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It is well known that the matrix product state (MPS) description of a gapped ground state with a global
on-site symmetry can exhibit “symmetry fractionalization.” Namely, even though the symmetry acts as a linear
representation on the physical degrees of freedom, the MPS matrices—which act on some virtual degrees
of freedom—can transform under a projective representation. This was instrumental in classifying gapped
symmetry-protected phases that manifest in one-dimensional (1D) quantum many-body systems. Here we
consider the multiscale entanglement renormalization ansatz (MERA) description of 1D ground states that have
global on-site symmetries. We show that, in contrast to the MPS, the symmetry does not fractionalize in the
MERA description if the ground state is gapped, assuming that the MERA preserves the symmetry at all length
scales. However, it is still possible that the symmetry can fractionalize in the MERA if the ground state is
critical, which may be relevant for characterizing critical symmetry-protected phases. Our results also motivate
the presumed use of symmetric tensors to implement global on-site symmetries in MERA algorithms.

DOI: 10.1103/PhysRevB.99.195139

I. INTRODUCTION

Characterizing symmetries in tensor network states has
recently played an instrumental role in the classification
of gapped quantum phases of matter. For example, on a
one-dimensional (1D) lattice, ground states of gapped local
Hamiltonians can be efficiently described as matrix product
states (MPSs), whose probability amplitudes are obtained
by contracting a tensor network such as the one illustrated
in Fig. 1(a) [1,2]. Consider an MPS description of a 1D
gapped ground state with a global on-site symmetry G, such
that the symmetry acts as a linear representation on each
site [see Fig. 1(b)]. If the MPS is also normal [3] (see also
Appendix A), then the MPS tensor B fulfills, up to certain
gauge transformations [4],

(1)

Here, even though the symmetry acts linearly on the physical
sites, the matrices Yg can form a projective representation of
the symmetry [5,6], which fulfills the group product only up
to a phase as YgYh = eiω(g,h)Ygh [7]. This is sometimes referred
to as “symmetry fractionalization” in the MPS. (If the MPS
is also in a certain canonical form [3], the matrices Yg are
unitary.) If two (normal) symmetric MPSs carry inequivalent
[8] projective “bond representations” Yg and Y ′

g , respectively,
then they belong to different quantum phases protected by
the same symmetry G [9–13]. Thus, the MPS description of
ground states characterizes different quantum phases in one
dimension.

Notice that Eq. (1) is also a local constraint—i.e., fulfilled
by individual tensors—that results from imposing a global
symmetry on the total MPS tensor network. Besides setting
the stage for possible symmetry fractionalization, this local
realization of the global symmetry is also convenient in MPS
simulations, where one may be interested in protecting the
symmetry against numerical errors. Tensor B, which fulfills
Eq. (1), is an example of a symmetric tensor, which, loosely
speaking, is a tensor that commutes with the symmetry [14]. It
turns out that symmetric tensors have a sparse structure, which
is determined by the representation theory of the symmetry
[15]. The sparse structure is often exploited to reduce com-
putational costs in MPS simulations while also protecting the
symmetry [16].

In this paper, we characterize symmetries in another promi-
nent and efficient tensor network description of 1D ground
states—the multiscale entanglement renormalization ansatz
(MERA) [17,18]. Unlike the MPS, the MERA is also suitable
for describing critical ground states [19]. Inspired by the
MPSs, global on-site symmetries have also been implemented
in the MERA by making judicious use of symmetric tensors.
However, there is no formal proof that a global on-site sym-
metry necessarily implies that the MERA tensors must be
symmetric. That is, there is no MERA analog of Eq. (1).

Despite this, the use of symmetric tensors has played a
central role in several MERA applications, e.g., (i) targeting
specific symmetry sectors and reducing computational costs
in MERA simulations while exactly protecting the symme-
try against numerical errors [20], (ii) determining nonlocal
scaling and topological defect operators of conformal field
theories that have a global symmetry [21], (iii) building
exact MERA descriptions of renormalization group (RG)
fixed points in 1D symmetry-protected phases [22], and
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FIG. 1. (a) A tensor network made of three-index tensors ar-
ranged on a circle, which can be contracted to obtain the probability
amplitudes of a matrix product state (see also Appendix A). Open
indices correspond to sites of a lattice L. We will consider only
translation-invariant MPS, which consists of copies of the same
tensor B everywhere. (b) An MPS with a global on-site symmetry G
fulfills the top equality. Here, Ug is a unitary linear representation of
the symmetry on each lattice site. Namely, the representation fulfills
the group product exactly, UgUh = Ugh for all group elements g, h
of G. The local constraint equation (1) implies global symmetry, as
illustrated by the bottom equality (Yg is unitary, Y †

g Yg = I).

(iv) realizing the bulk gauging of a global boundary symmetry
[22,23] in a holographic interpretation of the MERA [24].

In this paper, we first show that (under reasonable assump-
tions) global on-site symmetries in the MERA also necessarily
lead to symmetric tensors (again, up to gauge transforma-
tions). More precisely, we show that if a MERA has a global
on-site symmetry and the symmetry is protected at all length
scales (as described in the next section), then one can always
make its tensors symmetric by introducing suitable gauge
transformations [25].

This, for one, motivates the presumed use of symmetric
tensors for implementing global on-site symmetries in MERA
algorithms, e.g., in the context of applications (i)–(iv) listed
above. Second, it prompts the question, Can the symmetry
fractionalize in the MERA description of a 1D ground state
with a global on-site symmetry? (Since symmetric tensors are
a prerequisite for symmetry fractionalization in the MPSs.)
We will argue that, in contrast to the MPSs, the answer is
negative for a gapped ground state. However, our argument
does not apply to critical ground states. Thus, in the absence
of any other restrictions, it is possible that the symmetry
can still fractionalize in the MERA description of symmetric
critical ground states. We suggest the possibility that inequiv-
alent [8] symmetry-fractionalized MERA states belong to
different critical symmetry-protected phases (for example, see
Refs. [26–29]).

II. MERA AND SYMMETRIC TENSORS

From the outset it is apparent that the MERA tensor
network is quite different from the MPSs. [In particular, this
means that the proof of Eq. (1), which relied on the specific
structure of the MPS tensor network, cannot be applied di-

=
(c)

= =
(b)

(e)

... ...

(a)

(d)

... ...

FIG. 2. (a) An entanglement renormalization transformation W
as a tensor network that implements a linear map from a lattice L
to a coarse-grained lattice L′. For simplicity, we assume that copies
of the same two tensors u, w appear everywhere. (b) Tensors u and
w are isometries; thus, they fulfill these equalities. (c) Tensor A is
obtained by contracting u and w. (d) Entanglement renormalization
transformation made instead from copies of tensor A. (e) MERA
tensor network for a quantum many-body state of a lattice of 16 sites,
obtained by composing several W transformations; different tensors
may appear in each W .

rectly to the case of the MERA.] For example, while the MPS
is a 1D tensor network, the MERA extends in two dimensions.

The extra dimension in the MERA can be understood as
a length scale since the MERA is generated by a real-space
RG transformation, known as entanglement renormalization
[17]. This RG transformation acts on the lattice by removing
entanglement between blocks of sites before coarse graining
them. It can be described by a tensor network composed from
isometric tensors u and w, which represent the disentangling
and coarse-graining components, respectively [see Figs. 2(a)
and 2(b)]. For convenience, we will contract tensors u and w

to obtain tensor A, as shown in Fig. 2(c). The resulting tensor
network, composed of copies of A, is a (translation-invariant)
matrix product operator—the operator analog of an MPS—
which implements a linear map W from a fine-grained lattice
L to coarse-grained lattice L′ [see Fig. 2(d)].

Entanglement renormalization is evidently capable of gen-
erating RG flows with proper fixed points (in the thermody-
namic limit) in one dimension—in both gapped [22,34] and
critical [19] systems and also in two-dimensional quantum
systems with topological order [30].
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The MERA is a striped tensor network that is generated
by composing several entanglement renormalization transfor-
mations, as illustrated in Fig. 2(e). The MERA description
of a ground state can be interpreted as the RG flow of the
ground state: Discarding bottom stripes of the MERA yields a
description of the ground state on a sequence of increasingly
coarse-grained lattices L → L′ → L′′ · · · .

We are now ready to address the following question: If
a MERA describes a state with a global on-site symmetry
G, then is tensor A (in each strip) symmetric? To proceed,
consider the symmetry operators O′

g on the coarse-grained
lattice L′, given by

O′
g ≡ W †OgW ∀ g ∈ G. (2)

Note that without suitably constraining the individual A ten-
sors or the transformation W as a whole the coarse-grained
operators O′

g are not necessarily on site. However, in the rest of
the paper, we will demand that the coarse-grained symmetry
operators O′

g, in fact, remain on site [see Fig. 3(a)] at all length
scales [31]. The causal cone structure of the MERA implies
that a generic on-site operator coarse grains to a two- or
three-site operator. In this paper, we want to determine tensor
constraints that ensure that on-site symmetry operators coarse
grain to on-site operators. That is, the RG flow preserves the
global and on-site character of the symmetry at each step
along the flow.

This demand is consistent with the t’Hooft anomaly-
matching condition on the lattice (see, e.g., Ref. [28]). A
global symmetry that acts in an on-site way can be regarded
as having a trivial t’Hooft anomaly since a global on-site
symmetry can always be gauged. If anomalies are preserved
along the RG flow, a trivial anomaly (that is, an on-site action)
must remain trivial (on-site action) along the RG flow. In two
dimensions, however, anomaly matching may be subtler in
the presence of topological order. Thus, our assumption is
reasonable at least in one dimension.

... ... = ... ...

(a)

(b) (c)

... ... ...=

= =

(d)

FIG. 3. (a) Our main working assumption: a global on-site sym-
metry remains global and on site after coarse graining. This follows
if tensor A is symmetric [Eq. (3)] by the sequence of equalities (a) =
(b) = (c) = (d). In (a) we introduced a resolution of identity U ′

gU
′
g

†

on the top open indices. In (b) we applied Eq. (3). In (c) we used
XgX †

g = I and the fact that u, w are isometries [Fig. 2(d)].

Therefore, in this paper, we will regard the MERA de-
scription of a 1D symmetric ground state legitimate only if
it is generated by an RG flow that preserves the global and
on-site character of the symmetry. We will derive necessary
and sufficient constraints that the MERA tensors must fulfill
to ensure this.

We begin by observing that if tensor A is symmetric [32]
and transforms under the symmetry as

(3)

where Xg is unitary, then the coarse-grained operators O′
g are,

in fact, on site. This is demonstrated in Fig. 3. Note that in
Eq. (3) we will require that Ug and U ′

g are linear representa-
tions of G but Xg is allowed to be a projective representation
of G. (Ug is required to be linear to allow for the possibility
of symmetry fractionalization. Symmetric disentanglers and
isometries then ensure that U ′

g,U ′′
g , . . . are also linear.)

So we have the following implication:

MERA made of
symmetric tensors ⇒ symmetry remains global and

on-site under coarse graining (4)

However, it is not apparent that symmetric tensors are also
necessary for this implication. For example, it is possible that
a global on-site symmetry could be preserved by enforcing
some global constraints which are satisfied by the total tensor
network without requiring the individual tensors to be sym-
metric. But we show next that the implication (4), in fact, also
holds in reverse, and therefore, a global on-site symmetry can
always be implemented in the MERA by means of symmetric
tensors (assuming that the global and on-site character of the
symmetry is preserved at all length scales).

Implication (4) also holds in reverse

To prove the reverse of (4), let us begin with our main
working assumption, namely, the coarse-grained symme-
try operators O′

g remain on site. This is depicted again in
Fig. 4(a) and then rearranged as shown in Figs. 4(b) and 4(c).
Next, we vectorize the matrix product operator (MPO) W
as a (translation-invariant) MPS |W 〉. Graphically, this corre-
sponds to bending some indices of the MPO [see Fig. 4(d)].
The equation illustrated in Fig. 4(c) implies that the MPS |W 〉
has a global on-site symmetry G [see Fig. 4(e)]. We could now
recall Eq. (1) and conclude that tensor A must be symmetric.

However, Eq. (1) holds only for a symmetric MPS that
is normal. An MPS B is said to be in the canonical form
if the dominant eigenvalue of the matrix EB ≡ ∑

i Bi ⊗ B∗
i

is equal to 1, and the left (right) dominant eigenvector is
the identity while the right (left) dominant eigenvector is a
positive semidefinite matrix. If the dominant eigenvalue of EB

is unique, then the MPS is also said to be normal.
MPS |W 〉 is, in fact, both in the canonical form and normal.

This is thanks to the isometric constraints [Fig. 2(b)], which
are fulfilled by the MERA tensors, as shown in Fig. 5. (MPS
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FIG. 4. Proof of the reverse of implication (4). (a) We demand
that on-site symmetry remains on site under RG for all group
elements g ∈ G. Ug and U ′

g are the (linear) representations of the
symmetry on each site of lattices L and L′, respectively. (b) Reor-
ganizing the previous equality by moving the symmetry operators
on the right to the left-hand side. (c) Since both W̃ and W † are
isometries, the equality shown in (b) can be true only if W̃ is the
adjoint of W †, that is, W̃ = W , as depicted here. (d) W expressed
as a translation-invariant matrix product state |W 〉 by bending the
top indices. The equation depicted in (c) translates to the MPS |W 〉
having a global symmetry G. (e) The local constraint fulfilled by each
MPS tensor as implied by the global on-site symmetry.

|W 〉 is actually injective, a property stronger than normality;
see Appendix A.)

Thus, applying Eq. (1) to the MPS |W 〉, it follows that
tensor A must be symmetric, as depicted in Fig. 4(e). By
unvectorizing (bending back an index) Fig. 4(e), we obtain
Eq. (3). Thus, implication (4) also holds in reverse. We
remark that the symmetric tensor A can also, under reasonable
assumptions, be decomposed into a symmetric disentangler u
and a symmetric isometry w, as shown in Appendix B.

If the global on-site symmetry is preserved at all length
scales, we can apply the above argument iteratively to all
strips of the MERA. Thus, it follows that if a MERA has a
global on-site symmetry and preserves the symmetry at all
length scales, then its tensors must necessarily be symmetric
(up to gauge transformations). That is,

Symmetry remains global and
on-site under coarse graining ⇒ MERA tensors

are symmetric . (5)

FIG. 5. The matrix EA ≡ ∑
i Ai ⊗ A∗

i is a rank-1 projector |ρ〉〈I|
since the isometry u cancels out with its adjoint u†. Thus, MPS |W 〉
is injective. |I〉 and |ρ〉 are the left and right eigenvectors of EA,
respectively. |I〉 is the (vectorized) identity matrix. |ρ〉 is obtained
by contracting isometries w and w†, as shown; this contraction can
be viewed as acting with a completely positive map (whose Kraus
operators are given by w) on the identity, which results in a positive
semidefinite matrix |ρ〉. Thus, MPS |W 〉 is also in the canonical form.

Next, we turn to the question of symmetry fractionalization in
the MERA.

III. GAPPED GROUND STATES

In this section, we show that the symmetry does not
fractionalize in the MERA representation of a 1D gapped
symmetric ground state. Our strategy will be to translate an
MPS description (possibly fractionalized) of a symmetry-
protected ground state to a MERA description, which we will
examine for possible symmetry fractionalization. Recall that
the MERA describes the RG flow of a ground state. Therefore,
to build the MERA description, we will coarse grain the
MPS (by means of entanglement renormalization) until a fixed
point is reached.

A. Absence of symmetry fractionalization along the RG flow

First, let us consider a single coarse-graining step. Let MPS
B describe a ground state with a global on-site symmetry G,
and let MPS B′ denote the coarse-grained version obtained
by means of entanglement renormalization. For convenience,
we will assume that MPS B satisfies Property 1 stated in
Appendix A, which also implies that it is normal and thus
exhibits the local symmetry equation (1). (One-dimensional
symmetry-protected ground states always admit an MPS de-
scription that satisfies Property 1 [3].)

The coarse-graining proceeds as the following sequence
of elementary operations (see Fig. 6): (i) block, for example,
all odd pairs of sites and contract together the MPS tensors
corresponding to each pair, (ii) apply on-site unitaries (the
disentanglers) on the blocked MPS, (iii) decompose the result-
ing MPS back to the original lattice, (iv) block all even pairs
of sites and contract together the MPS tensors corresponding
to each pair, and, finally, (v) apply on-site isometries, which
project to the support of the reduced density matrix of each
blocked site.

We can determine how the resulting coarse-grained MPS
tensor B′ transforms under the action of the symmetry by
tracking the action of the symmetry through this sequence of
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FIG. 6. Coarse graining a normal MPS (top left) by means of
entanglement renormalization, applied as a sequence of elementary
operations. The resulting coarse-grained MPS is shown on the top
right. Red arrows track the representations of the symmetry that
appear on the bond indices of the intermediate MPS after each
operation. The crucial decomposition step is elaborated in the box: A
symmetric matrix M can always be decomposed as a product of two
symmetric matrices P and Q, M = PQ. To see this, we note that M is
block diagonal in the symmetry basis (Schur’s lemma). By applying
a standard matrix decomposition such as eigenvalue decomposition
to each block of M separately, we can obtain factor matrices P and
Q, which are also block diagonal in the symmetry basis. Thus, P and
Q are also symmetric.

operations (as indicated in Fig. 6). We find

(6)

Notice that the representation Xg, which appears in the coarse-
graining MPO via Eq. (3), has been transferred to the coarse-
grained MPS B′.

If the coarse-grained MPS B′ belongs to the same phase as
MPS B and is normal, its bond representation Yg ⊗ X †

g must
belong to the same equivalence class as Yg, that is, the bond
representation of the input MPS B. Furthermore, this must be
true if the input MPS B belongs to any symmetry-protected
phase since the coarse graining did not assume a specific
phase to which MPS B belongs. This is possible if, and only if,
the representation Xg is linear [8]. Thus, the symmetry is not
fractionalized in the coarse-graining MPO, which constitutes
a strip of the MERA.

Below we show that MPS B′ indeed satisfies the necessary
criteria for the above argument: It belongs to the same phase
as MPS B and is normal. (Normality ensures that the bond
representation can be trusted to correspond to the phase of the
MPS.) To this end, we argue that each of the elementary oper-
ations (i)–(v), which implement the coarse graining, preserves
the symmetry, phase, and normality of the MPS.

Symmetry is preserved. Since the MPS tensors, the disen-
tanglers, and isometries are all symmetric, the result of all
the contraction steps is also a symmetric tensor [15], which
ensures that the symmetry is preserved. The decomposition
step, however, requires more careful consideration. It turns out
that a symmetric tensor can always be decomposed into sym-
metric tensors if the decomposition is carried out blockwise,
as explained in Fig. 6.

Phase is preserved. Broadly speaking, two quantum many-
body states are in the same phase if they can be connected by
a finite-depth circuit of finite-range interactions; such states
are expected to have the same large length scale properties
[9–11]. The disentanglers are local unitary transformations
and therefore keep the state in the phase by definition. The
isometries are composed of local unitary transformations
followed by a projection to the support of the local density
matrix. Such a projection also preserves the ground state and
thus the phase of the state. (More generally, the disentanglers
can also be isometries instead of unitaries, in which case
they are also chosen to project to the support of the local
reduced density matrices, an operation which preserves the
phase.) The blocking and decomposition steps do not involve
any truncation of the Hilbert space. Thus, they preserve all
the information in the quantum state, including the phase it
belongs to.

Normality is preserved. This follows from known proper-
ties of normal matrix product states, which are reviewed in
Appendix A.

Thanks to these properties, we can deduce that the rep-
resentation Xg is linear, as argued previously. Furthermore,
iterating the above RG procedure generates an RG flow where
the resulting representation Xg remains linear all along the RG
flow.

B. Absence of symmetry fractionalization at the RG fixed points

The RG flow described in the previous section is also
consistent with the expected RG fixed-point wave functions in
a 1D symmetry-protected phase. A representative RG fixed-
point wave function |�fixed

φ 〉 in a symmetry-protected phase
that is labeled [8] by φ ∈ H2(G,U (1)) is given by [9–11]

(7)
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where |�−〉≡ denotes a singlet under the action of a
suitable projective representation Vφ of G, that is,

|�−〉 = (Vφ ⊗ Vφ )|�−〉, (8)

and denotes a site of the lattice, which transforms as
the linear representation (Vφ ⊗ Vφ ). By “suitable” we mean
Vφ is the smallest irreducible projective representation in the
equivalence class labeled by φ ∈ H2(G,U (1)).

As described in Ref. [22], the wave functions |�fixed
φ 〉 can

be seen as fixed points of the coarse-graining transformation
composed of the symmetric tensors:

(9)

where denotes the identity in the irreducible representation
Vφ and 〈�−| ≡ . Notice that each index of both the tensors
here corresponds to double lines and thus carries the linear
representation (Vφ ⊗ Vφ ).

However, as also described in Ref. [22], if symmetry frac-
tionalization is allowed, then the wave functions {|�fixed

φ 〉}φ
are no longer fixed points since they can all be coarse grained
to a product state by means of the tensors:

(10)

This means that entanglement renormalization reproduces
the expected fixed point |�fixed

φ 〉 in each symmetry-protected
phase, provided the symmetry does not fractionalize. We have
shown that this is, in fact, the case and therefore also confirm
the observations presented in Ref. [22].

The MERA description of a ground state belonging to
phase φ consists of the RG flow to the fixed-point state
|�fixed

φ 〉. We have seen that the symmetry does not fraction-
alize during the RG flow or at the fixed point. Thus, we
conclude that the symmetry does not fractionalize in the
MERA description of a gapped symmetry-protected ground
state.

We remark that symmetry fractionalization in the MPS
has been exploited to devise practical schemes to detect
symmetry-protected phases in MPS ground-state simulations:
either by computing nonlocal order parameters [13] (topo-
logical invariants) or by making use of symmetric tensors to
directly detect the equivalence class of the bond representation
for the state [33]. In the MERA, one must instead examine
the fixed point of the RG flow to detect the phase (see
Refs. [22,34]).

IV. CRITICAL GROUND STATES

In the previous section, we argued that the symmetry
does not fractionalize in a MERA description of a gapped
symmetry-protected ground state. The argument relied on
the fact that a gapped ground state admits a faithful MPS
description. On the other hand, a critical ground state cannot
be faithfully described as a MPS; therefore, our argument does
not carry over to critical states.

However, we expect that the RG flow at a critical point also
preserves the global and on-site character of the symmetry—
thus, the local symmetry constraint Eq. (3) still holds. This

means that the MERA description of a critical ground is
also composed of symmetric tensors (up to gauge transfor-
mations), Eq. (5). Therefore, it is at least possible that the
symmetry can fractionalize in the MERA description of a
critical symmetry-protected ground state. (Since symmetric
tensors were a prerequisite for symmetry fractionalization in
the MPS.)

A possible argument against symmetry fractionalization in
critical systems could be that perhaps symmetry fractional-
ization results from, and is intimately tied to, the short-range
entanglement structure that is characteristic of gapped ground
states. However, below we illustrate a counterexample.

Consider the MERA composed from copies of the follow-
ing tensors:

(11)

These are almost the same tensors as the ones in Eq. (10),
except that we have swapped the top indices in the wφ tensor.
The symmetry is clearly still fractionalized on some of the
indices.

However, in contrast to the MERA from Eq. (10), the
average entanglement entropy of a block of � sites in the
MERA from Eq. (11) grows as log2 �, as illustrated in
Fig. 7. This is also the characteristic scaling of entanglement
entropy in 1D critical ground states. Note, however, that the
state represented by this MERA [Eq. (11)] cannot be the
ground state of a critical system since, for example, it is
not translation invariant. One can speculate that it may be
possible to construct a fractionalized critical ground state
by taking superpositions of translations of such a MERA.

FIG. 7. A patch of the MERA composed of copies of tensors
shown in Eq. (11). This MERA represents a state that exhibits both
symmetry fractionalization and long-range entanglement. The latter
can be deduced by considering blocks of sites (open indices at
the bottom) on the 1D lattice with an increasing number of sites;
for example, illustrated here are blocks of � = 4, 8, and 16 sites
indicated in red, blue, and green, respectively. The entanglement of
each block with the rest of the lattice is proportional to the number
of singlets shared between the block and the remaining lattice; these
are the singlets that are intersected by the geodesic (shown in the
respective colors) that extends between the end points of the block
through the tensor network. For the three blocks illustrated here the
respective geodesic intersects four, six, and eight sites. Generally,
a block of � sites shares approximately log2 � singlets with the
remaining lattice.
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Nevertheless, this example illustrates that a MERA can exhibit
both symmetry fractionalization and long-range entanglement
characteristic of 1D critical systems.

If the symmetry can fractionalize at a critical point, how-
ever, there are at least a couple of potentially interesting
questions one can ask. First, analogous to the MPS, can
symmetry fractionalization in the MERA be used to char-
acterize critical symmetry-protected phases which were, for
example, introduced recently in Refs. [26–29]? Second, how
does symmetry fractionalization in the MERA interplay with
the emergent conformal symmetry at the critical fixed point?
And third, what role, if any, does symmetry fractionalization
play in holographic interpretations of the MERA?

V. SUMMARY

We first showed that a MERA with a global on-site sym-
metry necessarily consists of symmetric tensors (up to gauge
transformations), provided we assume that the symmetry re-
mains global and on site along the RG flow. This motivates
the existing use of symmetric tensors for implementing global
on-site symmetries in MERA algorithms and also sets the
stage for exploring symmetry fractionalization in the MERA.
Subsequently, we argued that the symmetry does not frac-
tionalize in MERA descriptions of 1D gapped symmetry-
protected ground states. However, without imposing any other
constraints on the RG flow, symmetry fractionalization can
still occur in MERA descriptions of 1D critical symmetry-
protected ground states, which could potentially lead to in-
teresting applications.
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APPENDIX A: NORMAL MATRIX PRODUCT STATES

In this Appendix, we briefly review the definition and some
standard properties of normal matrix product states, which
we used in this paper. The following material has been taken
mostly from Refs. [3,5,6].

A translation-invariant MPS |�〉 of a lattice L with L sites
is composed from a set of matrices {Ai}d

i=1 as

|�〉 =
∑

i1i2...iL

Tr(Ai1 Ai2 . . . AiL )|i1〉 ⊗ |i2〉 · · · ⊗ |iL〉, (A1)

where ik labels an orthonormal basis on site k. The matrices
{Ai} can be glued together to obtain a three-index tensor A,
such that fixing a particular value of the index i selects a
matrix Ai from the tensor. We succinctly refer to |�〉 as MPS

A. We will also represent the MPS graphically as follows:

Each circle represents a copy of tensor A. Each open index ik
labels an orthonormal basis |ik〉 on site k of L. The probability
amplitude for a given configuration |i1〉 ⊗ |i2〉 · · · ⊗ |iL〉 is
obtained by fixing the open indices to the corresponding
values and performing the trace of the product of the resulting
selection of matrices.

Definition 1. Injectivity. Let us define a matrix MA as

(A2)

whose rows are indexed by the pair (a, b) and columns are
indexed by i. MPS A is said to be injective if the matrix
MA has a (pseudo)inverse M−1

A , MAM−1
A = I . This can also

be expressed directly in terms of A as follows: there exists a
three-index tensor A−1 such that

(A3)

Definition 2. Normality. Consider another lattice L×s that
is obtained by blocking together s sites of L. State |�〉 can be
described on the lattice L×s by an MPS whose matrices {A×s

j }
are given by

A×s
j ≡ Aik Aik+1 · · · Aik+s , (A4)

where j ≡ (ik, ik+1, . . . , ik+s) labels an orthonormal basis
| j〉 ≡ |ik〉 ⊗ |ik+1〉 · · · ⊗ |ik+s〉 on a site of L×s. For example,
for s = 2 we have

(A5)

MPS A is called normal if there exists an s such that the MPS
A×s is injective.

Definition 3. Canonical form. Define the map EA(◦) =∑
i Ai(◦)A†

i , depicted as

(A6)

where † denotes the Hermitian adjoint. MPS A is said to be in
the canonical form if (i) the spectral radius of the map EA is
equal to 1, (ii) EA has an eigenvalue equal to its spectral radius
(i.e., equal to 1), and (iii) the left (right) dominant eigenvector
is the identity while the right (left) dominant eigenvector is a
positive semidefinite matrix.
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Property 1. A sufficient condition for normality. If (i) MPS
A is in the canonical form and (ii) the largest eigenvalue of
EA(X ) is equal to 1 and nondegenerate, then it is normal.

See, e.g., Proposition II.1. in Ref. [6].
In the remainder, we will assume that MPS A satisfies

Property 1 (and is thus normal).
Property 2. Blocking. MPS A×s is also normal.
Proof. Since EA×s = (EA)s, the spectral properties of the

map EA×s satisfy the conditions for normality demanded in
Property 1.

Property 3. Equivalence. If a normal MPS A is equal (up
to a phase) to another normal MPS A′, then there exists an
invertible matrix X such that A′

i = XAiX −1 ∀ i, depicted as

(A7)

proved as Theorem 7 in Ref. [3].
Property 4. Decomposition. Consider MPS A×2 obtained

from MPS A by blocking two sites, Eq. (A5). Let us perform
an arbitrary decomposition A×2

i j ≡ PiQj and obtain a new

MPS A′×2
i j ≡ QiPj ,

(A8)

MPS A′×2 is also normal.
Proof. Clearly, MPS A×2 and MPS A′×2 both represent the

same state. [Since the trace in Eq. (A1) remains unaffected
by the decomposition considered here.] Thus, the two MPSs
are equivalent and related according to Eq. (A7); that is, there
exists an invertible matrix Y such that

(A9)

As a result, the map EA′×2 is related to the map EA×2 as

(A10)

Thus, both maps have the same spectrum. We know that
the dominant left and right eigenvectors of EA×2 are positive
semidefinite (in fact, one of the eigenvectors is the identity).
Since the left and right eigenvectors of EA′×2 are related to
those of EA×2 by conjugation under Y (·)Y † [Y −1(·)(Y −1)†], the
dominant left and right eigenvectors of EA′×2 are also positive
semidefinite [since positive definiteness is preserved under
any conjugation of the form Z (·)Z†].

Property 5. On-site unitary. Consider MPS A′ obtained
from MPS A by acting with unitary U on each site of L. We

have A′
i = ∑

j Ui jA j , depicted as

(A11)

MPS A′ is also normal.
Proof. This follows from the fact that the maps EA and EA′

[Eq. (A6)] are equal.
Property 6. Let MA = usv denote the singular-value de-

composition of the matrix MA of Eq. (A2), where u†u =
I, vv† = I, and s is a diagonal matrix with positive entries:

(A12)

Then the range of the matrix v contains the support of the
one-site density matrix obtained from MPS A.

Proof. The one-site density matrix ρ is given by

(A13)

where L, R are the dominant left and right eigenvectors of EA,
respectively. The equality is obtained by replacing tensor A
(and A†) by the singular-value decomposition (A12). Conse-
quently, vρv† has the same spectrum as ρ (since vv† = I).
Thus, v preserves the support of ρ.

Property 7. On-site projector. Consider MPS A′ obtained
from MPS A by acting with the isometry v of Eq. (A12) on
each site of L. (The isometry v projects to the support of the
one-site density matrix, Property 6.) We have A′

i = ∑
j vi jA j ,

depicted as

(A14)

MPS A′ is also normal.
Proof. This follows from the fact that the maps EA and EA′

[Eq. (A6)] are equal since

(A15)

where we used vv† = I.
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APPENDIX B: SYMMETRIC DISENTANGLERS
AND ISOMETRIES FROM TENSOR A

Consider a symmetric tensor A that fulfills Eq. (3), which
we recall here:

(B1)

Recall that tensor A is obtained by contracting a disentangler
u and an isometry w as

(B2)

Below we show tensors u and w can always be chosen to be
symmetric (under reasonable assumptions).

Let us contract a disentangler and an isometry differently
to obtain another tensor A′ as

(B3)

where, in comparison to Eq. (B2), we have shifted the relative
positions of u and w. We can now repeat the argument in the
main text to prove that tensor A′ is also symmetric. (Since
the argument did not depend on how the MERA tensors were
paired and combined to form a matrix product operator.) Thus,
we also have

(B4)

Next, we define tensor Q obtained by contracting A′ and A† as

(B5)

Tensor Q is symmetric since it was obtained by contracting
symmetric tensors [15]. Since Q = w† ⊗ w, w must be sym-
metric, fulfilling

(B6)

In order to show that u is also symmetric, we have to assume
w has a pseudoinverse w−1:

(B7)

It can easily be shown that if a pseudoinverse exists, it must be
symmetric. (Tensor w is block diagonal when expressed in the
symmetry basis for each index. A symmetric pseudoinverse of
w is obtained by replacing each block with its pseudoinverse.)
If w−1 exists, then we can act with it on both sides of Eq. (B2)
and obtain

(B8)

Since A and w−1 are symmetric, u must also be symmetric,
fulfilling

(B9)
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