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Landau’s theory of phase transitions provides a framework for describing phases of matter in thermodynamic
equilibrium. Recently, an intriguing new class of quantum many-body localized (MBL) systems that do not
reach thermodynamic equilibrium was discovered. The possibility of MBL systems to not heat up under
periodic driving, which drastically changes the nature of dynamics in the system, opens the door for new, truly
nonequilibrium phases of matter. In this paper we find a two-dimensional nonequilibrium topological phase, the
anomalous Floquet insulator (AFI), which arises from the combination of periodic driving and MBL. Having no
counterpart in equilibrium, the AFI is characterized by an MBL bulk, and topologically protected delocalized
(thermalizing) chiral states at its boundaries. After establishing the regime of stability of the AFI phase in a
simple yet experimentally realistic model, we investigate the interplay between the thermalizing edge and the
localized bulk via numerical simulations of an AFI in a geometry with edges. We find that nonuniform particle
density profiles remain stable in the bulk up to the longest timescales that we can access, while the propagating
edge states persist and thermalize. These findings open the possibility of observing quantized edge transport in
interacting systems at high temperature.
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I. INTRODUCTION

At or near equilibrium, the emergence of universal phe-
nomena enables us to organize our description of physical
systems in terms of distinct phases of matter. Intriguingly, a
similar phase structure can emerge far from equilibrium, in pe-
riodically driven quantum many-body systems. While some of
the corresponding “Floquet phases” are analogous to phases
that occur in equilibrium [1–22], others, such as discrete time
crystals [23–30] or the anomalous Floquet-Anderson insula-
tor (AFAI) [31–33] and its generalizations [34–40], display
unique dynamical and topological features that cannot occur
in equilibrium. We label such phases “anomalous Floquet
phases.”

The fact that stable phases of matter can exist at all
in isolated periodically driven systems is itself a nontrivial
statement: in the absence of a heat bath that can extract
energy and entropy, such systems are generally expected to
continually absorb energy from the driving field and heat
toward a featureless infinite-temperature state at long times
[41–43]. Crucially, in the presence of strong disorder, many-
body localization (MBL) may prevent such heating [44–46].
Despite their localization, MBL systems support a rich variety
of symmetry-breaking and topological phases [47,48].

Previous works [45,46] have shown that MBL may persist
in periodically driven systems when the driving field has a
high frequency and low amplitude. However, the genuinely
new phases of Floquet systems (anomalous Floquet phases)
cannot be realized in the high-frequency regime. Specifically,
anomalous Floquet phases are characterized by nontrivial
evolution over the course of a single driving period, which

requires the drive frequency to be at most comparable to
other energy scales of the system. In order to realize the
full potential of many-body Floquet systems, we thus must
understand the conditions under which anomalous Floquet
phases may be realized.

In this work we investigate the stability of the two-
dimensional (2D) anomalous Floquet insulator (AFI) phase,
an interacting version of the AFAI [32] (see Fig. 1). The AFAI
is a topologically nontrivial single-particle anomalous Floquet
phase, characterized by a quantized bulk magnetization den-
sity [49] and protected chiral edge states. Here, we show that
the AFI bulk may be many-body localized in the presence
of interactions [50]. Previously, a variety of two-dimensional
Floquet phases have been studied under the assumption of
MBL [38–40]. Here, we directly address the question of
whether or not such phases are compatible with MBL.

To demonstrate MBL, we find conditions under which
the original problem can be mapped onto an effective high-
frequency driving problem in an appropriately constructed
rotating frame. The same arguments that support MBL in
the high-frequency limit [46] then imply MBL of the AFI in
the corresponding regime. This approach can also be applied
to establish the stability of other anomalous Floquet phases,
such as discrete time crystals [23,24] (see Appendix D),
and other generalizations of the AFAI [37,40]. We support
our conclusions with numerical simulations of the long-time
dynamics and level statistics of the AFI.

The crucial differences between the AFI and the AFAI, and
some of the AFI’s most intriguing properties, are revealed in a
geometry with edges. First, due to interactions, we expect the
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FIG. 1. Schematic illustration of the anomalous Floquet insulator
(AFI), an interacting phase of matter only possible out of equilib-
rium. The bulk states are many-body localized in the presence of
disorder and interactions, under conditions discussed in the main
text. The nontrivial topology of the AFI is manifested in chiral edge
states that exhibit protected thermalization.

topologically protected edge states to give rise to “protected
thermalization” at the AFI edge, with the particle distribution
on the edge rapidly approaching an infinite-temperature-like
state. Second, interactions couple thermalizing edge states and
localized bulk states, resulting in a nontrivial competition. We
explore this competition numerically and conclude that, in
finite-size samples, the edge and bulk may effectively remain
decoupled. This opens prospects for realizing quantized edge
transport [32,51] in AFIs at high temperature.

II. EXISTENCE OF THE ANOMALOUS FLOQUET
INSULATOR

We first show the existence of the AFI phase for sufficiently
weak interactions between particles. We consider a system of
spinless fermions on a square lattice with two sublattices A
and B described by the following time-periodic Hamiltonian
(with driving period T ):

H (t ) = Hid (t ) + Hdis(t ) + Hint, H (t + T ) = H (t ). (1)

Here, Hid (t ) is the translationally invariant, single-particle
Hamiltonian, which realizes the ideal limit of the AFAI (see
Ref. [31] and below). Hdis describes a random onsite disorder
potential, which stabilizes the AFAI in the absence of interac-
tions [32]. The new ingredient is the two-particle interaction
described by Hint.

For concreteness, we consider the following driving pro-
tocol, illustrated in Fig. 2(a). More general driving schemes
will be discussed below. Each period T is divided into five
segments: the first four segments each have duration αT/4,
and the last segment has duration (1 − α)T . Hid acts during
the first four segments, while disorder is applied during the
last segment; interactions are always present. Importantly,
the parameter 0 < α � 1 tunes the effective strength of the
disorder. Below, we define how H (t ) acts within a single
driving period 0 � t < T ; its form at later times is obtained
from time periodicity H (nT + t ) = H (t ) for any integer n.

FIG. 2. (a) Each driving period consists of five segments. During
the first four segments, time-dependent hopping Hid (t ) [Eq. (2)]
transfers particles between A and B sublattices, cyclically around
plaquettes of the lattice. Disorder Hdis [Eq. (4)] is applied during the
fifth segment, while interactions Hint [Eq. (5)] are always present.
(b) Schematic depiction of the terms contained in the transformed
interaction Hamiltonian [see Eq. (7)]. Three kinds of terms are illus-
trated: (i) density-density interaction; (ii) hopping with an amplitude
dependent on the density of a nearby site; (iii) correlated hopping of
pairs of particles.

The Hamiltonian Hid consists of hopping terms, which are
cyclically applied as illustrated in Fig. 2(a):

Hid (t ) = J
∑

r∈A

4∑

n=1

fn(t )
(
c†

r+bn
cr + H.c.

)
, (2)

where the first sum runs over sites r on sublattice A, and
fn(t ) = 1 for (n − 1)αT/4 � t < nαT/4, and fn(t ) = 0 oth-
erwise. The vectors {bn} are given by b1 = −b3 = (a, 0)
and b2 = −b4 = (0, a), where a is the lattice constant. The
amplitude J is chosen such that the nth “pulse” perfectly
transfers a particle on site r ∈ A to site r + bn, and vice versa
(here and throughout we set h̄ = 1):

JαT/4 = π/2. (3)

In this way, α sets the value of the tunneling amplitude: J =
ω/α. We write the disorder Hamiltonian as

Hdis(t ) = Hdis f5(t ), Hdis =
∑

r

Wrc†
rcr, (4)

where Wr ∈ [−W,W ] is a random onsite potential, and
f5(t ) = 1 for αT � t < T , and 0 otherwise. Finally, we
choose Hint to consist of nearest-neighbor interactions:

Hint = λ
∑

〈rr′〉
nrnr′ . (5)

In the noninteracting limit λ = 0, this model is exactly solv-
able and describes an ideal AFAI with topological edge states
and zero localization length in the bulk.

A. Rotating frame transformation

Our goal is to find the conditions when the AFI can
be many-body localized. Importantly, the driving described
above is manifestly not in the high-frequency limit: condition
(3) implies that the hopping amplitude J is of the same order
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as the driving frequency ω = 2π/T . Therefore, a priori, the
analysis of Ref. [46] cannot be directly applied.

We now perform a time-dependent unitary transformation
to map our problem onto an equivalent one, which lies in
the high-frequency regime as long as W � ω, J . To avoid
complications arising from delocalized edge states, we first
consider a system on a torus. We transform to a rotating frame
in which the fast motion associated with Hid is removed:

|�(t )〉 = Q†(t )|�(t )〉, Q(t ) = T e−i
∫ t

0 dsHid (s), (6)

where |�(t )〉 (|�(t )〉) is the state in the original (rotating)
frame. We note that Q(T ) = I is the identity operator: over
one full period, evolution with Hid (t ) alone returns every
particle to its initial position. It follows that Q(t ) is time
periodic: Q(t ) = Q(t + T ).

The time evolution of |�(t )〉 is generated by a trans-
formed Hamiltonian H̃ (t ), given by H̃ (t ) = Q†(t )H (t )Q(t ) −
iQ†(t )∂t Q(t ). By construction, Eq. (6) gives Q†Hid (t )Q −
iQ†∂t Q = 0. Thus, we obtain

H̃ (t ) = Q†(t )[Hdis(t ) + Hint]Q(t ). (7)

Since Q(t ) and Hdis(t ) are both T periodic, H̃ (t ) is also time
periodic with period T . The periodicity of Q(t ) further implies
that the Hamiltonian H̃ (t ) generates the same Floquet oper-
ator as H (t ), and therefore the same stroboscopic evolution
|�(nT )〉 = |�(nT )〉. It follows that if the system described
by H̃ (t ) is many-body localized, so is the system described by
H (t ).

With the help of the unitary transformation Q, we have
eliminated the large-amplitude term Hid (t ) from the Hamil-
tonian. The resulting Hamiltonian H̃ (t ) has terms of order
W, λ, which can be much smaller than the driving frequency
ω. In this limit, the system in the rotating frame is in the
high-frequency regime, where MBL can be stable with respect
to driving.

B. Conditions for many-body localization

To establish the conditions for MBL more precisely, we
examine the transformed Hamiltonian (7) [see also Eqs. (4)
and (5)]. Due to the fact that Hid (t ) acts only during the
first four segments of the driving cycle, Q(t ) = I for all t ∈
[αT, T ]. Since Hdis(t ) acts only during the fifth segment, the
disorder Hamiltonian [Eq. (4)] is unchanged by the transfor-
mation Q(t ). The disorder term can be decomposed into a
time-averaged component (1 − α)Hdis, and a time-dependent
component, which changes stepwise at times t = αT and T .
In the absence of interactions, Hdis(t ) gives (single-particle)
eigenstates that are trivially localized on each site of the
lattice.

The transformed interaction Hamiltonian H̃int (t ) =
Q†(t )HintQ(t ) has a clear structure including three kinds
of terms of extended but finite range [see Fig. 2(b)]: (i)
density-density interactions between nearby sites, (ii) hopping
between nearby sites with an amplitude that depends on the
density on one of the nearby sites, and (iii) correlated hopping
of pairs of particles. Explicit expressions for these terms and
the ranges over which they act are discussed in Appendix A.

Crucially, the transformed interactions remain short
ranged. All of the terms described above have time-averaged

(constant) parts with strengths ∼O(αλ), as well as oscillating
parts at frequency ω and higher harmonics (see Appendix A).

We proceed in two steps, first analyzing the dynamics
generated by the static, time-averaged part of H̃ (t ), then
investigating the role of the remaining (small) time-dependent
terms. The time-averaged part of H̃ (t ) contains onsite po-
tential disorder with characteristic scale W (1 − α), and one-
and two-particle hopping terms induced by interactions, with
strength ∼λα. In the limit λα � W (1 − α) the delocalizing
processes induced by interactions are typically off resonant,
and the (static) system is in the MBL phase [52]. At a critical
interaction strength λc, the system undergoes a transition into
a thermal, delocalized phase. Thus, stability requires

λα

W (1 − α)
� κc, (8)

where κc is the critical ratio at which the MBL-delocalization
transition occurs.

As we explain in Appendix C, the time-dependent terms
of H̃ (t ) have Fourier components with amplitudes of the
order αλ, αW . In the “high-frequency” limit, ω � αW, αλ,
the analysis of Ref. [46] shows that such time-dependent terms
do not lead to delocalization.

The above arguments show that our system exhibits MBL
for λ,W � 1

α
ω, λ < 1−α

α
W κc. The AFI thus constitutes a

stable anomalous Floquet phase of matter.

C. Other protocols and phases

The arguments above can be extended to other AFI driving
protocols (e.g., if disorder acts throughout the entire driving
period, see Appendix B). The approach we used here can also
be used to establish the stability of other anomalous Floquet
phases: in Appendix D we apply it to demonstrate the stability
of discrete-time crystals, which was shown previously by
other means [23,24,53].

III. NUMERICS: EXISTENCE OF AFI PHASE

We support the above analytical arguments with numer-
ical simulations. To investigate the stability of the phase,
we compare two driving protocols: (i) the model defined
by Eqs. (1)–(5), with disorder applied only during the fifth
segment, and (ii) the same as (i), but with (constant) disorder
applied throughout the driving cycle.

As an indicator of MBL, we study the
quasienergy level statistics of the Floquet operator
U (T ) = T exp (−i

∫ T
0 H (s) ds), obtained via exact evolution

[42,44,45,54]. The level spacing ratio around many-body
Floquet state n is defined as rn = min{δn/δn+1, δn+1/δn},
where δn = εn − εn−1 is the quasienergy gap below level n.
For a Poisson distribution of levels, this ratio is ∼0.4; for the
circular unitary ensemble, it is ∼0.6 [42].

We computed the average level spacing ratio by exact di-
agonalization of the Floquet operator for multiple realizations
of the model with eight particles on a 4 × 4 square lattice
with periodic boundary conditions. For model (i) we take
W = 0.1ω, and for model (ii) we take W = ω.

Figure 3 shows the resulting data as a function of λ/W
(see Appendix F for the finite-size scaling of the data). Each
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FIG. 3. Average level spacing ratio as function of interaction
strength, in a half-filled system of 4 × 4 sites. Each point on each
curve results from averaging over 100 disorder realizations. Light
curves correspond to model (i), with W = 0.1ω, while dark curves
correspond to model (ii) with W = ω. In all cases, Poisson level
statistics, indicating MBL, are observed at low enough interaction
strength.

curve shows the mean value of the average level spacing ratio
obtained from an ensemble of 100 disorder realizations per
point [55], for a fixed value of α. The peaks visible near
the transition for α = 1

16 and 1
64 in model (i) arise due to

resonances where the periodic driving breaks up clusters of
two, three, and four particles that are otherwise bound by the
interactions [56].

The data in Fig. 3 show that, for all the values of α we
examined, the level spacing ratio converges to 0.38 for suffi-
ciently small values of λ, indicative of Poisson level statistics
and MBL. Additionally, the critical value λcritical/W at which
the localization-delocalization transition occurs shifts upward
for smaller values of α, as anticipated above. When α = 1

64 ,
the system is localized even when the interaction strength is
an order of magnitude larger than W . Smaller values of α will
likely push up the transition further.

For a given α, the value of λcritical in model (ii), where
W = ω, is shifted to lower values than in model (i). However,
λcritical remains finite and controllable by α. The AFI phase
thus appears to extend beyond the regime of the sufficient
condition W � ω discussed above.

Dynamics of an AFI with edges

So far, we have established the stability of the AFI in
a closed geometry without an edge. In the noninteracting
AFAI in an open geometry (i.e., a geometry with edges),
the system’s nontrivial topology gives rise to propagating
chiral edge states and novel quantized transport phenomena
[32,51]. Due to the topological and chiral nature of the edge
states, we expect that interactions will lead to thermalizing
behavior at the edge. Note that the thermalization of particles
on one edge does not preclude a nonzero net current since
the counterpropagating modes are confined on opposite edges:
even when the particles on one edge thermalize to an effective
infinite-temperature state, only one of the edge modes will

FIG. 4. Time evolution of four particles on a square lattice of
8 × 9 sites (black dots) with open boundary conditions. We sim-
ulate model (ii), with time-independent disorder, and parameter
values W = ω, λ = 0.1W , and α = 1

16 . (a) The two different initial
site occupations considered, indicated by red and blue squares.
(b) The cluster initialized in the bulk (blue, upper panel) remains
stable over 105 periods. For the edge initialization (red, lower panel),
the particle density is homogenized around the perimeter, with
negligible leakage into the bulk. The dashed line in the lower panel
indicates the cut used to calculate the current in Fig. 5 (see main text).
(c) Eigenvalues of the one-body reduced density matrix ρ

(1)
R . For the

bulk initialization (blue), we take R to be the full lattice; a clear gap
between near unity and smaller eigenvalues indicates localization.
For the edge initialization, we consider R as the full lattice (orange),
or only the sites along its edge (red). The nearly identical plateaus of
eigenvalues in the two cases indicate thermalization confined to the
edge.

be populated. The competition between thermalization on
the one-dimensional edge and MBL of the two-dimensional
bulk is a subtle and important issue to explore. A related
problem of an MBL system coupled to a thermalizing edge
was recently analyzed in Ref. [57], where the thermal edge
was treated as an effective external bath. By comparing the
intrinsic timescales of the effective bath with the energy and
timescales of the MBL bulk, the authors of Ref. [57] argued
that the two-dimensional case supports a phase where the
edge thermalizes a finite fraction of the system, while the
remainder of the bulk remains MBL. The AFI provides an
intrinsic platform for studying this competition.

To gain insight into the dynamics at the edge, we numeri-
cally investigated the AFI in an open geometry. We simulated
model (ii) discussed above, for four particles moving in a
rectangle of 9 × 8 sites with open boundary conditions [58].
We initialized the particles either in a droplet of 2 × 2 sites in
the center of the system, or in sites along the edge [Fig. 4(a)].
In Fig. 4(b), we show the corresponding particle densities
after time evolution for 100 000 driving periods. Even after
this very long evolution the droplet profile has only slightly
broadened, indicating that the bulk acts localized on this
timescale (and likely indefinitely). For the edge initialization,
the particle distribution has homogenized around the perime-
ter [59], and broadened in a narrow strip near the edge.
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FIG. 5. Persistent current in the AFI with particles initialized
along its edge. Here, we show the period-averaged current In that
flows across the cut in Fig. 4(d), as a function of time.

To confirm that the system in Fig. 4(d) carries a nonvan-
ishing circulating current around its perimeter at long times,
we calculate the current flowing across a line that extends
from the middle of the system through its boundary [indicated
by the dashed line in Fig. 4(d)]. The period-averaged current
In = ∫ (n+1)T

nT dt I (t ), where I (t ) is the instantaneous current
through the cut, is shown in Fig. 5. The current exhibits large
oscillations at short times, due to the fact that the particles
that circulate around the perimeter initially have a nonuniform
density profile. At later times, the density of particles along
the edge becomes uniform, and the value of the current settles
to a nearly constant, nonzero value. This persistent current is
a signature of the chiral nature of the AFI edge.

To investigate thermalization at the edge, we first define a
region R to be “thermalized” if the reduced density matrix on
R takes an infinite temperature form ρR ∼ exp(−ηN̂ ), where
N̂ is the number operator on R and η is a constant that fixes the
particle density [60]. This definition implies, in particular, that
on a thermalized region the eigenvalues pi of the one-body
reduced density matrix [ρ (1)

R ]rr′ ≡ 〈�(t )|c†
rcr′ |�(t )〉, with r, r′

in R, are all equal within each particle number sector [61]:
pi = N/NR, where N is the number of particles, and NR is the
number of sites in R.

In Fig. 4(c), we show the eigenvalues of ρ
(1)
R after a long

time evolution, for both the droplet and edge initializations.
The initial states in both cases are four-particle Slater de-
terminants. The corresponding one-body density matrices on
regions containing all particles would have four unit eigen-
values, with the rest being equal to zero. For the droplet
initialization we choose the region R to be the entire 9 × 8
lattice; we see that four eigenvalues remain close to one, with
only weak correlations among other “natural orbitals.” This
is a signature of localization [61]. For the edge initialization
we show the spectra of ρ

(1)
R evaluated on a one-site-wide

strip running around the perimeter of the system, and on
the whole lattice. For both we find a long plateau of nearly
equal eigenvalues signifying thermalization on the edge. In
Appendix E, we provide additional numerical data for long-
time trends in the evolution of the density profile near the
edge.

IV. DISCUSSION

Our study establishes the AFI as a stable anomalous floquet
phase protected by mbl and opens up several directions for
future investigations. First, our results demonstrate that for
finite strengths of disorder and interactions, the bulk remains
localized up to very long times, even while the edge thermal-
izes. This gives promise that the AFI may support quantized
transport on all practical/experimental timescales. We leave
a more detailed investigation of the edge-bulk competition in
the thermodynamic limit for a future study.

Second, we found that the chiral AFI’s edge hosts protected
thermalization. The competition between thermalizing and
MBL regions is a subject of ongoing debate [62], and the
AFI may provide an interesting platform for systematically
investigating this interplay. For example, consider an AFI
punched with holes of circumference ∼�, typically separated
by a distance L. The system can then be viewed as an array of
thermalizing regions, each comprised of ∼� sites, embedded
in a localized background. Tuning �, L allows one to change
the volume fraction of thermalizing regions in the system.
Thus, the geometry of an AFI sample may be used to control
and study thermalization.
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APPENDIX A: HAMILTONIAN IN THE ROTATING FRAME

Here, we explicitly compute the transformed interaction
Hamiltonian in the rotating frame H̃int (t ) ≡ Q†(t )HintQ(t ).
The interacting part of the Hamiltonian is a sum of terms

Hint =
∑

r,i

H (i)
int,r, H (i)

int,r = λnrnr+bi , (A1)

where i = 1, . . . , 4, with b1 = −b3 = (a, 0) and b2 = −b4 =
(0, a). In the rotating frame, the transformed interaction
Hamiltonian is computed using Eq. (A1) with

H̃ (i)
int,r(t ) = λñr(t )ñr+bi (t ), (A2)

where ñr(t ) ≡ Q†(t )nrQ(t ) is the time-evolved site occupa-
tion operator.

We now explicitly compute ñr(t ) for the first segment of
the driving protocol 0 � t < αT/4. From this we will be able
to infer the form of the terms for all later times. Note that the
direction of hopping is opposite for particles initially in the A
or B sublattice. Therefore, in order to explicitly write ñr(t ),
we introduce an index σr = 1 for r in the A sublattice, and
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σr = −1 for r in the B sublattice. A straightforward computa-
tion gives

nr(t ) = cos2(Jt )c†
rcr + sin2(Jt )c†

r+σrb1
cr+σrb1

+ i

2
sin(2Jt )

(
c†

rcr+σrb1 − H.c.
)
, 0 � t < αT/4.

(A3)

Note that condition (3) of the main text, JαT/4 = π/2, yields
a simple form for nr(t ) at the end of the segment: nr(αT/4) =
nr+σrb1 . Similar expressions are obtained for driving segments
2–4.

The full expression for ñr(t )ñr+bi (t ) is too cumbersome to
write out. For the first segment, using Eq. (A3), it is evident
that there are three kinds of terms:

(i) density-density interaction between nearest- and next-
nearest-neighbor sites;

(ii) hopping between nearest-neighbor sites with ampli-
tude that depends on density on one of the nearby sites (terms
such as c†

rcrc†
r+bi

cr+bi−b1 );
(iii) hopping of pairs of particles (terms such as

c†
rcr+b1 c†

r+bi
cr+bi−b1 ).

In the remaining three segments, ñr(t ) can be constructed
from Eq. (A3), starting the evolution in each segment with the
result of the previous one, by 90◦ rotations and translations in
the x and/or y directions. At any time, ñr(t ) has its support
only on the nearest- and next-nearest-neighbor sites of r. In
these latter segments, the terms in H̃int (t ) are also of the three
types described above, although the distance between coupled
sites may be larger than in the first segment. The distances
between coupled sites in the term ñrñr+bi are always bounded
by (1 + 2

√
2)a since ñr has all of its support within a radius

of
√

2a from r.
The above discussion shows that H̃int (t ) is always local

with a strictly finite range. This transformed interaction has an
off-diagonal part in the site occupation number basis, whose
time-averaged component has a magnitude of order αλ. To see
this, note that H̃ (t ) only has off-diagonal components in the
interval 0 � t < αT , and these have magnitude λ.

APPENDIX B: OTHER PROTOCOLS

The arguments used in this paper can be extended to other
driving protocols. As an example, we consider a setup in
which both Hdis and Hint act throughout the whole driving
period. We still assume that W, λ � ω.

Similar to the analysis above, we employ a unitary trans-
formation Q(t ) to eliminate the largest part of the time-
dependent Hamiltonian Hid (t ). We are left with transformed
terms H̃dis(t ), H̃int (t ). One important difference compared to
the main protocol discussed in the text is that the transformed
disorder Hamiltonian in this case also contains finite-ranged
hopping terms, of the order αW . In the absence of interactions
(λ = 0), the system is in the localized phase for small disorder
W � ω, as shown in Ref. [32]. Moreover, tuning parameter
α allows one to tune the localization length in the single-
particle problem: at very small α (corresponding to very
strong hopping during first four segments of the period), the

localization length can be made much shorter than the lattice
constant.

The interaction terms transform in the same way as de-
scribed in Appendix A. Provided λ is sufficiently small
compared to W , these terms will not delocalize the system.
We note that the presence of single-particle hopping terms
originating from the disorder Hamiltonian will reduce the
critical value of the interaction strength at which delocal-
ization occurs. Residual hopping outside of Hideal(t ) (i.e.,
imperfect hopping “π pulses”) will have a similar effect.
We thus conclude that AFI phase is generally stable with
respect to weak interactions, irrespective of the precise driving
protocol.

APPENDIX C: LOCALIZATION CONTROLLED BY α

Here, we briefly comment on how α controls the localiza-
tion properties of models (i) and (ii) discussed in the main
text. This analysis applies to both models. After applying the
rotating frame transformation [Eq. (6) of the main text], we
write the transformed Hamiltonian H̃ (t ) [Eq. (7)] as H̃ (t ) =
H̄ + δH̃ (t ). Here H̄ is the time average of H̃ (t ). We further
decompose H̄ as H̄ = Hint + H̄dis + O(αW, αλ), where H̄dis

is the time average of Hdis(t ) over the fifth segment. The
O(αW, αλ) corrections arise due to the transformation during
the window 0 � t < αT where the hopping is applied.

Both Hint and H̄dis are diagonal in the site occupation
number basis. The off-diagonal contributions to H̄ , contained
in the O(αW, αλ) terms, can be made arbitrarily small by
taking α small enough. In this way we can ensure that, in
the absence of the time-dependent terms δH̃ (t ), H̄ describes a
many-body localized system.

Next, we consider the oscillating part of H̃ (t ), δH̃ (t ),
which has a magnitude of order W, λ, varies rapidly in the
interval 0 � t < αT , and is constant for the rest of the period.
Turning to the Fourier transform of δH̃ (t ), these properties
dictate that its nth Fourier component is of order αW, αλ

for |n| � 2π
α

, and falls off as 1/n for large n. In the limit
ω � αλ, αW , even the lowest harmonics correspond to high
frequencies in the rotating frame, and therefore the system
remains localized. For ω comparable to or greater than W, λ,
the amplitude of the oscillating terms can be made arbitrarily
small by taking α → 0. This again brings the system into the
Floquet-MBL regime.

APPENDIX D: STABILITY OF TIME CRYSTALS

To demonstrate the universality of our approach, we now
outline an argument for the stability of the discrete-time crys-
tal (DTC) [23,24]. The DTC is an example of an anomalous
Floquet phase where the discrete time-translational symmetry
of the drive, t → t + T , is broken. We note that the stability
of DTCs has been previously investigated numerically and
through other analytical arguments in Refs. [23,24,53].

First, following Ref. [24], we consider a solvable driving
protocol for a one dimensional spin- 1

2 chain, which illustrates
the basic physics of the DTC:

H0(t ) = f (t )Hx + [1 − f (t )]Hdis, (D1)
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where f (t ) = 1 for t ∈ [nT, nT + T/2] and zero otherwise.
With this protocol, the first (second) term in the Hamiltonian
is turned on during the first (second) half-period. The Hamil-
tonian Hx induces a global spin rotation around the x axis. The
strength of the uniform applied x field is chosen such that the
evolution over the first half-period gives a perfect π pulse:

Hx = π

T

∑

i

σ x
i . (D2)

The disorder Hamiltonian is chosen as a random, nearest-
neighbor Ising interaction:

Hdis =
∑

〈i j〉
Ji jσ

z
i σ z

j , Ji j ∈ [J̄ − W, J̄ + W ], (D3)

where J̄ sets the average interaction strength, and W is the
width of the distribution of random couplings.

The evolution generated by protocol (D1) can be solved ex-
actly. For simplicity, consider an initial product state |�(0)〉 =⊗

i |σi〉 ≡ |{σi}〉, in which each spin points up or down along
z, σi = ±1. (The argument works for all such configurations.)
During the first half-period, each spin is flipped: |{σi}〉 →
|{−σi}〉. Note that the state remains a product state in the z
basis. During the second half of the period, the state acquires
a dynamical phase due to the Ising interaction (D3). Over the
next driving period, a second π pulse flips all spins back to
their initial configuration. In total, the local z projection 〈σ z

i 〉
of each spin oscillates with twice the period of the drive.
Remarkably, this behavior is stable with respect to generic
T -periodic perturbations of the Hamiltonian.

To show the stability of DTCs using our approach, we add
a small local, but otherwise generic, perturbation to the time-
dependent Hamiltonian (D1):

H (t ) = H0(t ) + λHpert (t ), λ � 1. (D4)

We assume that Hpert (t ) shares the same periodicity as the
drive, Hpert (t + T ) = Hpert (t ).

Similar to the AFI discussed in the main text, this problem
is not in the high-frequency limit. More specifically, the
frequency ω is comparable to the amplitude of the local field
in Hx, as it must be in order to induce a spin flip during one
half-cycle. Similar to our analysis of the AFI, we move to
a rotating frame which removes the large-scale micromotion
(i.e., the repeated π pulses). This is accomplished via the
transformation |�(t )〉 = S†(t )|�(t )〉, with

S(t ) = T e−i
∫ t

0 ds f (t )Hx (s). (D5)

We note that S(nT ) = Pn (mod 2), where

P =
∏

i

(
iσ x

i

)
(D6)

is a global spin-flip operator.
Taking into account the fact that the Ising disorder Hamil-

tonian commutes with S(t ), the Hamiltonian in the rotating
frame is given by

H̃ (t ) = [1 − f (t )]Hdis + S†(t )Hpert (t )S(t ). (D7)

Interestingly, the periodicity of the dressed perturbation
H̃pert (t ) = S†(t )Hpert (t )S(t ) may be reduced to 2T periodicity.
This is easy to see, for example, for Hpert (t ) = g(t )

∑
i σ

y
i ,

using Eq. (D6) and g(t + T ) = g(t ). Importantly, this term
remains local since S(t ) [Eq. (D5)] simply describes spin
rotations over the first half-period.

Having eliminated the large term (D2), we see that for suf-
ficiently small interactions J̄,W � ω, the transformed Hamil-
tonian in the rotating frame is in the high-frequency driving
regime. Therefore, by the perturbation theory of Ref. [46], we
can argue that for a sufficiently weak perturbation λ � W ,
the system is in the MBL phase. Thus, the time-evolved
wave function (in the rotating frame) |�(t )〉 = Ũ |�(0)〉, with
Ũ (t ) = T e−i

∫ t
0 H̃ (s)ds, retains the memory of the initial state.

Finally, we discuss why MBL of the transformed problem
(D7) implies persistent oscillations of physical observables
with a doubled period. As above, choose the initial state
to be a product state |�(0)〉 = |{σi}〉. Then, MBL implies
that the local magnetization evaluated in the rotating frame
〈σ̃ z

i (t )〉 := 〈�(t )|σ z
i |�(t )〉 remains close to its initial value for

all t → ∞ (at least in the strong-disorder limit λ � W � ω).
Then, using Eq. (D6) and the fact that P†σ z

i P = −σ z
i , we

relate the physical local magnetization at stroboscopic times
to 〈σ̃ z

i (t )〉:

〈σ z
i (nT )〉 = 〈�(nT )|σ z

i |�(nT )〉 = (−1)n〈σ̃ z
i (nT )〉. (D8)

Since 〈σ̃ z
i (nT )〉 remains close to its initial value, we have

shown that the magnetization oscillates with period 2T , per-
sisting to the limit t → ∞.

APPENDIX E: DYNAMICS NEAR AN EDGE

In this Appendix, we explore the long-time trends in the
evolution of the density profile in the model studied in Sec. III,
for the initialization where the particles were located on the
edge [red in Fig. 4(a)]. Specifically, from the time evolution
of the system, we extracted the average density in concentric
layers of the lattice as a function of time. We divided the 9 × 8
rectangular lattice into 4 layers, with layer 1 containing the
sites on the lattice’s edge (30 sites in total), layer 2 containing
the sites located one lattice constant from the edge (22 in
total), layer 3 containing sites located 2 lattice constants from
the edge (14 in total), and layer 4 containing the 6 innermost
sites. In Fig. 6, we plot the average density in each layer, as
a function of time, for the first 200 000 driving periods. As
can be seen, the density in each of the inner layers appears to
grow as a power law, with different exponents for the distinct
layers, until after approximately 10 000 driving periods. After
this point, the average densities in the layers begin to saturate.
From the system sizes we have accessed, we can not confirm
whether the saturation is intrinsic or due to finite-size effects.
To highlight the density’s dependence on layer index, in the
inset we show the density versus layer index at four different
times (indicated by vertical dashed lines in main panel).

APPENDIX F: FINITE-SIZE SCALING OF LEVEL
SPACING RATIO

Here, we investigate the finite-size scaling of the
quasienergy level spacing ratio for the model studied in
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FIG. 6. Average density as a function of time in the four concen-
tric layers of the lattice, for the simulation depicted in Fig. 4 (see
main text for further details). Inset: density as a function of layer
index at the times indicated by vertical dashed lines in main panel.

Sec. III (see also Fig. 3). Specifically, here we provide data for
the model on half-filled lattices with 3 × 4, 4 × 4, and 3 × 6
sites. The parameters for the model were set to W = ω/15,
α = 1

16 , while the interaction strength λ was varied.
In Fig. 7 we show the average level spacing ratio, as a

function of λ, for the three lattice sizes mentioned above.
For the 3 × 4 (4 × 4) system, each data point was obtained
from the average level spacing ratio over the full spectrum for
20 (4) disorder realizations. For the 3 × 6 system, each data
point was computed from the average level spacing ratio of
3000 adjacent levels in the quasienergy spectrum for a single
disorder realization at the given value of λ.

FIG. 7. Average quasienergy level spacing ratio, as function of
interacting strength λ, for the model in Sec. III, at three different
choices of lattice size. The parameters W and α were set to W =
ω/15, and α = 1

16 . See main text for further details.

As can be seen in Fig. 7, with decreasing interaction
strength, there is a clear crossover of the level spacing ratio
from the value corresponding to the Wigner-Dyson circular
unitary ensemble (CUE) to Poisson statistics. This behavior is
indicative of a delocalization-localization transition. We also
note that the transition appears to sharpen with increasing
system size. Finally, although the data for the 3 × 6 system are
sparse, the data in Fig. 7 suggest that the level spacing for the
three series cross near λ ≈ 0.2W . However, due to the limited
data, this observation is not conclusive. In particular, the
crossover may be due to the varying aspect ratio of the system
over the three system sizes we probed. In order to establish
the existence of a localization-delocalization transition in the
thermodynamic limit, a more extensive numerical study is
thus required.
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