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Non-Abelian operation on chiral Majorana fermions by quantum dots
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We show that if a quantum dot or Majorana zero mode couples to the chiral Majorana fermions, a resonant
exchange of chiral Majorana fermions can occur and leads to a non-Abelian braidinglike operation analogous
to the braiding of Majorana zero modes. Remarkably, any operation in the braid group can be achieved by
this scheme. We further propose electrical transport experiments to observe the braidinglike operation on four
chiral Majorana fermions and demonstrate the non-Abelian character in four-terminal devices of the quantum
anomalous Hall insulator/topological superconductor hybrid junctions. Both a conductance peak due to the
operation and the operation-order-dependent conductance are predicted. These findings pave the way to perform
any non-Abelian operation on chiral Majorana fermions by electrically controllable quantum dots.
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I. INTRODUCTION

The Majorana fermion, which is its own antiparticle, was
originally introduced as a putative elementary particle by
Ettore Majorana and has been pursued as a quasiparticle
excitation in condensed-matter systems [1–3]. Quantum in-
formation can be stored nonlocally in the degenerate ground-
state space generated by the zero-energy Majorana excita-
tions. Because of the non-Abelian braiding statistics [4,5],
that information can be manipulated through the exchange of
the Majorana excitations, which leads to a noncommutative
transformation between different ground states. The final state
is determined by the topology of the braiding and is robust
against local perturbation, with possible applications in topo-
logical quantum computation [6–10].

For the zero-dimensional case, Majorana zero modes
(MZMs) are predicted as midgap states bound to charge-
e/4 quasiparticles of ν = 5/2 fractional quantum Hall effect
[4,11–13] and Abrikosov vortices in topological supercon-
ductors (TSCs) [5,14–16]. Moreover, alternative proposals
suggest that a semiconducting nanowire coupled with a super-
conductor can also support MZMs localized at the wire ends
[17–19], and mounting experimental progress in pursuing
MZMs in these systems has been achieved by measuring the
zero-bias peak of tunneling spectroscopy [20–23]. Despite the
architectures proposed for performing the braiding operations
of MZMs [10,24–27], the experimental realization remains an
ongoing challenge.

As the one-dimensional analog of MZMs, chiral Majorana
fermions emerge as unidirectionally propagating edge modes
surrounding the edge of the p + ip TSC [15,28–37]. The TSC
has a full pairing gap classified by topological Chern number
N , which also determines the number of chiral Majorana
edge modes. Theoretical proposals show that such an exotic
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superconductivity could arise by bringing certain topological
matters in proximity to an s-wave superconductor [15,29]. By
coupling an s-wave superconductor to a quantum anomalous
Hall insulator (QAHI) realized in magnetic topological insu-
lator thin films [38,39], a half-integer conductance plateau
resulting from the chiral Majorana fermion was predicted
[33,40], serving as a signature of a TSC with N = 1. Unlike
for the MZMs, few researchers have addressed the possible
benefits of chiral Majorana fermions in the development
of topological quantum computation [41,42]. In contrast to
bounded MZMs, the chiral Majorana fermion is extended,
providing a promising platform for scalable quantum compu-
tations.

In this paper, we propose a strategy to realize the non-
Abelian braidinglike operation on chiral Majorana fermions
coupled with a quantum dot (QD) or MZM. Let us first recall
the electron resonance tunneling through the lead/QD/lead
system [43,44]. Considering a system consisting of a QD
coupled to two leads as shown in Fig. 1(a), an electron can
resonantly tunnel from a lead through the QD to the other lead
when the energy level of the QD is zero. However, when the
energy level is far from zero, the electron tunneling is forbid-
den, and complete reflection occurs. Motivated by the electron
resonant tunneling through a QD in the lead/QD/lead system,
we show that if two chiral Majorana fermions γ1,2 are coupled
to a MZM, a resonant tunneling of Majorana fermions occurs
and leads to a resonant exchange that sends γ1 → −γ2 and
γ2 → −γ1 [see Fig. 1(b)]. On the other hand, a single chiral
Majorana fermion coupled with a MZM acquires a negative
sign. Our key idea is that by combining these two effects due
to the coupling with MZMs [see Fig. 1(d)], γ1 and γ2 are
transformed according to γ1 → γ2 and γ2 → −γ1, reminis-
cent of the braiding of MZMs. Then we demonstrate that such
a braidinglike operation on chiral Majorana fermions could be
completely reproduced by replacing MZMs with QDs, which
are well constructed and can be controlled by the gate voltage
in experiments [45–47]. We further propose a four-terminal

2469-9950/2019/99(19)/195137(10) 195137-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.195137&domain=pdf&date_stamp=2019-05-22
https://doi.org/10.1103/PhysRevB.99.195137


YAN-FENG ZHOU, ZHE HOU, AND QING-FENG SUN PHYSICAL REVIEW B 99, 195137 (2019)

FIG. 1. (a) The resonant tunneling of an electron occurs in a
lead/QD/lead model. (b) Two chiral Majorana fermions, γ1 (blue
arrow) and γ2 (red arrow), are coupled to a MZM (yellow solid
circle), and the coupling leads to a resonant exchange γ1 → −γ2 and
γ2 → −γ1. (c) When the MZM is absent or disabled, as indicated
by an open circle, γ1 and γ2 propagate independently. (d) The
braidinglike operation on chiral Majorana fermions according to
γ1 → γ2 and γ2 → −γ1 can be realized if one couples two MZMs
to γ1,2.

setup of the hybrid TSC/QAHI junction to observe the braid-
inglike operation on four chiral Majorana fermions indicated
by a resonant conductance peak. Remarkably, our proposed
system can be extended to carry out any operation in the
braid group. For a sequential exchange process, the resonant
conductance peak has a value of e2

2h or e2

h depending on the
exchange order, which means the non-Abelian character of the
operation.

The rest of the paper is organized as follows. After this
introductory section, Sec. II provides the Hamiltonian describ-
ing two chiral Majorana fermions coupled to a MZM and the
scattering matrix describing transmission between the chiral
Majorana fermions. Then, in Sec. III, the Hamiltonian and
scattering matrix in the QD coupling case are presented. In
Sec. IV A, an experimental device for observing the braid-
inglike operation is proposed, and transport properties are
studied. Then, a proposal for demonstrating the non-Abelian
character of the operations is shown in Sec. IV B. Moreover,
we show a universal device for executing various braidinglike
operations controlled by gates in Sec. IV C. Section V con-
cludes this paper. Some auxiliary materials are relegated to
the Appendixes.

II. MAJORANA ZERO MODE COUPLING CASE

We begin by investigating the MZM coupling case in which
a MZM is coupled to a pair of chiral Majorana fermions
as shown in Fig. 1(b). The low-energy Hamiltonian of two
decoupled chiral Majorana fermions is

H0 = iν
∑

α=1,2

∫ +∞

−∞
γα (x)∂xγα (x)dx, (1)

where γα (x) is the field operator of chiral Majorana fermions,
with γ †

α (x) = γα (x) satisfying {γα (x), γβ (x′)} = δαβδxx′ , and
ν denotes the Fermi velocity. Let HM = ∑

α=1,2 itαγα (0)γ0

describe the coupling term between the MZM γ0 (γ †
0 = γ0

and {γ0, γ0} = 1) and γα (x) at x = 0 with strength tα . Then
the total Hamiltonian is

H1 = H0 + HM. (2)

When MZM γ0 is absent, as denoted by an open circle in
Fig. 1(c), γ1 and γ2 propagate independently, determined by
H0. If we switch on γ0, as indicated by a yellow solid circle in
Fig. 1(b), the scattering between γ1 and γ2 occurs at x = 0 due
to the coupling with a MZM. In order to study the transport
process, we first calculate the scattering matrix of the chiral
Majorana fermions described by H1 in Eq. (2).

By investigating the equations of motion for the field
operators, i.e., i∂tγi = [γi, H1] (i = 0, 1, 2) in the Heisenberg
picture, it can be found that the operators obey the differential
equations of motion,

i∂tγα (x, t ) = 2iν∂xγα (x, t ) + itαδ(x)γ0(t ), (3)

i∂tγ0(t ) = −
∑

α=1,2

itαγα (0, t ). (4)

Note that we have used the anticommutation relations to de-
rive these equations. By the Fourier transformation of γα (x, t )
and ∂tγα (x, t ),

γα (x, ε) =
∫ +∞

−∞
γα (x, t )eiεt dt, (5)

εγα (x, ε) =
∫ +∞

−∞
[i∂tγα (x, t )]eiεt dt, (6)

the differential equations (3) and (4) become

εγα (x, ε) = 2iν∂xγα (x, ε) + itαδ(x)γ0(ε), (7)

εγ0(ε) = −
∑

α=1,2

itαγα (0, ε). (8)

Integrating both sides of Eq. (7) from 0− to 0+, we obtain

2iν[γα (0+) − γα (0−)] + itαγ0 = 0. (9)

Here, the variable ε has been left out for simplicity. Using
Eq. (8) and γα (0) = γα (0+ )+γα (0− )

2 , one arrives at(
2iν + t2

1

2ε

)
γ1(0+) + t1t2

2ε
γ2(0+)

=
(

2iν − t2
1

2ε

)
γ1(0−) − t1t2

2ε
γ2(0−), (10)

t1t2
2ε

γ1(0+) +
(

2iν + t2
2

2ε

)
γ2(0+)

= − t1t2
2ε

γ1(0−) +
(

2iν − t2
2

2ε

)
γ2(0−). (11)

Denoting the incoming and outgoing scattering states of
the chiral Majorana fermions by γ1/2(0−) and γ1/2(0+),
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respectively, the scattering matrix can be written as(
γ1(0+)

γ2(0+)

)
= SM

(
γ1(0−)

γ2(0−)

)
. (12)

Solving Eqs. (10) and (11), we get the scattering matrix SM:

SM = 1

A

(
4iεν + t2

2 − t2
1 −2t1t2

−2t1t2 4iεν + t2
1 − t2

2

)
, (13)

in which A = 4iεν + t2
1 + t2

2 and ε is the incident energy.
The off-diagonal elements of the SM matrix correspond to
the amplitude for transmission between γ1 and γ2. The result-
ing transmission coefficient is T (ε) = |SM,12|2 = 4	1	2

4ε2+(	1+	2 )2 ,

with 	α ≡ t2
α/(2ν), which is the same as the Breit-Winger for-

mula describing the resonant scattering of the lead/QD/lead
system.

Similar to the resonant tunneling process in the
lead/QD/lead system [43,44] [see Fig. 1(a)], if the value of
ε largely deviates from zero, the energy mismatch disables
MZM γ0, and no transmission happens with T = 0, as illus-
trated in Fig. 1(c). However, it is obvious from Eq. (13) that
when ε = 0 and t1 = t2 = t , the scattering matrix becomes
SM = ( 0 −1

−1 0 ). In other words, when the energy of the
incoming chiral Majorana fermions matches the energy of
the MZM, there occurs a resonant exchange according to
γ1 → −γ2 and γ2 → −γ1, as depicted in Fig. 1(b). Moreover,
we consider the case that γ0 is coupled only with γ1 by
setting t2 = 0 and t1 = t . Here, for ε = 0, the scattering matrix
becomes SM = ( −1 0

0 1 ). This means that the phase of the
chiral Majorana fermion can be changed by a value of π as
γ1 → −γ1, which can also be realized by the coupling with
a metallic island [34,48]. More interestingly, it can be shown
that two successive manipulations in which one MZM is first
coupled simultaneously to γ1 and γ2 and then an additional
one is coupled solely to γ1 [see Fig. 1(d)] can produce a
braidinglike operation on chiral Majorana fermions, γ1 → γ2

and γ2 → −γ1, like that in the braiding of MZMs. At this
point, this result suggests that our method makes the non-
Abelian operation on chiral Majorana fermions possible with
the coupling of MZMs.

III. QUANTUM DOT COUPLING CASE

Considering that a zero-energy charged fermion bound
state is topologically equivalent to a pair of MZMs [1], we
want to know whether a QD with a single energy level
can provide an alternative approach to transform the chiral
Majorana fermions as well as a MZM. Next, we consider
two chiral Majorana fermions coupled to a QD as shown in
Fig. 2(a). The total Hamiltonian now becomes

H2 = H0 + HQD + HC, (14)

where HQD = εd d†d and HC = ∑
α=1,2 i(t̃α/

√
2)γα (0)(d +

d†) [49]. The second term, HQD, is the Hamiltonian of the
QD with a single energy level εd , and d† (d) are the creation
(annihilation) operators of the fermion state in the QD. The
third term, HC, describes the coupling between γα and the QD
with coupling strength t̃α .

FIG. 2. (a) The chiral Majorana fermions γ1 (blue arrow) and γ2

(red arrow) are coupled to a QD with a single energy level εd . (b) The
transmission T̃ describing the scattering between γ1 and γ2 due to the
QD coupling as a function of εd at different temperatures.

Similar to the MZM coupling case, the scattering matrix
denoted by SQ in this case can be derived as (see Appendix A
for details)

SQ = 1

Ã

(
B̃ + t̃2

2 − t̃2
1 −2t̃1t̃2

−2t̃1t̃2 B̃ + t̃2
1 − t̃2

2

)
, (15)

where B̃ = 4iν(ε2 − ε2
d )/ε and Ã = B̃ + t̃2

1 + t̃2
2 . For compari-

son with the MZM setting εd = 0, it can be found that the scat-
tering matrix SQ is the same as SM in Eq. (13). To make this
point more clearly, we define two Majorana operators, γd1 =
(d + d†)/

√
2 and γd2 = −i(d − d†)/

√
2. Written in this Ma-

jorana basis, the coupling part in Eq. (14) becomes HC =∑
α=1,2 it̃αγα (0)γd1, which recovers HM in the MZM coupling

case, and the chiral Majorana edge modes decouple from one
of the Majorana modes inside the QD. For the energy level
εd = 0, the Hamiltonian in Eq. (14) is the same as the Hamil-
tonian in Eq. (2). Therefore, the QD should be able to accom-
plish the braidinglike operation on chiral Majorana fermions
like the MZM. On the other hand, in real experiments the
energy level εd inside the QD can be tuned easily by gate volt-
ages [45–47]. For finite εd , the transmission coefficient now
becomes T̃ (ε) = |SQ,12|2 = 4	̃1	̃2ε

2

4(ε2−ε2
d )2+(	̃1+	̃2 )2ε2 , with 	̃α ≡

t̃2
α/(2ν). Considering the nonzero temperature T , the ef-

fective transmission coefficient is T̃ = ∫ +∞
−∞ T̃ (ε)(− ∂ f

∂ε
)dε,

where f (ε) = [exp(ε/kBT ) + 1]−1 is the Fermi distribution
function. Figure 2(b) shows T̃ as a function of εd with 	̃1 =
	̃2 ≡ 	 = 1 meV at different temperatures. It can be seen that
the transmission curves T̃ show obviously resonant behaviors
with a peak at εd = 0 where the resonant exchange of chiral
Majorana fermions occurs. If the value of εd deviates from
zero, T̃ decreases with a full width at half maximum estimated
to be

√
	kBT . When εd is far from zero, T̃ tends to zero,

and the chiral Majorana fermions propagate independently
without exchange, as shown in Fig. 1(c). This result implies
an electrical method to control the braidinglike operation. In
contrast to MZMs, the QDs are well constructed experimen-
tally [47], and thus, the QDs are considered in the following
discussion.
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FIG. 3. (a) An experimental device based on TSC/QAHI junctions allows us to observe the braidinglike operation on four chiral Majorana
fermions γi (i = 1, 2, 3, 4). The chirality of γi in the left part is different from the one in the right part as a result of the opposite magnetizations
in the two regions. The QD can trigger the exchange of γ2 and γ3. (b) and (c) Transport coefficients for the transmission process for lead 1 to
leads 3 and 4 and terminal conductance as a function of εd .

IV. EXPERIMENTAL PROPOSAL

A. Observation of the braidinglike operation

To observe the braidinglike operation on chiral Majorana
fermions experimentally, we propose the electrical trans-
port in a four-terminal device where two ribbons of hybrid
TSC/QAHI junctions with opposite out-of-plane magnetiza-
tions are coupled by a QD, as depicted in Fig. 3(a). The QAHI
was realized in magnetically doped topological insulators with
Chern number C = 1 and has one chiral Dirac edge mode
around its boundary [38,39]. The theoretically proposed TSC
by bring QAHI in proximity to an s-wave superconductor
has a Chern number N = 1, which corresponds to one chiral
Majorana edge mode [15,29]. In view of the fact that there
exists one chiral Majorana edge mode at the boundary be-
tween TSC and QAHI [33], the transport process in the device
occurs via four chiral Majorana edge states γi (i = 1, 2, 3, 4),
as denoted by red and blue arrows in Fig. 3(a). The QD
between the TSC regions behaves as a switch for controlling
the braidinglike operation on γ2 and γ3 and determines the
terminal conductance. Considering that the chiral Majorana
edge modes are localized at the edges with a localization
length lw [50], the width of the TSC and QAHI regions in
Fig. 3(a) should be greater than the localization length to
avoid hybridization between the Majorana edge modes. For an
estimation, lw ∼ νF /� = 0.52 μm, with the Fermi velocity
of edge modes in QAHI νF ∼ 2.6 eV Å and the induced
superconducting gap � ∼ 0.5 meV [33]. But the interval
between the left and right hybrid TSC/QAHI ribbons [i.e.,
the interval between γ2 and γ3; see Fig. 3(a)] can be close
to or less than lw because the wave function of the Majorana
edge state is zero outside the TSC and QAHI [50]. In real
experiments, considering a QD with a size of 0.5 μm, the
interval between the left and right TSC/QAHI ribbons can
be set to 1 μm, and the QD can be placed in the middle of two
TSCs in the center, as shown in Fig. 3(a).

The measured current in lead n can be calculated using the
multiprobe Landauer-Büttiker formula [51–53]

In = e2

h

∑
m

Tnm(Vn − Vm) + T A
nm(Vn + Vm), (16)

where Tnm (T A
nm) is the normal tunneling (Andreev reflection)

coefficient from lead m to lead n and Vn is the voltage of

terminal n. The voltage of lead 1 is fixed to V , and the
voltages of leads 2, 3, and 4 have the same value U [see
Fig. 3(a)]. These transport coefficients can be calculated from
the scattering matrix SQ in Eq. (15) (see Sec. B 1). With these
coefficients, the currents of the leads become

I1 = e2

h
T13(V − U ), (17)

I2 = 0, (18)

I3 = e2

h

[
T31(U − V ) + T A

31(U + V ) + 2T A
32U

]
, (19)

I4 = e2

h

[
T41(U − V ) + T A

41(U + V ) + 2T A
42U

]
. (20)

Then by the current conservation I1 + I2 + I3 + I4 = 0, one
gets

U = T31 − T A
31 + T41 − T A

41 − T13

T31 + T A
31 + 2T A

32 + T41 + T A
41 + 2T A

42 − T13
V.

(21)

The conductance of lead n is defined as Gn = −In
V1−Vn

= −In
V −U ,

which can be obtained from Eqs. (17)–(21) straightforwardly.
Figures 3(b) and 3(c) display the transport coefficients

and terminal conductance as functions of εd , respectively.
If εd is tuned away from zero, the electrical transports in
two ribbons are independent despite the QD (T41 = T A

41 = 0),
and the normal tunneling process dominates with T31 = 1,
leading to G3 = e2/h and G4 = 0. As εd approaches zero, the
transmission between γ2 and γ3 takes place with a resonant
exchange γ2 → −γ3 and γ3 → −γ2. As a result, the normal
tunneling coefficient and Andreev reflection coefficient from
lead 1 to both leads 3 and 4 are equal, i.e., T31 = T A

31 = T41 =
T A

41 = 1/4, as shown in Fig. 3(b). Moreover, it can be seen
from Fig. 3(c) that the conductance G4 shows a peak of e2

2h ,

while G3 has a valley of e2

2h , with G2 + G3 + G4 = e2

h and
G2 = 0. If another QD is brought to couple with γ2 after
the resonant exchange, γ2 acquires an additional sign change,
and the braidinglike operation is carried out as γ2 → γ3 and
γ3 → −γ2. However, the transmission coefficients from lead
1 to leads 3 and 4 are unaffected, and so is the conductance.
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FIG. 4. Experimental devices providing a demonstration of the
non-Abelian character. (a) and (b) Devices execute two joint opera-
tions constituted by three sequential braidinglike operations, σ2σ1σ2

and σ2σ2σ1, respectively. The different orders in the two operations
yield completely different braidings of γi (i = 1, 2, 3, 4), as shown in
the middle. The gate voltage VG performs operator σ1, and operator
σ2 is carried out by two successive QDs, as discussed in Fig. 1(d).

Therefore, such a conductance peak (valley) can provide an
experimental signature for the braidinglike operations.

B. Demonstration of the non-Abelian character

In principle, there are infinite braidinglike operations on
four chiral Majorana fermions forming a braid group similar
to the braiding of MZMs. Any braiding operation in the
group can be represented algebraically in terms of generators
σi, with i = 1, 2, 3 [9]. The braidinglike operation of γα

at the ith position and γβ at the (i + 1)th position can be
formulated as a non-Abelian unitary transformation with the
form σi = e(π/2)γβγα , where we retain i only in subscript for
simplicity. Through a Taylor expansion, the expression be-
comes σi = e(π/2)γi+1γi = 1√

2
(1 + 2γβγα ). By performing the

operation on γα,β and using the anticommutation relations,
one obtains σiγασ−1

i = γβ and σiγβσ−1
i = −γα as the braid-

inglike operations. Now, we take the device with two ribbons
of TSC/QAHI junctions in Fig. 4(a) as an example to show
our strategy to execute all three generators. There are four
chiral Majorana edge modes denoted by arrowed lines starting
from leads 1 and 2. Similar to the discussion of Fig. 1(d), with
the coupling of two successive QDs, the consequent operation
completes σ2, which braids the chiral Majorana fermions
propagating along the central two red lines. Moreover, the
gate voltage VG of the left ribbon in Fig. 4(a) can induce an
additional phase for the chiral QAHI edge state, leading to
a transformation between the chiral Majorana fermions on
the first and second lines sorted from left to right, which is
equivalent to the braidinglike operation by σ1 [41]. Similarly,
the braidinglike operation by σ3 can be carried out by placing
a gate voltage on the QAHI edge of the right ribbon, as
shown in Fig. 5. Accordingly, in view of the scalability of
chiral Majorana edge modes, the proposed device provides
a scalable platform to perform any braidinglike operation by
an arbitrary combination of the three generators which can
be controlled and tuned by the electrical method, and we
clarify this point in the next section. Moreover, the proposed
braidinglike operation on chiral Majorana fermions runs at the
speed of the electric field, which is much faster than those of

FIG. 5. Four representative operations realized in a universal
device by tuning the gates. (a) By tuning gates 1, 2, and 6 away
from the working conditions as represented by dark gray shaded
regions, the resulting operation recovers σ2σ1σ2 in Fig. 4(a). (b) The
operation σ2σ2σ1 by tuning gates 2, 5, and 6, reminiscent of Fig. 4(b).
(c) and (d) Operations σ3σ1σ2σ1 and σ2σ3σ1σ2σ1. The open circles
in (c) mean that the energy level εd is tuned away from zero by
gates 7 and 8 and the QDs cannot braid the chiral Majorana edge
modes anymore. The middle shows the corresponding braidinglike
operation on γi (i = 1, 2, 3, 4).

the MZM limited by the velocity of a moving domain wall in
one-dimensional topological superconductors [54,55].

With this exciting possibility to carry out any braidinglike
operation, we next propose the electrical transport experi-
ments in the devices, as shown in Fig. 4, to observe the
non-Abelian character where the sequential exchanges are
executed in different orders. Here, we set εd = 0 for all the
QDs. Let us define occupation number 0 or 1 of the QAHI
edge states in the left and right ribbons as two qubits L and
R with bases |0x〉 and |1x〉 (x = L, R) [41]. The degenerate
ground-state space of the two qubits is expanded by four
states, |0L0R〉, |1L0R〉, |0L1R〉, and |1L1R〉. In this basis, the
generator σi which exchanges γi and γi+1 is represented by a
4 × 4 unitary matrix ρ(σi ) acting on the states in the ground-
state space as [5]

ρ(σ1) =

⎛⎜⎜⎝
e−iπ/4 0 0 0

0 e+iπ/4 0 0
0 0 e−iπ/4 0
0 0 0 e+iπ/4

⎞⎟⎟⎠, (22)

ρ(σ2) = 1√
2

⎛⎜⎝ 1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

⎞⎟⎠, (23)
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ρ(σ3) =

⎛⎜⎜⎝
e−iπ/4 0 0 0

0 e−iπ/4 0 0
0 0 e+iπ/4 0
0 0 0 e+iπ/4

⎞⎟⎟⎠. (24)

First, we consider two joint operators, σ2σ1 and σ1σ2. After
the braidinglike operations, the chiral Majorana fermions
(γ1, γ2, γ3, γ4) are transformed to (−γ2,−γ3, γ1, γ4) by σ2σ1

and to (γ3, γ1, γ2, γ4) by σ1σ2, respectively. If we prepare
the system in an initial state |ψi〉 = |1L0R〉 by injecting the
electrons into qubit L one by one from lead 1 with weak
current, it can be found that σ2σ1 turns the system into the
final state |ψ f 1〉 = (|1L0R〉 − i|0L1R〉)/

√
2 and σ1σ2 turns it

into a different state, |ψ f 2〉 = (|1L0R〉 − |0L1R〉)/
√

2, via the
unitary matrices in Eqs. (22)–(24). Unfortunately, the two
different final states cannot be distinguished by the proposed
four-terminal device, in which we find G3 = G4 = e2

2h for both
cases (see Sec. B2). Although the two joint operators are
carried out in different orders, they both transport γ1 and γ2

coming from lead 1 to different leads (lead 3 and lead 4), and
this leads to the same result for conductance measurements.

However, the operators constituted by three sequential
exchanges, σ2σ1σ2 and σ2σ2σ1 in Fig. 4, yield very different
results, indicating the non-Abelian character. In this situation,
(γ1, γ2, γ3, γ4) are transformed to (γ3,−γ2, γ1, γ4) by σ2σ1σ2

and to (−γ2,−γ1,−γ3, γ4) by σ2σ2σ1, as shown in the middle
part of Fig. 4. From the initial state |ψi〉 = |1L0R〉, the de-
vice in Fig. 4(a) arrives at the final state |ψ f 2〉 = (|1L0R〉 −
|0L1R〉)/

√
2 transformed by σ2σ1σ2, while the joint operator

σ2σ2σ1 drives the device in Fig. 4(b) into final state |ψ f 3〉 =
|0L1R〉 via the unitary matrices in Eqs. (22)–(24). As a result,
the conductances observed in Fig. 4(a) are G3 = G4 = e2

2h , but

the ones in Fig. 4(b) are G4 = e2

h and G3 = 0 (see Sec. B 2).
In the case of σ2σ2σ1, γ1 and γ2 enter lead 3 together and
recombine as a hole providing a different conductance mea-
surement. These results provide a signature supporting the
non-Abelian character of the braidinglike operations on chiral
Majorana fermions.

In a real experiment, there may exist various decoherences,
which possibly corrects the predicted conductance [41]. In our
proposed experimental devices, two main mechanisms may
lead to the decoherence. The first one is the nonmonochro-
maticity of the incident chiral Majorana edge states from the
lead due to the thermal smearing. The thermal smearing may
lead to a momentum uncertainty in the incident states from
the lead 	p ≈ kBT /ν. As long as the two incident chiral
Majorana edge states from lead 1 enter the same lead together,
e.g., lead 3 or lead 4, they can recombine as an electron or
a hole depending on their phase relation after the operations
(zero or π ) [34,50]. To keep the phase relation unchanged, the
momentum uncertainty sets a length scale 	L < h̄/	p, where
	L is the length scale for the path-length difference of the
chiral Majorana edge states. For an estimation, the Fermi ve-
locity [33] h̄ν ∼ 2.0 eV Å, and the temperature T ∼ 20 mK;
this sets an upper bound on the path-length difference
	L ∼ 100 μm, which is feasible in real mesoscopic exper-
iments. The second source of decoherence is the inelastic
scattering process. The inelastic scatterers set up a length

scale, i.e., the Thouless phase coherence length lφ [56], on
which the quantum coherence is maintained. In the quantum
Hall states of a two-dimensional electron gas, the inelastic
phonon scattering can be dramatically suppressed by a large
magnetic field, and lφ can exceed 100 μm at T ∼ 20 mK
[57,58]. Due to the existence of chiral edge states in both
QAHI and integer quantum Hall, the phase coherence length
lφ in the QAHI is expected to be comparable to that in integer
quantum Hall. Furthermore, the phonon scattering on chiral
Majorana fermions is negligible due to their charge neutrality,
and the inelastic scattering of the interaction between chiral
Majorana fermions will be suppressed to a great extent at
low temperature [59]. As a result, the chiral Majorana edge
modes in TSC should have a longer phase coherence length lφ
than the edge modes in QAHIs. Based on these estimates, lφ
can be over 100 μm at low temperature (e.g., T ∼ 20 mK).
In combination with the above two points, the proposed
non-Abelian operation should be feasible, and the predicted
conductance should remain when the length of the hybrid
TSC/QAHI junction ribbon is not more than 100 μm.

C. Universal device for executing various operations

In this section, we further propose a universal device for
executing various braidinglike operations controlled by gates,
as illustrated in Fig. 5 to show the advantages of our strategy.
Similar to the devices in Fig. 4, the device shown in Fig. 5
is made of two ribbons of hybrid TSC/QAHI junctions with
opposite out-of-plane magnetizations. Here, we introduce four
QAHI regions covered by gate voltage VG, as denoted by
orange shaded regions, to carry out the braidinglike operator
σ1 (σ3) controlled by gates 1 and 5 (2 and 6). Moreover, four
QDs controlled by gates 3, 4, 7, and 8 are placed between the
TSC regions to carry out the braidinglike operator σ2. If all
the operators controlled by the gates are working, the resulting
operation is σ2σ3σ1σ2σ3σ1 and transforms (γ1, γ2, γ3, γ4) into
(−γ4, γ3,−γ2, γ1). The advantage of our proposed device is
that all the modules to realize the braiding operators are elec-
trically controllable, and this point makes various operations
available in a single device by tuning the gates.

In principle, there are 64 (26) combinations of σi (i =
1, 2, 3) which can be executed by the device in Fig. 5. Here,
we show four representative operations. If one tunes gates
1, 2, and 6 away from the working conditions for operators
σ1 and σ3, then the resulting operation is σ2σ1σ2, as shown
in Fig. 5(a), i.e., the joint operation in Fig. 4(a). Similarly,
the joint operation σ2σ2σ1 in Fig. 4(b) can be carried out by
tuning gates 2, 5, and 6 away from the working conditions, as
shown in Fig. 5(b). Moreover, if the energy level εd of the QDs
deviates from zero, the braiding of chiral Majorana fermions
is unrealizable, as indicated by open circle in Fig. 5(c). In
Fig. 5(c), we disable the QDs controlled by gates 7 and 8
and VG controlled by gate 2; then the consequent operation
σ3σ1σ2σ1 transforms (γ1, γ2, γ3, γ4) into (γ3,−γ2,−γ4, γ1). If
we switch on the QD again, as shown in Fig. 5(d), another
operation, σ2σ3σ1σ2σ1, is achieved, and (γ1, γ2, γ3, γ4) are
transformed to (γ3, γ4,−γ2, γ1). The remaining operations
can also be achieved by tuning the corresponding gates. In
principle, such a universal device can be extended to include
more complicated operations in view of the scalability of
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chiral Majorana edge modes. However, in real experiments,
the entanglements with surroundings and various imperfec-
tions may set bounds on the size of the devices, e.g., the phase
coherence length discussed above. If the length of a hybrid
TSC/QAHI junction ribbon is L ∼ 100 μm and the size of
each gate voltage and QD is 0.5 μm on average, there should
be more than 100 operations. Actually, for all possible opera-
tions in the braiding group, the corresponding transformations
on the Majorana fermions (γ1, γ2, γ3, γ4) can lead only to
permutations of their positions and a phase change (zero or π ).
Correspondingly, only a few states are available for the two
qubits after the braidinglike operations, such as (|1L0R〉 ±
|0L1R〉)/

√
2, (|1L0R〉 ± i|0L1R〉)/

√
2, |0L1R〉, |1L0R〉 up to a

phase, from an initial state |ψi〉 = |1L0R〉. All these states
can be obtained in the proposed universal device to execute
various operations by tuning the gates.

V. CONCLUSION

To conclude, we proposed a method to perform a braid-
inglike operation on chiral Majorana fermions coupled with
quantum dots or Majorana zero modes. A resonant exchange
between a pair of chiral Majorana fermions coupled through
a quantum dot or Majorana zero mode leads to the trans-
formation γ1 → −γ2 and γ2 → −γ1. Subsequently, γ1 ac-
quires an additional sign change by a sole coupling with
a quantum dot or Majorana zero mode. As a consequence,
the resulting operation with γ1 → γ2 and γ2 → −γ1 recovers
the braiding of Majorana zero modes. Moreover, transport
experiments were proposed to observe such a braidinglike op-
eration on chiral Majorana fermions in the hybrid topological
superconductor/quantum anomalous Hall insulator junctions,
and a signature of the conductance peak was predicted. Mean-
while, the non-Abelian character of the braidinglike operation
would be demonstrated by an order-dependent conductance in
the transport experiments. Especially, we proposed a universal
device to carry out various braidinglike operations controlled
by gates. This braidinglike scheme not only can provide a
convincing signature of chiral Majorana fermions but can also
pave a feasible way towards robust quantum computation.
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APPPENDIX A: SCATTERING MATRIX FOR THE QD
COUPLING CASE

Similar to the procedure in the MZM coupling case,
the equation of motion for the field operators is i∂t O(t ) =
[O(t ), H2], where O(t ) stands for the field operators of chiral
Majorana fermions and the fermion state inside the QD in

Heisenberg picture and H2 is defined in Eq. (14). Here, the
differential equations for the operators become

i∂tγα (x, t ) = 2iν∂xγα (x, t ) + i
t̃α√

2
δ(x)[d (t ) + d†(t )],

(A1)

i∂t d (t ) = εd d −
∑

α=1,2

i
t̃α
2

γα (0, t ), (A2)

i∂t d
†(t ) = −εd d† −

∑
α=1,2

i
t̃α√

2
γα (0, t ). (A3)

After a Fourier transformation similar to Eqs. (5) and (6), we
arrive at

εγα (x, ε) = 2iν∂xγα (x, ε) + i
t̃α√

2
δ(x)γ0(ε), (A4)

εd (ε) = εd d (ε) −
∑

α=1,2

i
t̃α√

2
γα (0, ε), (A5)

εd†(ε) = εd d†(ε) −
∑

α=1,2

i
t̃α√

2
γα (0, ε). (A6)

Integrating both sides of Eq. (A4) from 0− to 0+, we obtain

2iν[γα (0+) − γα (0−)] + i
t̃α√

2
(d + d†) = 0. (A7)

Following the same procedure in the derivation of Eqs. (10),
(11), and (12), the scattering matrix SQ for the QD coupling
case can be found,

SQ = 1

Ã

(
B̃ + t̃2

2 − t̃2
1 −2t̃1t̃2

−2t̃1t̃2 B̃ + t̃2
1 − t̃2

2

)
, (A8)

where B̃ = 4iν(ε2 − ε2
d )/ε and Ã = B̃ + t̃2

1 + t̃2
2 .

APPPENDIX B: TRANSMISSION COEFFICIENTS IN THE
PROPOSED DEVICES

1. Device for the observation of the braidinglike operation

First, we consider the device that allows observing the
braidinglike operation on chiral Majorana fermions based on
TSC/QAHI junctions in Fig. 3(a). In the transport process of
the four chiral Majorana fermions γi (i = 1, 2, 3, 4), γ1 and γ4

are transported directly into lead 3 and lead 4 while γ2 and γ3

are scattered by the QD. For simplicity, denoting the incoming
chiral Majorana fermions by γ2 and γ3 and outgoing scattering
states by γ ′

2 and γ ′
3, respectively, the scattering matrix SQ can

be written as (
γ ′

2

γ ′
3

)
= SQ

(
γ2

γ3

)
, (B1)

where SQ is given by Eqs. (15) and (A8). We define four
operators as

a1 = (γ1 + iγ2)/
√

2, (B2)

a2 = (γ3 + iγ4)/
√

2, (B3)
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b3 = (γ1 + iγ ′
2)/

√
2, (B4)

b4 = (γ ′
3 + iγ4)/

√
2, (B5)

which represent the incoming electron modes (a1 from lead
1 and a2 from lead 2) and outgoing electron modes (b3

to lead 3 and b4 to lead 4). By using Eq. (B1), we can
obtain

b3 = [(1+SQ,11)a1+(1−SQ,11)a†
1 + iSQ,12a2 + iSQ,12a†

2]/2,

(B6)

b†
3 = [(1−S∗

Q,11)a1+(1+S∗
Q,11)a†

1 − iS∗
Q,12a2 − iS∗

Q,12a†
2]/2,

(B7)

b4 = [−iSQ,21a1 + iSQ,21a†
1 + (1 + SQ,22)a2

+ (−1 + SQ,22)a†
2]/2, (B8)

b†
4 = [−iS∗

Q,21a1 + iS∗
Q,21a†

1 + (−1 + S∗
Q,22)a2

+ (1 + S∗
Q,22)a†

2]/2. (B9)

These equations can be rewritten into a compact form as⎛⎜⎜⎝
b3

b†
3

b4

b†
4

⎞⎟⎟⎠ = −→
S

⎛⎜⎜⎝
a1

a†
1

a2

a†
2

⎞⎟⎟⎠, (B10)

with

−→
S = 1

2

⎛⎜⎜⎜⎜⎝
1 + SQ,11 1 − SQ,11 iSQ,12 iSQ,12

1 − S∗
Q,11 1 + S∗

Q,11 −iS∗
Q,12 −iS∗

Q,12

−iSQ,21 iSQ,21 1 + SQ,22 −1 + SQ,22

−iS∗
Q,21 iS∗

Q,21 −1 + S∗
Q,22 1 + S∗

Q,22

⎞⎟⎟⎟⎟⎠. (B11)

Then the transport coefficients for normal tunneling and An-
dreev reflection from lead 1 to lead 3 and lead 4 can be
obtained by

T31(ε) = |−→S 11|2 = |1 + SQ,11|2/4, (B12)

T A
31(ε) = |−→S 21|2 = |1 − S∗

Q,11|2/4, (B13)

T41(ε) = |−→S 31|2 = |iSQ,21|2/4, (B14)

T A
41(ε) = |−→S 41|2 = |iS∗

Q,21|2/4. (B15)

Considering the finite temperature T , the effective transmis-
sion coefficients can be derived:

T31(41) =
∫ +∞

−∞
T31(41)(ε)

(
−∂ f

∂ε

)
dε, (B16)

T A
31(41) =

∫ +∞

−∞
T A

31(41)(ε)

(
−∂ f

∂ε

)
dε, (B17)

where f (ε) = [exp(ε/kBT ) + 1]−1 is the Fermi distribution
function.

2. Device for the observation of non-Abelian character

We now calculate the transport properties of the four chiral
Majorana fermions after sequential exchanges in Fig. 4. If
the final state depends on the operation order as well as the
measurement of terminal conductance, this means that the
braidinglike operation on chiral Majorana fermions has non-
Abelian character. First, we consider the joint operations
with two exchanges, σ2σ1 and σ1σ2. σ2σ1 will transform the
four chiral Majorana fermions according to (γ1, γ2, γ3, γ4) →
(−γ2,−γ3, γ1, γ4). After the braidinglike operations, the out-
going electron modes (b3 to lead 3 and b4 to lead 4) now

become

b3 = (−γ2 − iγ3)/
√

2 = (ia1 − ia†
1 − ia2 − ia†

2)/2,

b†
3 = (−γ2 + iγ3)/

√
2 = (ia1 − ia†

1 + ia2 + ia†
2)/2,

b4 = (γ1 + iγ4)/
√

2 = (a1 + a†
1 + a2 − a†

2)/2,

b†
4 = (γ1 − iγ4)/

√
2 = (a1 + a†

1 − a2 + a†
2)/2,

where we have used γ1 = 1√
2
(a1 + a†

1), γ2 = 1
i
√

2

(a1 − a†
1), γ3 = 1√

2
(a2 + a†

2), γ4 = 1
i
√

2
(a2 − a†

2). Now, the

scattering matrix
−→
S relating the incoming modes a1,2, a†

1,2

and b3,4, b†
3,4 becomes

−→
S = 1

2

⎛⎜⎝ i −i −i −i
i −i i i
1 1 1 −1
1 1 −1 1

⎞⎟⎠, (B18)

which gives T31 = T41 = T A
31 = T A

41 = 1/4 and T32 = T42 =
T A

32 = T A
42 = 1/4. By using these normal tunneling and An-

dreev reflection coefficients, the conductances can be obtained
from Eqs. (17)–(21), and the results are G3 = G4 = e2

2h . Simi-
larly, the scattering matrix for the joint operation σ1σ2 can be
obtained following the same procedure as

−→
S = 1

2

⎛⎜⎝ i i 1 1
−i −i 1 1
−i i 1 −1
−i i −1 1

⎞⎟⎠; (B19)

thus, it gives the same terminal conductance G3 = G4 = e2

2h as
σ2σ1 even though the final states are different.

Next, we turn to the joint operators σ2σ1σ2 and σ2σ2σ1.
After the transformation by σ2σ1σ2, (γ1, γ2, γ3, γ4) becomes
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(γ3,−γ2, γ1, γ4), and the resulting scattering matrix is

−→
S = 1

2

⎛⎜⎝−1 1 1 1
1 −1 1 1
1 1 1 −1
1 1 −1 1

⎞⎟⎠. (B20)

We obtain T31 = T41 = T A
31 = T A

41 = 1/4 and T32 = T42 =
T A

32 = T A
42 = 1/4, and G3 = G4 = e2

2h again. However, the
joint operator σ2σ2σ1 transforms the chiral Majorana fermions
γi according to (γ1, γ2, γ3, γ4) → (−γ2,−γ1,−γ3, γ4).

The related scattering matrix now becomes

−→
S =

⎛⎜⎝0 −i 0 0
i 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎠, (B21)

which gives T A
31 = T A

42 = 1 and T31 = T41 = T A
41 = T32 =

T42 = T A
42 = 0. The corresponding terminal conductances are

G4 = e2

h and G3 = 0.
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