v2)3/2

= z
∫ ∞

0
dρ ρ3z−1nF (ρ)

∫ π/2

0
dφ sin(φ) cos(φ)3z

= z

3z + 1
�(3z)ηD(3z), (C10)

by going to polar coordinates u = ρ cos(φ), v = ρ sin(φ).
Finally,

ηπ = s

4π2
T 3z z

3z + 1
�(3z)ηD(3z). (C11)

Most of the other computations go along the same lines,

in particular, we will make the same series of changes of
variables, as well as computing largely the same Matsubara
sums. We will thus focus on the technical differences to speed
up the presentation.

2. Computation of ηπ�

We proceed to compute the Hall conductivity stemming
from the correlator between π and �. In this case, the contri-
bution splits into two parts, the first one given by the unim-
proved �, �̂A = s

z χ
T M1/2z−1(

←−
∂ ν lν−→∂ A + ←−

∂ Alν−→∂ ν )C−1χ

and a second one coming from the improvement term ∂BσBA.
The first of the two is given by the graph

〈�̂A(−ω, 0)πB(ω, 0)〉 = 1

β

∑
n

∫
d2k dk3

(2π )3
tr

[
S(k, ωn)C−1kA

s

z
|k3|1/z−2k3S(k, ω + ωn)βBk3

]
. (C12)

The trace is evaluated in a similar way as before, only that now we will need a βCωC and a βDkD contribution from the
propagators. The trace will be proportional to −2εBDkDω. Performing the angular integral d2k amounts to the substitution
kAkD → δD

A k2 and a factor of 2π , so

〈�̂A(−ω, 0)πB(ω, 0)〉 = 2s

4π2
εABω

∫ ∞

0
dk3k1/z

3

∫ ∞

0
dk k3g(ε, ω), (C13)

and using the previous change of variables this gives

ηπ� (2p f ) = 2s

4zπ2
T 2+zIz+2, (C14)

where

I2+z = z

4

∫ ∞

0
du uz

∫ ∞

0
dv v3 nF (

√
u2 + v2)

(u2 + v2)3/2
= z

4

∫ ∞

0
dρ ρz+1nF ρ

∫ π/2

0
dφ sin(φ)3 cos(φ)z

= 1

2(z + 1)(z + 3)
�(z + 2)ηD(z + 2), (C15)

so

ηπ� (2p f ) = s

4π2
τ z+2m3 1

(z + 1)(z + 3)
�(z + 2)ηD(z + 2). (C16)

For the improvement term we instead get

1

2
〈σ0A(−ω)πB(ω)〉 = 1

4

∑
n

∫
d2k dk3

(2π )3

s|k3|1/z

z
tr[S(k, ωn)βAC−1S(k, ω + ωn)βB], (C17)

as both A and B are spatial, the only way to get an ε tensor is that the matrices from the two propagators contract between each
other. The trace thus gives

tr[S(k, ωn)βAC−1S(k, ω + ωn)βB] = 2εAB
ωn(ωn + ω) + ε(k, k3)2[

ω2
n + ε(k, k3)2

]
[(ωn + ω)2 + ε(k, k3)2]

, (C18)

which may be simplified, writing ωn(ωn + ω) = 1/2[ω2
n + (ω + ωn)2 − ω2] to

εAB

[
1

ω2
n + ε(k, k3)2

+ 1

(ωn + ω)2 + ε(k, k3)2
− ω2[

ω2
n + ε(k, k3)2

]
[(ωn + ω)2 + ε(k, k3)2]

]
, (C19)
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the first two sums are easily computed 1
β

∑
n

1
(ωn+ω)2+ε(k,k3 )2 = − tanh βε(k,k3 )/2

4ε(k,k3 ) to be equivalent, while the third vanishes in the
ω → 0 limit. We then get

εAB 1

2
〈σ0A(−0)πB(0)〉 = −

∫
d2k dk3

4(2π )3

s|k3|1/z

z

1

ε(k, k3)
tanh (βε(k, k3)/2)

= s

4π2
T 2+z

∫ ∞

0
du uz

∫ ∞

0
dv v

nF (
√

u2 + v2)

(u2 + v2)1/2

= s

4π2
T 2+z

∫ ∞

0
dρ ρz+1

∫ π/2

0
dφ sin(φ) cos(φ)z = s

4π2
T 2+z 1

(z + 1)
�(z + 2)ηD(z + 2). (C20)

Summing the two contributions we finally get

ηπ� = s

4π2
T 2+z (z + 4)

(z + 1)(z + 3)
�(z + 2)ηD(z + 2). (C21)

3. Computation of ητ

We next move move to the intrinsic (2 + 1)-dimensional thermal Hall viscosity, for which one should compute both the
two-point function ττ and the seagull term CABCD. The first of these is given by the integral

〈τAB(−ω, 0)τCD(ω, 0)〉 = 1

β

∑
n

∫
d2k dk3

(2π )3
tr[S(k, ωn)β(AS(k, ω + ωn)β(CkB)kD)]. (C22)

We are interested in the contribution proportional to PABCD of this correlator. To get the right factors, it is sufficient to work with
one combination of indices, the full structure of the projector is then automatically recovered through symmetrization. The trace
is computed in the same way as for ηπ and we find

〈τAB(−ω, 0)τCD(ω, 0)〉H = ωPABCD
2s

4π2

∫ ∞

0
dk3k1/z

∫ ∞

0
dk k3g(ε, ω) = zPABCDηπ� (2p f ). (C23)

Confronting this expression with the computation of ηπ� we deduce that the two-point function contribution to this component
of the viscosity will be given by

ητ (2p f ) = zηπ� (2p f ) = s

4π2
T z+2 z

(z + 1)(z + 3)
�(z + 2)ηD(z + 2). (C24)

To get the full result, we still have to evaluate the contact term CABCD. In momentum space the seagull term gives the following
diagram:

CABCD(ω) = δAC

16

1

β

∑
n

∫
d2k dk3

(2π )3
tr[β[AC−1βB]ωS(k, ωn)] + A ↔ B ,C ↔ D, (C25)

the trace is computed as before, and the index structure organizes to give a projector, so

CABCD(ω) = ωPABCD
s

4π2
T 2+zz

∫ ∞

0
du uz

∫ ∞

0
dv v

nF (
√

u2 + v2)

(u2 + v2)1/2

= ωPABCD
s

4π2
T 2+z 1

(z + 1)
�(z + 2)η(z + 2). (C26)

Summing all up, we get the relation

ητ = zηπ� = s

4π2
T 2+z z(z + 4)

(z + 1)(z + 3)
�(z + 2)ηD(z + 2). (C27)

4. Computation of η�

Finally, we inspect the value of η� ; this is the longest computation but we may use most of the tricks learned before to speed
it up. It can be divided in three parts: the first coming from the correlators of the unimproved strains �̂, the second coming
from the correlator of one of these with the improvement term, and the last one stemming from the contact terms. It is simple
to convince oneself that the unimproved correlator vanishes. This is because the Feynman diagram contains a term kAkB which
should be antisymmetrized.
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The improvement term, on the other hand, behaves in much the same may as we have seen in the π� correlator and gives a
contribution

η�
imp = lim

ω→0
〈σ0A(−ω)�̂B(ω)〉εAB (C28)

which reads as in terms of Feynman diagrams

η�
imp = lim

ω→0

1

β

∑
n

∫
d2k dk3

(2π )3
tr

[
|k3|1/zk−1

3 kBC−1S(k, ωn)|k3|1/zk−1
3

1

2
βAC−1S(k, ωn + ω)

]
, (C29)

and, as before, the odd part of the trace may be computed by bringing up one term with the anisotropic momentum and one β

matrix. This gives

η�
imp = lim

ω→0

1

z2

s

2π2

1

β

∑
n

∫ ∞

0
dk3

∫ ∞

0
dk k3k3/z−2

3 g(ε, ω)

= s

8π2z
T 4−z

∫
dρ ρ3−znF (ρ)

∫ π/2

0
dφ sin(φ)3 cos(φ) = s

4zπ2
T 4−z �(4 − z)ηD(4 − z)

(5 − z)(3 − z)
. (C30)

Finally, one has to take care of the contact term, whose form we had computed in the previous section. In this case, one has the
Feynman graph

η�
ct = 1

2z2

1

β

∑
n

∫
d2k dk3

(2π )3
tr

[
|k3|1/z−2 1

2
(ωnC

−1βAβB + kAC−1βB)S(k, ωn)

]
εAB, (C31)

where the trace gives

tr

[
|k3|1/z−2 1

2
(ωnC

−1βAβB + kBC−1βA)S(k, ωn)

]
εAB = 1 − |k3|2/z

ω2
n + ε(k, k3)2

. (C32)

The first term is a vacuum contribution which may be regulated away, while the second Matsubara sum can be easily computed.
One gets

η�
ct = s

4zπ2

∫ ∞

0
dρ ρ3−znF (ρ)

∫ π/2

0
dφ sin(φ) cos(φ)2−z = s

4zπ2
T 4−z �(4 − z)ηD(4 − z)

(3 − z)
. (C33)

Putting everything together we finally find

η� = s

4zπ2
T 4−z (6 − z)

(5 − z)(3 − z)
�(4 − z)ηD(4 − z). (C34)

It is nice to notice that the three viscosities ητ , η� , and ηπ� can be compactly reexpressed (provided we renormalize � → z�)
as functions of their scaling dimension ξ :

η(ξ )/z = s

4π2
T ξ (ξ + 2)

(ξ + 1)(ξ − 1)
�(ξ )ηD(ξ ). (C35)
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