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Shot noise on chaotic chiral devices
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We investigate both the conductance and the shot-noise power of a confined chiral device that engenders
subtle embedded backscattering mechanisms. We present analytical results and the correspondent numerical
confirmation of the chiral electronic sublattice signal. Examples of quantum dots generating chiral symmetries
include graphene sheets and topological insulators. The analytical results are universal and exhibit a robust and
peculiar signal for an arbitrary number of open scattering channels. We also demonstrate a tunable mechanism
of the valleytronics shot-noise power signal through perpendicular magnetic fields and/or the device symmetry
edges. The results also indicate a “Fano factor” associated with the main quantum interference term with a
universal value of 1/4 for a quantum dot with symmetric contacts, regardless of external fields and the number
of open channels.
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I. INTRODUCTION

Solid-state physics constitutes one of the main scenarios
for the development of new theories [1,2]. Since the pioneer
studies of Bragg in 1913, many developments were estab-
lished, from electromagnetism to quantum mechanics. The
consolidation of atomic theory and the possibility of stable
long-range arrangement in bulk materials decomposed into
microscopically periodic substructures guaranteed the forma-
tion of emerging symmetries [3] and the nontrivial properties
of matter [4–9].

More recently, with the experimental control of graphene
flakes connected to a macroscopic source and drain [10,11],
electronic transport gains strong impact at the quantum level.
Graphene is a periodic structure of carbon atoms arranged in
a hexagonal lattice [12,13]. In the Fermi energy level, its elec-
trons can be described with a linear dispersion relationship
leading to an effective physics of massless particles traversing
the nanostructure in a “relativistic” way or, in other words,
the electronic transport at the Fermi velocity can be seen as
massless neutrinos described by the Dirac equation [14]. In
this scenario, there is the formation of a spinorial structure
which, in the case of graphene, is interpreted as new degrees
of freedom associated with the sublattice structure. Other
structures with sublattice symmetry include the topological
insulators whose electrons also satisfy the Dirac equation
generating chirality with both experimental and theoretical
relevance [12,15–18]. We henceforth use “chiral devices” or
“Dirac devices” to designate two-dimensional graphene sheets
without impurities, topological insulators, and all structures
with sublattice symmetry.

However, despite great efforts, quantum signals of the chi-
ral degrees of freedom are hardly found in quantum electronic
transport [15]. The main reason is that the width increase of
the terminals connected to the sample creates more channels
that easily eliminate the quantum interference corrections
from the conductance [19–21]. In particular, the analytical

results known show that the correction is insignificant when
compared to the main “Ohmic” term. As the main reason for
this incipient contribution, we can indicate the fact that con-
ductance is not an observable one that is significantly affected
by backscattering [22–24]. In fact, by the formalism of Lan-
dauer, the conductance depends basically on tunneling proba-
bilities [25,26]. A manner to introduce backscattering mecha-
nisms would be to introduce nonideal contacts, which link the
ideal terminals to the graphene quantum dot. However, con-
tacts can easily compete with sublattice degrees of freedom,
which makes this design little enlightening or improper.

Against this backdrop, we propose a set of possibilities
for the direct measurement of the quantum transport effects
of chiral (sublattice) symmetry in Dirac devices using the
shot-noise power as a prominent observable. The shot-noise
power occurs even at the null temperature basically as an
effect of the discretization of matter and as the spatial ex-
tension of the electron wave function [6,27]. Our idea is
based on the fact that the shot-noise power carries the terms
of backscattering in Landauer-Büttiker’s formulation, even
with ideal contacts. In the specific case of a chiral structure,
we must remember that there is no mathematical way of
describing the entire Bravais lattice with a pair of vectors.
This suggests the creation of a base that, in turn, naturally
induces the formation of sublattices. The necessity of using a
base forms Bragg peaks associated with backscattering; i.e.,
the shot-noise power must offer strong quantum signals of
the chiral structure, as opposed to conductance. Therefore,
our study will reveal strongly measurable quantum signals
associated to the sublattice symmetry and to the transport of
relativistic neutrinos without mass.

The work is organized in the following manner: In Sec. II,
the scattering formalism needed for the study of graphene
and the expressions of Landauer and Büttiker in terms of
S-matrix elements is introduced and developed. In Sec. III,
the diagrammatic method for the integration over the unitary
group on pure ensembles is introduced and we obtain results
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FIG. 1. The quantum dot of graphene connected to two electro-
chemical potentials through electronic terminals: an example of a
chiral or Dirac device. The confinement generates a chaotic effect
due to the random edges.

not only for the conductance but also for the shot-noise
power, and a numerical simulation is performed to confirm
our analytical findings. In Sec. IV, the calculus of crossover
between pure ensemble for finite fields is performed. Finally,
in Sec. V, the final conclusions are presented.

II. SCATTERING MATRIX FORMALISM

We introduce the scattering model for a chaotic chiral de-
vice connected by ideal contacts to two terminals, as shown in
Fig. 1. We investigate a quantum dot of graphene large enough
to support many resonances coupled to very thin leads, in
such a way that a low energy may comprise at least one open
channel. In this regime, the mesoscopic fluctuations occur
properly in the isospectral (universal) scattering. In graphene
flakes, the sublattice symmetry can be broken. The breaking
of sublattice symmetry takes place both on the level of the
band structure by, e.g., next-nearest-neighbor hopping terms,
and by a random potential. Measurement of the band-structure
effect indicates a sublattice-symmetry-breaking energy scale
of more than 0.1 eV [28]. The electronic universal transport in
chiral devices can be described by the scattering matrix

S =
(

r t ′

t r′

)
, (1)

where t (t ′) and r (r′) are transmission and reflection matrix
blocks, respectively. Furthermore, the scattering matrix has
dimension 2NT ×2NT , where NT = N1 + N2 is the sum of
electronic wave propagation modes (channels) (Ni) in each
terminal.

Following the Landauer-Büttiker approach [6,29–31], the
conductance and the shot-noise power are calculated from the
transmission matrix block as

G = 2e2

h
Tr(tt†), (2)

and

P = 4e3|V |
h

Tr[tt†(1 − tt†)]. (3)

In the framework of random matrix theory (RMT),
the scattering matrix, Eq. (1), associated with the bi-
partite lattice (as two-dimensional square and hexago-

nal lattices) is classified by chiral class [32], which
is divided into three ensembles: the chiral circular or-
thogonal ensemble β = 1 (chCOE), which has time-
reversal symmetry (TRS), spin-rotation symmetry (SRS), and
sublattice/mirror/chiral symmetry (SLS) preserved; the chiral
circular unitary ensemble β = 2 (chCUE), which has TRS
broken; and the chiral circular symplectic ensemble β = 4
(chCSE), which has SRS broken. Furthermore, the scattering
matrix can be decomposed as a function of unitary U , and
orthogonal and symplectic matrices as in the following [33]:

S = �zU
†�zU, �z ≡

(
1NT 0

0 −1NT

)
. (4)

Equation (4) will enable us to use the diagrammatic method
developed in Refs. [34,35] to calculate the ensemble averages
of Eqs. (2) and (3) in the next sections.

III. UNIVERSAL CONDUCTANCE
AND SHOT-NOISE POWER

The transmission matrix blocks are not symmetric, and
therefore the ensemble average of Eqs. (2) and (3) is pro-
hibitive. However, through the use of projectors, we can write
these equations in terms of the S matrices and, consequently,
in terms of the unitary matrices U . This way, it will be
possible to develop an integration over the unitary group with
the corresponding Haar measure through the diagrammatic
method.

A. Mean conductance

We begin with the calculation of the conductance average
of the chiral device. Equation (2) can be rewritten as a function
of the U -matrix, replacing Eq. (4) within Eq. (2) as in the
following:

g = Tr(C1SC2S†)

= Tr(C1U
†�zUC2U

†�zU ), (5)

where g = G/(2e2/h) is the dimensionless conductance and
the (projectors) matrices Ci are defined as

C1 =
(

1N1 0

0 0

)
, C2 =

(
0 0

0 1N2

)
, (6)

1Ni being a unity matrix with dimension Ni×Ni.
The ensemble average of Eq. (5) can be calculated by

developing the following integral:

〈g〉 =
∫

dμTr(C1U
†�zUC2U

†�zU ), (7)

where dμ is the invariant measure (Haar measure) on a
unitary group. One way to calculate the integral is through the
diagrammatic method which was developed in Refs. [34,35].
The diagrammatic method is based on the sum of all
possible element permutations of the unitary matrix U of
the similarity transformations that characterize the chaotic
dynamics [36–38].

As we are interested in the chiral device with SLS pre-
served, we must use the diagrammatic method of Ref. [35] to
develop the average over Eq. (5). If the U matrix of Eq. (5) is
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unitary, there are four diagrams, while if one is orthogonal or
symplectic, there are nine diagrams. The sum of all diagrams
gives rise to the following (compact expression) average of
conductance:

〈g〉 = 4βN1N2NT

(βNT + 1)(2NT − 1)
. (8)

This result was first obtained in Ref. [35].
A relevant experimental regime happens when the wave

propagation number of modes (channels) is large (NT � 1).
Expanding Eq. (8) in a function of NT , we have

〈g〉 = 2
N1N2

NT
+

(
1 − 2

β

)
N1N2

N2
T

+ O
(
N−1

T

)
. (9)

The first term is the Ohm conductance while the second is
known as the localization (main quantum interference correc-
tion). The factor 2 in the Ohm term comes from sublattice
degenerescence. Furthermore, we take the symmetric terminal
case (N1 = N2 = N) in Eq. (9), and the conductance main
quantum interference correction term simplifies to

〈δg〉 =
(

1 − 2

β

)
1

4
. (10)

The conductance main quantum interference correction term,
Eq. (10), for a chiral device is equivalent to that of the standard
quantum dot (QD) described by Wigner-Dyson ensembles
[4]. It means that the SLS does not affect the conductance
main quantum interference correction in this limit. According
to the introduction of the discussion, this fact is due to the
absence of backscattering and, consequently, the irrelevance
in the semiclassical limit of the double structure of the chiral
sublattice. For this reason, it is necessary to study an observ-
able that carries this information even in the semiclassical

limit. The shot-noise power, as can be noticed in Eq. (3),
contemplates the product of terms of transmission, tt†, and
terms of reflection (backscattering), rr† = (1 − tt†).

B. Universal shot-noise power

In this section, we investigate in detail how the chiral sym-
metry affects in a nontrivial way the shot-noise power main
quantum interference correction term. Hence, we calculate the
average of the shot-noise power, Eq. (3).

First, we rewrite the shot-noise power in a function of a
scattering matrix, replacing Eq. (4) within Eq. (3) as follows:

p = Tr(C1SC2S†) − Tr[(C1SC2S†)2]

= g − Tr[(C1U
†�zUC2U

†�zU )2], (11)

where p = P/(4e3|V |/h) is the dimensionless shot-noise
power and g is the dimensionless conductance which was
calculated above in Eq. (8). The average of Eq. (11) can be
calculated by developing the following integral:

〈p〉 = 〈g〉 −
∫

dμTr[(C1U
†�zUC2U

†�zU )2], (12)

where the last term is composed of eight U matrices.
To develop the integral of Eq. (12), we also use the dia-

grammatic method [35]. After an extensive algebraic calcula-
tion, we identify the 11 024 diagrams that contribute to the
average of Eq. (12). The proliferation of diagrams is due to
chiral symmetry that doubles the number of unitary matrices
in the trace of the shot-noise power whose average is a combi-
natorial problem. If the U matrix of Eq. (11) is unitary, there
are 2 000 diagrams, while if one is orthogonal or symplectic,
there are 11 024 diagrams. The sum of these diagrams gives
rise to the following average of shot-noise power:

〈p〉β=1 = 4N1N2NT
[
4
(
N2

1 N2 + N1N2
2

) + 2N2
T − 3(NT − 1)

]
(2NT − 3)(2NT − 1)(NT + 3)(NT + 1)(2NT + 1)

, (13)

〈p〉β=2 = 16N1N2NT (2N1N2 − 1)

(2NT + 3)(2NT − 3)(2NT + 1)(2NT − 1)
, (14)

〈p〉β=4 = 16N1N2NT
[
32

(
N2

1 N2 + N1N2
2

) − 8N2
T − 3(2NT − 1)

]
(4NT + 3)(4NT + 1)(2NT − 3)(2NT − 1)(4NT − 1)

, (15)

Equations (13)–(15) are the first results of this work. Fo-
cusing on the experimental regime limit (NT � 1), we expand
Eqs. (13)–(15) in a function of NT , obtaining the following
result:

〈p〉 = 2
N2

1 N2
2

N3
T

+
(

2

β
− 1

)
N1N2(N1 − N2)2

N4
T

−
(

2

β
− 1

)
N2

1 N2
2

N4
T

+ O(N−1
T ). (16)

Notice that the shot-noise power main quantum interfer-
ence correction obtained from Wigner-Dyson ensembles is
only given by the second term of Eq. (16) [4,39]. A central
experiment of the full distribution of random values of the
shot-noise power and, consequently, of the main quantum

interference correction for Wigner-Dyson symmetries (usual
semiconductors) was performed in Ref. [40] and further mea-
surements. Hence, we can conclude that the last one is a
nontrivial contribution of SLS. We henceforth denominate
the exclusive contribution of the graphene as a chiral term
(CT), pCT

wl = −(2/β − 1)N2
1 N2

2 /N4
T . This main quantum in-

terference correction for the shot-noise power is particularly
important when the terminals are symmetric (equal number
of channels), considering that Schrödinger billiards do not
generate interference contributions in this regime.

Taking the symmetric terminal case (N1 = N2 = N) in
Eq. (16), the shot-noise power interference correction simpli-
fies to

〈δp〉 = pCT
wl = =

(
1 − 2

β

)
1

16
. (17)
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Equation (17) shows that the shot-noise power main quantum
interference correction term of the chiral device is finite
in contrast to one of the standard QD for which the main
quantum interference correction term is null in the symmetric
configuration [4]. Differently from the conductance main
quantum interference correction, Eq. (9), the shot-noise power
main quantum interference correction carries information
about SLS that could be accessed experimentally.

C. Numerical simulation

In order to confirm Eqs. (13)–(15), we develop a numerical
simulation through the Mahaux-Weidenmüller formulation
[41]. The scattering matrix of Eq. (4) is written as a func-
tion of electronic Fermi energy (ε) and the Hamiltonian (H)
which describe the resonance states inside the ballistic chaotic
quantum dot as follows:

S = 1 − 2iπW†(ε − H + iπWW†)−1W . (18)

The coupling of the resonance states with the propagating
modes in the two terminals is carried out by means of the
deterministic matrix W = (W1,W2,). Moreover, this deter-
ministic matrix does not satisfy direct processes; i.e., the
orthogonality condition W†

i W j = 1
π
δi, j is maintained to avoid

processes whose electrons do not pass through the quantum
dot before scattering.

In the framework of RMT, the Dirac Hamiltonian, which
describes the graphene, is a member of the Gaussian ensemble
(GE) [42]. Furthermore, its entries have the Gaussian distribu-
tion given by

P (H) ∝ exp

{
−M

λ2
Tr(H†H)

}
,

where λ = M�/π is the variance related to the electronic
single-particle level spacing, �, whereas M is the dimension
of the H-matrix and number of resonance states supported
by the chiral device. To ensure the chaotic regime and con-
sequently the universality of the observables, the number
of resonances inside the quantum dot is taken to be large
(M � NT ) [43]. The massless Dirac Hamiltonian satisfies the
following anticommutation relation [44]:

H = −λzHλz, λz =
[

12M 0

0 −12M

]
,

where we interpret the 2M of 1’s and −1’s as the number
of atoms in the sublattices A and B of a chaotic graphene
quantum dot. The anticommutation relation above implies that
the Dirac Hamiltonian is

H =
(

0 T
T † 0

)
. (19)

In the framework of RMT, the massless Dirac Hamiltonian
which describes the symmetries of a large chiral device is a
member of the chiral Gaussian unitary, orthogonal, or sym-
plectic ensemble [44]. Furthermore, the T -matrix entries have
a Gaussian distribution given by

P(T ) ∝ exp

{
−2M

λ2
Tr(T †T )

}
,

FIG. 2. The ensemble average of the shot-noise power for a
quantum graphene dot with symmetric contacts. The symbols are
the numerical results data while the lines are the analytical results.
Notice a separation between the lines in the three sets of data
caused solely by the quantum interference term due to the sublattice
symmetry.

where λ = 2M�/π . Using Eqs. (2)–(4), (18), and (19), we
developed the numerical simulations for the chiral device that
appear in Fig. 2 for full symmetric open channels (Ni = N)
and in Fig. 3 for asymmetric open channels (N1 = 1 and ar-
bitrary N2), which was obtained through 2.5×104 realizations
and with M = 300. The circle symbols are the average of the
observables whereas the lines represent the analytical results,
Eqs. (13)–(15). The numeric simulations are in great accord
with the analytical results.

According to Fig. 3, there is a clear distancing between
the characteristic curves of each universal symmetry. The
immediate implication is the existence of a distinct quantum
interference correction for each universal symmetry. However,

FIG. 3. The ensemble average of the shot-noise power for a
quantum graphene dot with asymmetric contacts. The symbols are
the numerical results data while the lines are the analytical results.
Observe that the curves of the three universal ensembles are sepa-
rated due to the quantum interference corrections.
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FIG. 4. The ensemble average of the shot-noise power for
Schrödinger billiards with symmetric contacts. The symbols are
the numerical results data while the lines are the analytical results.
Observe that there is no separation between the curves, which
characterizes that the quantum interference term disappears when the
contacts are symmetrical.

in a more peculiar way, in the curves represented in Fig. 2
the quantum interference in a chiral device gives rise to a
separation between the curves even in the symmetric case,
a nonexistent feature in the two-dimensional gas of usual
semiconductors. This separation is precisely the term pCT

wl
foreseen in our analytical result. This signal is a fingerprint
of an electronic quantum transport in the chiral devices.
We executed a simulation of the Wigner-Dyson universal
symmetries associated with Schrödinger billiards, i.e., elim-
inating the Hamiltonian sublattice symmetry. The results for
Schrödinger’s semiconductors are exhibited in Fig. 4 for full
symmetric open channels (Ni = N) and Fig. 5 for asymmetric

FIG. 5. The ensemble average of the shot-noise power for
Schrödinger billiards with asymmetric contacts. The symbols are the
numerical results data while the lines are the analytical results. Ob-
serve that the curves of the three Wigner-Dyson universal ensembles
are separated due to the quantum interference corrections.

open channels (N1 = N and N2 = N3 = 1), which was ob-
tained through 2.5×104 realizations and with M = 300.

IV. CROSSOVER REGIME AND INTERVALLEY
SCATTERING

In this section, we investigate how the shot-noise power
main quantum interference correction term, Eq. (16), could
be affected by external parameters such as magnetic fields,
edges, and intervalley scattering of graphene. Therefore, we
introduce the stub model [45,46], whose the scattering matrix
can be written as

S = P (1 − Q†RQU )−1UP†, (20)

where P and Q are projection matrices of dimensions
4NT ×M and (M − 4NT )×M, respectively. The U matrix is an
M×M random orthogonal matrix taken from chiral ensembles
that describes the chiral device. The R matrix has dimension
(M − 4NT )×(M − 4NT ) and is parametrized as [24,47,48]

R = exp

[
i

M

(
2π

ε

�
σ0 ⊗ τ0 − H

)]
. (21)

The H matrix is obtained from the effective Dirac Hamil-
tonian preserving its intrinsic symmetries and considering
its amplitudes as members of a Gaussian distribution. We
consider the additional degrees of freedom residing in the
elements of matrices H which are all proportional to σi ⊗ τ j ,
with σi and τ j denoting Pauli matrices (i, j = x, y, z) in each
subspace of the Dirac Hamiltonian. To perform averages of S ,
one expands in powers of U (M � 4NT ) and uses diagram-
matic techniques developed in Ref. [24].

A. Conductance localization main quantum
interference correction

Applying Eq. (20) in Eq. (2) and using the diagrammatic
method [24], we are able to identify the maximally crossed
diagram (Cooperons diagram) that gives rise to the conduc-
tance main quantum interference correction,

〈δg〉 = −N1N2

NT

∑
ρ,σ

[Tr(T CT )]ρσ ;ρσ , (22)

where T = σ0 ⊗ τ0 ⊗ σy ⊗ τ0, and

C = Mσ0 ⊗ τ0 ⊗ σ0 ⊗ τ0 − Tr(R ⊗ R∗), (23)

where ∗ is the complex conjugation. Equation (22) was first
obtained in Ref. [24] by applying the framework to a chiral
device subjected to a perpendicular magnetic field and mas-
sive boundary.

The valleys correspond to the two inequivalent Fermi
points of the graphene band structure [49–51] and constitute
relevant implications for the quantum transport, opening ap-
plications in the so-called valleytronics. As an application of
this method, consider the effective Hamiltonian of a graphene
sheet for low energies and long length scales without spin
degree freedom given by [22,23,52]

H = v[p − eA] · σ ⊗ τ0 + u(r)σ0 ⊗ τ0 + u′(r)σx ⊗ τz

+wac(r)σz ⊗ τy + wzz(r)σz ⊗ τz,

where the Pauli matrices σi and τi act on the sublattice and
valley degrees of freedom, respectively. The potential vector
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A = (Ax, 0, 0) carries information about the external electro-
magnetic fields and has no role in coupling the two valleys.
The u and u′ terms are the long-range impurity potential that
induces intervalley scattering; it means that the range of the
impurity potential is much larger than the lattice constant
[52]. The boundary of the chiral device is described by two
physically relevant boundary types, which are known as con-
finement by the armchair edges term (wac), and confinement
by the zigzag edges term (wzz).

The central property responsible for the simplified random
matrix framework in the presence of finite fields is the fact
that all relevant time scales are much longer than the electron
transit time τerg; thus, τB, τu, τac, τzz, τu′ � τerg (the time τB

is associated with the perpendicular magnetic field and, hence-
forth, with A). In fact, for a grapheme flake in the transition
from classical to quantum regimes, the trajectories can be in-
fluenced in distinct ways by the presence of the magnetic field.
In the universal regime, however, when many energy levels are
available (103), all phase space is explored with no preference
to some specific trajectories, as long as the dwell time τdwell

is greater than the ergodic time τerg. In the approach described
in the current paper, in the universal regime, τdwell � τerg, the
results are not affected by special trajectories.

The relevance of the finite fields is guaranteed by the
requirement that τ ’s are of the order of the inverse mean
level spacing in the chaotic graphene quantum dot. We may
thus introduce the following dimensionless parameters to
characterize the intensity of symmetry breaking in the system:

x2 = 2π h̄

�τB
, u2 = 2π h̄

�τu
, u′2 = 2π h̄

�τu′
,

wac = 2π h̄

�τac
, wzz = 2π h̄

�τzz
, (24)

where � is the mean level spacing.
From the effective Hamiltonian, we can obtain the follow-

ing expression of the H matrix [20]:

H = ixXσx ⊗ τ0 + iuA1σ0 ⊗ τ0 + iu′A2σx ⊗ τz

+ iwacA3σz ⊗ τy + iwzzA4σz ⊗ τz.

As usual, we assume H is Hermitian and, consequently,
the matrix Ai and X are real antisymmetric and statistically
independent with 〈Tr(AiAT

j )〉 = δi jM2 and 〈Tr(XX T )〉 = M2.
The parameters x, u, u′, and wac,zz are dimensionless. We
replace H in Eq. (23) and obtain

C = (
NT + x2 + u2 + u′2 + w2

ac + w2
zz

)
σ0 ⊗ τ0 ⊗ σ0 ⊗ τ0

− x2σx ⊗ τ0 ⊗ σx ⊗ τ0

− u′2σx ⊗ τz ⊗ σx ⊗ τz

−w2
acσz ⊗ τy ⊗ σz ⊗ τy

−w2
zzσz ⊗ τz ⊗ σz ⊗ τz. (25)

Finally, through substitution of Eq. (25) into Eq. (22), we
obtain

K ≡
∑
ρ,σ

[Tr(T CT )]ρσ ;ρσ

= 2

1 + 2x2 + 2u2
− 2

1 + 2x2 + 2u2 + 2w2
ac

+ 2

1 + 2x2 + 2u2 + 2u′2 + 2w2
zz

+ 2

1 + 2x2 + 2u2 + 2u′2 + 2w2
ac + 2w2

zz

. (26)

If u = u′ = 0, we recover the result of Ref. [24]. At this
point, considering the zigzag edges, i.e, wzz → ∞, Eq. (26)
simplifies to

K = 2

1 + 2x2 + 2u2
− 2

1 + 2x2 + 2u2 + 2w2
ac

, (27)

which is independent of u′. This indicates that long-range
impurities do not induce the intervalley scattering for zigzag
nanoribbons as in Ref. [52], which means the quantum in-
terference correction is not affected by intervalley scattering.
However, if we take the limit wac → ∞,

K = 2

1 + 2x2 + 2u2
+ 2

1 + 2x2 + 2u2 + 2u′2 + 2w2
zz

, (28)

which is dependent of u′. This means that the intervalley
scattering does not vanish even in the case of long-range
impurities in the armchair nanoribbons [52], which means
the quantum interference correction is affected by intervalley
scattering.

B. Shot-noise power main quantum interference correction

We use the RMT/stub framework for the similar calcula-
tion of the universal crossover on the shot-noise power. We
replace Eq. (20) with Eq. (3). From the 11 024 diagrams used
to obtain Eq. (13), we were able to obtain the 45 maximally
crossed diagrams (Cooperons diagrams) that contribute to the
main quantum interference correction term. After an extensive
algebraic calculation we found that the shot-noise power main
quantum interference correction is given by

〈δp〉 =
[

N1N2(N1 − N2)2

N3
T

− N2
1 N2

2

N3
T

]
K. (29)

Equation (29) is the second result of this work. Comparing the
conductance main quantum interference correction, Eq. (22),
and the shot-noise power main quantum interference correc-
tion, Eq. (29), we could realize that both are similarly affected
by external parameters.

From Eqs. (22) and (29), we can define a universal (“Fano
factor”) parameter that is unaffected by external perturbation
as follows:

〈δp〉
〈δg〉 = −

(
N1 − N2

N1 + N2

)2

+ N1N2

N2
T

. (30)

The ratio between the shot-noise and conductance is gener-
ically known as Fano factor. In the same way, this relation
between theirs quantum portions defines a parameter first
studied in Ref. [39] for a standard QD, whose the result is
given by only the first term of Eq. (30). The second one is a
contribution of the chiral symmetry in the chiral device. Tak-
ing the relevant experimental regime, for which the terminals
are symmetrical (N1 = N2), the first term of Eq. (30) vanishes
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while the SLS contribution goes to

〈δp〉
〈δg〉 = 1

4
. (31)

The factor 1/4 is sufficiently large to be accessed experi-
mentally in a chiral device, proving that the chiral symmetry
affects in a nontrivial way the shot-noise power main quan-
tum interference correction, which does not happen with the
conductance main quantum interference correction.

V. CONCLUSIONS

In this work, we executed a detailed study on the shot-noise
power of chiral structures, which has as its main realiza-
tions the graphene and topological insulators. The sublattice
structure of chiral devices generates additional symmetry that
has a strong influence on the backscattering mechanism. We
performed an exact analytical calculation in the universal
chiral symmetry classes and we showed the emergence of a
term that signals the electronic sublattice quantum transport.
This term is a fingerprint and can be measured for any number
of open channels.

The analytical results were tested through a numerical
simulation and were nicely confirmed. We also simulated
Schrödinger’s billiards and showed that the ensemble average
of the shot-noise power coincides in the three ensembles of
Wigner-Dyson symmetry (usual semiconductors features) for

symmetric contacts. The same does not happen with materials
composed of graphene.

Finally, we showed that the Fano factor associated with
the main quantum interference correction, which is the reason
for the quantum interference correction of the shot-noise
power and the conductance interference, generates a universal
number 1/4 for symmetric contacts. The result is robust and
does not depend on the “tuning” of graphene edges samples,
the applied perpendicular field, or other fields. Despite the
dependence (tuning) and even possible suppression of quan-
tum interference regarding such fields, the result 1/4 occurs
in a universal way for all pure ensembles and crossovers
between chiral classes. We hope our results contribute for
the more general scenario of electronic valley signals. Also,
forthcoming investigations in the perspective of sublattice
symmetries include chiral ensembles characterized by a topo-
logical integer ν, which is the difference of the number of sites
on each of the two sublattices [53]. The calculation in the
present paper is for ν = 0, but generalizations of the results
for ν �= 0 can indicate several other signals of chirality in
mesoscopic devices.
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