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We study the correlation functions of quantum spin-1/2 two-leg ladders at finite temperature, under a
magnetic field, in the gapless phase at various relevant temperatures T �= 0, momenta q, and frequencies ω.
We compute those quantities using the time-dependent density-matrix renormalization group (T-DMRG) in an
optimal numerical scheme. We compare these correlations with the ones of dimerized quantum spin chains and
simple spin chains, that we compute by a similar technique. We analyze the intermediate energy modes and
show that the effect of temperature leads to the formation of an essentially dispersive mode corresponding to
the propagation of a triplet mode in an incoherent background, with a dispersion quite different from the one
occurring at very low temperatures. We compare the low-energy part of the spectrum with the predictions of
the Tomonaga-Luttinger liquid field theory at finite temperature. We show that the field theory describes in
a remarkably robust way the low-energy correlations for frequencies or temperatures up to the natural cutoff
(the effective dispersion) of the system. We discuss how our results could be tested in, e.g., neutron-scattering
experiments.
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I. INTRODUCTION

The study of a strongly correlated system is of crucial
importance for both the cold atom and the condensed matter
communities. In particular, both are able to provide experi-
mental realizations with well-controlled microscopic Hamil-
tonians using either optical lattices [1,2] or quantum magnets
[3]. On the theory side, going from the knowledge of the mi-
croscopic Hamiltonian to the calculation of the correlations,
which can be compared to experimental measurements, is of
course a considerable challenge.

One class of systems which presents a very rich set
of phases, depending on the precise microscopic interac-
tions, is the one of quantum one-dimensional or quasi-
one-dimensional magnets [4]. Indeed, such systems possess
ground states ranging from quasi-long-range magnetic order
to spin liquids. The coupling of several one-dimensional
chains as ladders leads to a very rich phase diagram as a
function of the number of legs [5]. The correlations in these
systems can be probed by, e.g., inelastic neutron-scattering
(INS) [6] or nuclear magnetic resonance (NMR) [7] experi-
ments, giving a very complete access to the spatial or time
dependence of the spin-spin correlations.

In such systems the precise knowledge of the microscopic
Hamiltonian allows thus for a drastic test of the theoretical
methods used to compute the correlations. However, comput-
ing the correlation analytically by methods such as Bethe-
Ansatz [8] has only proven possible at zero temperature.
Comparison with experiments could thus be done for probes,
such as neutrons, when the energy of the probe is much larger
than the temperature [9,10]. Numerical methods, such as
the density-matrix renormalization group (DMRG) [11–17],
allowed for a direct calculation of the zero-temperature corre-
lations that could be successfully compared with experiments
for ladder systems [18,19].

An important challenge is of course to properly incorporate
the finite temperature effects. For temperatures much lower
than the magnetic exchanges in the problem this can be
accomplished by using a combination of the field theory
description, such as the Tomonaga-Luttinger liquid (TLL)
theory [4], and numerics to get an essentially quantitative
finite temperature description, which could be successfully
compared to experiments [18,20,21]. However, this descrip-
tion breaks down when the temperature becomes comparable
to the exchanges or close to a quantum critical point [22,23],
and it is desirable to have a direct way to quantitatively
compute the correlations at finite temperature.

Fortunately such a method is provided by the DMRG,
which can be used to compute the finite temperature dy-
namical correlations at the expense of much more heavy
calculations [24–27]. This program has been carried out with
success for spin-1/2 chains [28] where it allowed one in
particular to analyze the surroundings of the quantum critical
point close to saturation and neutron experiments [29]. Spin-
1 single-ion anisotropy [30,31] and dimerized chains [32]
could be analyzed at finite temperature. For the dimers both
NMR [33] and the neutron scattering [34] could be computed,
allowing one to investigate the broadening effects due to the
temperature on the spectrum [35].

We investigate in the present paper the thermal effects
on the spin-spin correlations of a two-leg ladder system.
On the theory side this allows for a comparison between
the two-leg ladder and the dimerized systems. On the more
experimental side this is stimulated by recent INS experiments
done in weakly coupled spin-1/2 ladders which were done
close to a quantum critical point [36] or the existence of
compounds with relatively small magnetic exchange such
as bis-piperidinium copper tetrachloride (BPCC) [37], for
which we can expect the effects of temperature to be a priori
more important. From the technical point of view the two-leg
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FIG. 1. Weakly coupled dimer and two-leg ladder representation.
The index η corresponds for the ladder to the bottom or upper leg.
For the dimer, η corresponds to the left or right strong bond cell, thus
the labels shuffle when mapped on the two-leg ladder geometry. We
add an arrow on the middle cell to visualize the symmetry when we
inverse the dimerized chain.

ladders are more challenging due to the greater entanglement
compared to either spin chains or dimers. In this paper we
will mostly focus on the comparison of the thermal effects
between the ladders, dimers, and chains. We also compare the
direct numerical calculations with the field theory description
at finite temperature in order to have a feeling of the range of
validity of the field theory description, in a spirit similar to
what was done previously for NMR [33].

The plan of the paper is as follows. In Sec. II, we introduce
the low-dimensional models that we will study in the paper.
We then explain details about the numerical algorithm for the
measure of the low-dimensional correlations in Sec. III. We
then present in Sec. IV the dynamical structure factors of the
various models at different temperatures that INS experiments
can measure also. We finally compare the low-energy spec-
trum with some analytical field theory in Sec. V and discuss
the deviation from bosonization expectations.

II. MODELS

In this paper, we focus on three classes of problems made
of coupled spin-1/2, namely, (i) ladder systems L made of two
coupled spin chains, (ii) weakly dimerized chains D, and (iii)
� = 1

2 anisotropic XXZ chains C.

A. Ladder L

We consider a two-leg ladder system with spins coupled
by antiferromagnetic Heisenberg couplings on rungs and legs
(see Fig. 1):

HL = J‖
∑
�,η

S�,η · S�+1,η + J⊥
∑

�

S�,1 · S�,2 − hz
∑
�,η

Sz
�,η (1)

with stronger rung coupling where S�,η denotes a spin-1/2
at rung � on leg η ∈ {1, 2}. The spin-1/2 S = (Sx, Sy, Sz ) =

h̄
2 (σ 1, σ 2, σ 3) can be decomposed in lowering and raising
operators S± = Sx ± iSy, where we denote by σ i the Pauli
matrices, i ∈ {1, 2, 3}. Note that the coupling values are given
in (4).

B. Dimer D

If we remove alternatively the weak bonds along the ladder
(see Fig. 1) and map the model to a chain we get a dimerized
chain of alternative bonds. For an even number of sites N , we
always have N

2 strong bonds Js and N
2 − 1 weak bonds Jw. The

model is thus

HD =
N−1∑
n=1

(J − (−1)nδJ )Sn · Sn+1 − hz
N∑

n=1

Sz
n (2)

starting with a strong bond at each border Js = J + δJ and
alternating with the weak bonds Jw = J − δJ along the chain.
The coupling values are given in (5).

C. Spin-chain mapping: � = 1
2 XXZ chain C

Both previous models can be mapped to an anisotropic
single spin chain in some regime of parameters when study-
ing the low-energy behavior [18]. If the magnetic field and
temperature are such that we neglect the triplet |t0〉 and |t−〉
population, one can identify a spin-chain behavior in the
critical interplay between |t+〉 and |s〉.

We introduce the pseudo-spin-1/2 �S in the basis | �〉 ≡ |t+〉,
| � 〉 ≡ |s〉 mapped by S±

η ≡ η√
2
S± and Sz

η ≡ 1
4 (1 + 2Sz ) in the

singlet-triplet crossing region. The mapping leads to a spin-
1/2 XXZ chain with � = 1

2 anisotropy:

HC = J
N−1∑
�=1

(
Sx

�S
x
�+1 + S

y
�S

y
�+1 + 1

2
Sz

�S
z
�+1

)
− hz

eff

N∑
�=1

Sz
�. (3)

The spin-chain mapping fixes the following microscopic pa-
rameters for the XXZ model:

ladder: J ≡ J‖ and hz
eff = hz − J⊥ − J‖

2 ,

dimer: J ≡ −Jw

2 and hz
eff = hz − Js − Jw

4 .
Although these models can be studied independently we
consider them here in the regime where their low-energy
properties are roughly equivalent. We consider spin chains
close to zero magnetization mC = 0, which means that both
the two-leg ladder and the dimer are at a magnetization around
half saturation mL = 0.5 and mD = 0.25 at T = 0. We call this
point in the paper the studied magnetic point for simplicity.

For the numerical study we fix the ratio of coupling con-
stants of the ladder to values corresponding roughly to the
compound BPCC [37–40], namely,

J‖ = 0.39 J⊥,

J⊥ = 1.
(4)

In the same way for the dimer system we have

Jw = J − δJ = 0.39 Js,

Js = J + δJ = 1.
(5)

The corresponding values for the magnetic field are, respec-
tively, hz 
 1.28 J⊥ for the two-leg ladder and hz 
 1.148 Js
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FIG. 2. Simulation and measurement of direct correlations by
evolving two observables in time to t1 and t2 at finite temperature
using the T-DMRG algorithm. An optimal scheme, explained in [27],
consists in evolving separately the two observables. This scheme
requires storing all intermediate steps and contracting them at the end
(see text). We use this scheme for the ladders since it can in principle
double the resolution. The standard scheme consists in evolving only
one observable in time (t2 = 0) and in the present paper we use it
both for the dimers and for the chains. Please note that in our notation
β = 2β̃.

for the dimer. We will consider these values in the rest of the
paper. We will not discuss the correction of the constant and
the boundary terms in this paper.

One can see how the spin-chain mapping manifests on both
models looking at Figs. 3 and 4 compared with Figs. 5 and 6.

III. METHOD T-DMRG (T �= 0)

We implement in this paper a time-dependent density-
matrix renormalization-group (T-DMRG) procedure [24–27],
a method based on the earlier DMRG algorithm [11–17].

The method is schematically represented in Fig. 2. The
time or imaginary time evolution follows the Suzuki-Trotter
decomposition [41,42]. In this paper we used a fourth-order
decomposition—that expands the exponentials in terms of
gates which now can converge to the thermal equilibrium
function 1

Z e−βH . One introduces hierarchical matrices for
tensors that increase the amount of information stored in the

system based on the local quantum numbers [43,44] and the
global conservation rules.

Both DMRG and T-DMRG algorithms have the same
complexity limit in terms of the bond dimension χ of the
matrices—during updates after application of the above-
mentioned gates. The singular value decomposition appears
to scale [15] as O(χ ) ∼ Aχ3 but with different prefactors A,
which increases from d3 for DMRG to d6 for T-DMRG, where
d is the number of local degrees of freedom. A similar scaling
applies to the memory case in which O(χ ) ∼ Aχ2 with A ∝
d2 for DMRG and A ∝ d4 for T-DMRG. For the case of lad-
ders, due to the effective longer range of the couplings, if one
represents the system as a chain the gates have to be applied
further, which increases further the complexity. This is related
to the fact that DMRG is most efficient for quantum problems
with a sufficiently low amount of relevant information [45]
and thus particularly for the low-dimensional problems.

A. T-DMRG and a close to optimal scheme

Since the complexities of the two-leg ladder and of the
dimer are different due to the longer range of the coupling (see
Fig. 1), one needs to restrict the bond dimension χ according
to the problem. We use in this paper values of χ of the order
of χL ∼ 620 for the two-leg ladders and χD ∼ 2400 for the
dimers.

With the values of χL for the two-leg ladders, the use of the
standard scheme [27,34] of implementation of the time and
temperature evolution does not allow us to reach sufficiently
long time and resolution for the ladder case. This happens
even though the dimers and the two-leg ladders appear to be
quite similar. Thus, in order to be able to study reliably the
two-leg ladders we have implemented an optimal numerical
scheme as described in [27] (see Fig. 2), which was only
scarcely used in the literature previously due to its more
demanding implementation. As shown in Fig. 2, the usual
procedure evolves only one observable in time, while the
optimal scheme consists of evolving both operators in time.
In practice, this requires only a logistic approach (storing of
the state) and running the jobs in parallel [46]. However, due
to hardware limits, it is in practice difficult to store all the
states and parallelize the contraction properly.

We use the optimal scheme for the two-leg ladder case to
increase the resolution of Figs. 3 and 4. For the other models,
we use the normal scheme consisting of evolving only one
observable in time (Fig. 2 with t2 = 0).

We compute the spin-spin correlations in space and time:〈
Sα

x0
(t )Sγ

x1

〉
β

(6)

for positive time t � 0 and fixed observable at x0. We detail in
Sec. IV how we Fourier transform the measured correlations.
We compute these correlations for various temperatures as
given in Table I.

B. Simulation accuracy

Comparing the initial DMRG version with the finite tem-
perature algorithm, one sees that the variance of the Hamil-
tonian 〈(H − 〈H〉)2〉 is now finite and no longer a criterion
for convergence. To define the convergence of the calculation,
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FIG. 3. Spin-spin correlations of a spin-1/2 two-leg ladder in units of J⊥ = 1 with J‖ = 0.39 J⊥ at T = 0.25 J⊥ 
 0.64 J‖ for magnetic
field hz = 1.28 J⊥ corresponding to mL 
 0.5. The resolution is �ω = π

30 J−1
⊥

using the optimal scheme.

we use the discarded weight quantity [27], namely, the total
weight of discarded eigenvalues according to the singular
value λ j decomposition:

εi ≡
(‖Xtrunc − X‖

‖X‖
)2

=
∑

j>χ λ2
j∑

j λ
2
j

(7)

where i can denote the inverse temperature β, the time t ,
or a single step process depending on the context. The sum
applies in all quantum sector blocks. X is in the matrix product
operator [24] form and Xtrunc is the truncated matrix product
approximation with the renormalized bond dimension fixed
to χ .

The norm can be viewed as the Frobenius norm [27]. χ

is the bond dimension of the mixed state and corresponds
to the number of states kept in the system. This discarded
weight quantity is a good indicator of the T-DMRG algorithm
precision (see Appendix A).

1. Ladders L

For the two-leg ladder, we fixed the size to a total of
2 × 45 = 90 ladder sites. The run uses a truncation error εβ =
10−18 and steps in imaginary time δβ = 1

100 to converge to
the thermal equilibrium β = 4.0 J−1

⊥ , 3.04 J−1
⊥ , and 1.68 J−1

⊥
which are the three temperatures considered for the ladders in
the present paper.

The initial bond dimension χβ < 800 remains largely con-
trolled (it did not reach the limit size 800) in this initial
step since the temperatures are quite large. Then we fix for
all the different observables the truncation εt = 10−13, δt =
1

16 and bond dimension χt = 620. Typically the amount of
information in the time simulation grows until the maximal
bond dimension is reached. Then, one loses a precision of
εi at each step by discarding the smallest singular values λ j

according to (7), which is mandatory if one wants to keep the
numerical algorithmic complexity size χ of the matrices fixed.
The algorithm stops when the total discarded weight passes a
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FIG. 4. Spin-spin correlations of a spin-1/2 two-leg ladder in units of J⊥ = 1 with J‖ = 0.39 J⊥ and at T = 0.595 J⊥ 
 1.526 J‖ for
magnetic field hz = 1.28 J⊥ corresponding to mL 
 0.5. The resolution is �ω = π

22.5 J−1
⊥

using the optimal scheme.
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TABLE I. Temperatures presented in Figs. 3–12 and 14. All the
results are given at the studied magnetic point in the middle of the
critical gapless phase.

Model Figure Temperature

Ladder L Fig. 3 T = 0.25 J⊥ 
 0.64 J‖
Fig. 4 T = 0.595 J⊥ 
 1.526 J‖

Slices (Sec. V) Fig. 12 0.64 J‖ � T � 1.526 J‖
Dimer D Fig. 5 T = 0.25 Js 
 1.28 Jw/2

Fig. 6 T = 0.595 Js 
 3.05 Jw/2
Fig. 14 T = 0.05 Js 
 0.26 Jw/2

t0 excitation Figs. 8,9 0.05 Js � T � 0.595 Js

Slices (Sec. V) Fig. 11 0.26 Jw/2 � T � 3.05 Jw/2

Chain C Fig. 7 T = 0.25 J
Slices (Sec. V) Fig. 10 0.1 J � T � 3.05 J

threshold
∑

i∈{all steps} εi > 10−2 or when a single step lacks in
precision εi > 10−5.

The above precision is for the middle site observable (left
column of Fig. 2). All the other observables run in parallel
with the same time algorithm procedure (or half the sites
using afterwards the symmetry along the ladder). In order to
be sufficiently fast, we reduce the bond dimension χt = 400
as well as the final time t2 ∼ 7 − 8 J−1

⊥ to ensure a precision
εt � 10−7. We can then compute the direct correlations in
Fig. 2 with t1 up to 19–23 J−1

⊥ (time within the bulk without
encountered borders) and we find a good overlap between
all different time correlations—it gets a bit worse for values
of t1 close to the maximal reachable time as expected. This
optimal scheme brings an increase in time t = |t1| + |t2| or
a resolution improvement of ≈30–50% in the worst or best
scenario.

2. Dimers D

For the dimer case, we get a similar resolution in Js without
using the optimal scheme for L = 90 sites. We first converge
with the truncation error εβ = 10−18 with steps δβ = 1

100
to the thermal equilibrium at β = 20 J−1

⊥ , 10 J−1
⊥ , 4.0 J−1

⊥ ,
1.68 J−1

⊥ . One then fixes all the different observables and time
evolves by δt = 1

16 with the truncation εt = 10−13 with the
limited bond χt = 2400. The simulation stops again according
to the same threshold and the final times are for the high
temperatures of order tmax ∼ 27–58 J−1

⊥ . For a lower temper-
ature T � Jw, one can achieve a better resolution similar to
standard DMRG results (see [34]).

IV. CORRELATIONS FOR LADDERS,
DIMERS, AND CHAINS

A. Dynamical structure factor

We first need to transform the real-time and -space data to
find the dynamical structure factor:

Sαγ (q, ω) =
∫ ∞

−∞
dr dt ei(ωt−q·r)〈Sα (r, t )Sγ (0, 0)〉. (8)

In the following equations, α, γ ∈ {x, y, z,±} denote any
component of the spin-1/2.

The T-DMRG simulation gives the direct correlations
〈Sα

x0
(t )Sγ

x1〉β restricted to positive time t � 0. In order to avoid
making errors using spatial invariance too early (before time
inversion, which can be critical for dimers) we use the retarded
susceptibility to ensure an exact procedure. Although this
sounds a priori more complicated, it actually becomes more
straightforward since the time symmetry is carried by the
Kramers-Kronig relations. Furthermore, the Sz sector of the
spin does not need the average magnetization—hidden in
the real part—to calculate the connected correlation.

1. Chains C

We illustrate this procedure for the spin chain. We first
Fourier transform in time the retarded susceptibility that we
get by expressing it in a function of our direct correlations:

χ
αγ
ret (ω, x0, x1) =

∫
dt e+i(ω+iε)t [−i�(t )]

〈[
Sα

x0
(t ), Sγ

x1

]〉

= −i
∫ +∞

0
dte+i(ω+iε)t

(〈
Sα

x0
(t )Sγ

x1

〉 − 〈
Sα†

x0 (t )Sγ †
x1

〉)

where 〈. . . 〉 denotes complex number conjugation and S±†
x0

=
S∓

x0
. We then use translation invariance x = x1 − x0 in the bulk

and Fourier transform the space,

χ
αγ
ret (q, ω) =

∫
dx e−iqxχ

αγ
ret (ω, x),

to finally get the dynamical structure factor worked out using
the Lehmann representation:

Sαγ (q, ω) = −2

1 − e−βω
Im

[
χ

αγ
ret (q, ω)

]
.

The detail of this equality can be found in Appendix B.

2. Ladders L

For the ladder, we have two species of correlations accord-
ing to the leg index η ∈ {1, 2}. We use the q⊥ momentum to
represent the correlations since it is a good quantum number.
Thereby the observables and correlations separate in the sym-
metric q⊥ = 0 or antisymmetric q⊥ = π sectors. We use the
following definitions,

Sα
�,q⊥=0 ≡ Sα

�,1 + Sα
�,2,

Sα
�,q⊥=π ≡ Sα

�,1 − Sα
�,2,

and calculate the dynamical structure factor from there. The
two correlations are fully represented in the two q⊥ quantum
sectors〈

Sα
q⊥ (q, ω)Sγ

q⊥

〉 = 2
(〈

Sα
1 (q, ω)Sγ

1

〉 ± 〈
Sα

1 (q, ω)Sγ

2

〉)
where the index corresponds to correlations on the same legs
or, respectively, different legs. The symmetric q⊥ = 0 case
corresponds to the sum while the antisymmetric q⊥ = π case
is the difference. Using the rung symmetry, all other mixtures
vanish, 〈Sα

q⊥=0(q, ω)Sγ
q⊥=π 〉 = 0.

3. Dimers D

Dimers have less symmetry than the two-leg ladder. One
can map the dimer on the ladder structure, but q⊥ is not
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FIG. 5. Weakly coupled dimerized chain in units of Js = 1 with Jw = 0.39 Js at T = 0.25 Js 
 1.28 Jw/2 for magnetic field hz = 1.148 Js

corresponding to mD 
 0.25. The resolution is �ω = π

35 J−1
s

using the standard scheme.

a good quantum number anymore. This can be seen for
the 〈Sα

�,1Sγ

0,2〉 correlation, which is not symmetric by space
inversion anymore—in contrast to the ladder case (see Ap-
pendix C). In one direction the correlation starts with a weak
bond while in the other direction it starts with a strong bond.
However, we can map the dimer on the ladder by introducing
similar definitions:

Sα
�,q⊥=0 ≡ (

Sα
�,1 + Sα

�,2

)
,

Sα
�,q⊥=π ≡ (

Sα
�,1 − Sα

�,2

)
(−1)�.

The new ladder labeling introduces the oscillating sign ac-
cording to Fig. 1 while the symmetric observable Sα

�,q⊥=0
remains untouched by the permutation. Note that the crossed
correlations 〈Sα

q⊥=0(q, ω)Sγ
q⊥=π 〉 �= 0 are not vanishing but not

very transparent to analyze. We thus focus on the correlations〈
Sα

q⊥=0(q, ω)Sγ

q⊥=0

〉
,〈

Sα
q⊥=π (q, ω)Sγ

q⊥=π

〉
.

These correlations look similar to the two-leg ladder up to
finite signal strength absent in the ladders as can be seen in
Figs. 5 and 6.

For completeness, we also present in Appendix D (Fig. 14)
the results in the more conventional chain notation in
which we separate the correlations in 〈Sα

1 (q, ω)Sγ

1 〉 and
〈Sα

1 (q, ω)Sγ

2 〉, which are now two-site cell translationbrk in-
variant.

4. Filter

In the previous paragraph, we made major assumptions
such as translation invariance and infinite time integration.
Respectively, we then should expect errors of the order �q =

π
dmax

and �ω = π
tmax

inside each Fourier transformation due to
finite-size effects. As usual, the most relevant error comes
from the real-time resolution which is much harder to get. In
order to remove finite-size effects on our data and give more
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FIG. 6. Weakly coupled dimerized chain in units of Js = 1 with Jw = 0.39 Js at T = 0.595 Js 
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TABLE II. Transition elements of the symmetric and antisym-
metric spin-1/2 operator 〈·|Sα

q⊥ |·〉 in the isolated rung picture. Ac-
cording to the Lehmann representation (see Appendix B), all above-
mentioned spectra can be identified by the following transitions.

〈S
α q ⊥
〉

|s〉 |t+〉 |t0〉 |t−〉
〈s| ∅ 〈S−

π 〉=−√
2 〈Sz

π 〉=1.0 〈S+
π 〉=√

2

〈t+| 〈S+
π 〉=−√

2 〈Sz
0〉=1.0 〈S+

0 〉=√
2 ∅

〈t0| 〈Sz
π 〉=1.0 〈S−

0 〉=√
2 ∅ 〈S+

0 〉=√
2

〈t−| 〈S−
π 〉=√

2 ∅ 〈S−
0 〉=√

2 〈Sz
0〉=−1

weight to the short space and time steps, one can introduce a
selective mask.

In the first part (Sec. IV B), we add a weak Gaussian
filter M(x, t ) = e−(Ax/dmax )2

e−(Bt/tmax )2
where we choose A =

B = 1.5.
In the second part (Sec. V), where we compare the results

with the field theory expectation, we avoid all filters and work
with the raw correlations.

B. Results for the correlation functions

Let us now present the results based on the calculations
described in the previous sections.

The central results of this section are the calculation of
the correlation functions for the ladders at finite temperature.
Results for the two-leg ladder model (1) are presented in Fig. 3
for a temperature of T = 0.25 J⊥ and in Fig. 4 for temperature
T = 0.595 J⊥. Previous results but at zero temperature T = 0
can be found in [18].

All allowed transitions for an isolated rung can be found
in Table II for the symmetric and antisymmetric spin observ-
ables. Briefly we review the different excitations that appear
in the two-leg strong rung ladder, and we will discuss it further
in the next sections. In the gapless phase, the lowest excitation
spectrum is of course due to the interplay of the singlets
with the triplets forming the Descloizeaux-Pearson continuum
spectrum (see Sec. V for a finer study of the low spectrum
behavior and Fig. 7). At intermediate energy, one sees the
dispersion of a single triplet excitation |t0〉 in the correlations
〈S+−

q⊥=0〉 and 〈Szz
q⊥=π 〉 (see the t − J model [18] which breaks

down here at finite T �= 0, see Fig. 8). In addition to the same
energy scale, there is a weak two-triplet excitation signal in
〈S−+

q⊥=0〉. At large energy scale, one encounters another weak

two-triplet excitation in the 〈Szz
q⊥=0〉 as well as a transition to

the single triplet |t−〉 excitation in the 〈S+−
q⊥=π 〉.

In the same way, and in order to be able to compare
with the ladder results, we present the finite temperature
correlations for the dimerized system. Similar calculations,
albeit at different temperatures and couplings, were given in
[34]. The comparison of the results of the present paper with
the results of [34] for the correlation 〈Sα

1 Sγ

1 〉
β

in the gapless
phase is very good. We find similar limitations during the time
evolution process for the most cumbersome e−βH

Z S+ observ-
able and similar improvement of resolution when lowering the
temperature.

The dimerized system mapped on the ladder geometry is
shown in Fig. 5 at a temperature T = 0.25 Js and in Fig. 6
for a temperature T = 0.595 Js. As one can see, most of the
excitations can be identified with the two-leg ladder pretty
well.

Finally we also present the results for the chains at a similar
temperature in Fig. 7. Finite temperature calculations of spin
chains were also presented in [28].

C. Discussion of the T-DMRG results

First let us note that the weights in the correlations re-
distribute differently than for the zero-temperature case [18].
Due to the finite temperature effects, some negative energy
transitions are allowed in the correlations (see Fig. 14). We
only present the results for the positive frequency domain
ω � 0 since one can relate them to the negative frequencies
using the detailed balance equation (B3):

Sαγ (q, ω) = e−βωSγα (−q,−ω). (9)

Since the raising and lowering are not self-conjugate oper-
ators, they are allowed at finite temperature to get negative
intensities (see Fig. 14).

Even though the natures of the correlations are quite dif-
ferent due to the different species of correlations, ladders
and dimers are quite related and give good information on
each other. There are indeed many similarities in the structure
factors. The triplets are quite well aligned in energy. One
difference that can be directly seen in the numerical results
but will be deepened using the mapping onto an effective
spin chain (see Sec. V C) is that the dimer has an effective
dispersion of Jw/2 compared to J‖ for the two-leg ladder.
All quantities depending on the weak bonds thus rescale for

0 2 4 6
0

1

2

3

4

0

5

10

0 2 4 6
0

1
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3

4

0
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6

FIG. 7. XXZ spin-1/2 chain with anisotropy � = 1
2 and coupling J = 1 at T = 0.25 J for an external magnetic field h = 0 J corresponding

to a zero magnetization mC = 0. The resolution is �ω = π

52 J−1 .
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FIG. 8. The single triplet excitation t0 in weakly coupled dimerized chain in units of Js = 1 with Jw = 0.39 Js at magnetic field hz =
1.148 Js corresponding to mD 
 0.25 for various temperature T = 0.05, 0.1, 0.25, 0.595 (Js ). The last two columns correspond to top left and
bottom right panels of Figs. 5 and 6. At the lowest temperatures we see that the minima of the dispersion are situated around q = π/2 and 3π/2
in agreement with the predictions of the mapping of this system to a t − J model [18]. When the temperature increases and becomes larger
than Jw one sees that a coherentlike mode with a minimum around q = π appears at the bottom of the spectrum in an incoherent background
(see text and Fig. 9).

the dimer by a factor of 2. For this reason, we use a twice
larger colorbar color code for the dimer than the ladder to
represent the intensities on a similar scale—but all presented
results stay in unity of Js and J⊥. In addition, due to the
asymmetry of the dimer, some signals survive in the region
where the ladder is actually gapped (correlations in q⊥ = 0
and π are not allowed between the |t+〉 and |t0〉 or |t0〉 and
|t−〉). This is a remnant of the different types of geometries
and the absence of “ladderlike” symmetries in the dimer case
(see Appendix C). In addition to that, the weak two-triplet
〈S−+

q⊥=0〉 at intermediate energy scale is absent in the dimerized
chain.

Concerning the effective temperature in each model, the
two-leg ladder remains more coherent in the low-energy
spectrum than the dimer since it “feels” a twice smaller
temperature in units of the effective dispersion. We discuss
the low spectrum in more detail in the next section (Sec. V)
by comparing the results with field theory predictions.

Let us now turn to the higher part of the energy spectrum.
This part of the spectrum is of course beyond the reach of
the field theory and the mapping onto the anisotropic spin
chain. As a general tendency we get weaker intensities and
more spread signals when the temperature increases. The
temperature leads also to a broadening of the modes, that was
analyzed for the dimers from the numerical results [34]. We
see here that the ladders show similar behaviors in term of
broadening (see Figs. 3 and 4). We concentrate here on the
spectrum corresponding to an excitation to the state |t0〉 and
study in detail its temperature dependence, in particular for the
same order or larger temperature than the weak coupling (see

Fig. 8). For both ladders and dimers, this part of the spectrum
corresponds to modes in which a singlet or a |t+〉 state is
converted into a |t0〉. One can thus examine this part of the
spectrum as a single hole in a t − J model [18] for which
the “hole” corresponds to the state |t0〉 and the two “spin”
states are played by the singlet and |t+〉 states. At low (or
zero) temperature, as was clearly shown both for ladders at
zero temperature (see Figs. 12 and 13 in [18]) and for dimers
(see Figs. 11 and 12 in [34]; note that the antisymmetric signal
q⊥ = π is shifted by π in our results compared to the chain,
in agreement with our Fig. 14), the spectrum corresponds
to two cosine dispersions centered around the two minima
q = π/2 and 3π/2 because the creation of a |t0〉 state is
accompanied by the destruction of either a singlet |s〉 or a
triplet |t+〉 (see Sec. V.C.3.b in [18]). At the magnetic field we
have applied, the low part of the excited spectrum corresponds
to the low-energy states |t+〉 and |s〉 with momentum for the
excitations of q = ±π/2 at half filling.

From our numerical results we can follow the dispersion of
the |t0〉 mode as the temperature increases from temperatures
small to large compared to the effective dispersion. The results
are shown in Fig. 8.

The lower temperature is clearly in agreement with the
previous results both for the dimers and for the ladders with
the dispersion minima around π/2 and 3π/2 resulting from
the mapping to an effective t − J model. As the temperature
increases we see that the modes become increasingly incoher-
ent and broaden. Quite surprisingly the numerical result shows
that the dispersion leads to a relevant intensity corresponding
to a coherentlike mode, with its maximum intensity at the
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FIG. 9. Slice at q = π of Fig. 8 focusing on the energy range of the |t0〉 excitation for the correlations 〈Sx
q⊥=0(q = π )Sx

q⊥=0〉 on the left and
〈Sz

q⊥=π (q = π )Sz
q⊥=π 〉 on the right. We see a shift of the spectral weight there moving the mode from 1.2–1.4 Js at low temperature to 0.7–0.85 Js

at large temperature. This complex mechanism appears to arise from the many-body dynamics and breaks the usual low-temperature picture
done by the t − J mapping [18].

bottom of the spectrum, with a minimum which is now shifted
to around q ∼ π . This behavior is observed for the dimers as
shown in Figs. 8 and 9, but also for ladders as can be seen from
Fig. 4. Giving a precise description of this effective “mode” is
an interesting and challenging question since it originally ap-
pears from the many-body dynamics. An interesting challenge
would be finding the temperature for which the incoherent
minimal peak would become maximal.

Although it is difficult to connect this observation directly
to an analytical calculation, one can infer that the change
of the spectrum comes from the fact that the spinon excitations
that would correspond to the two pseudospin singlet |s〉 and
triplet |t+〉 states are now essentially totally incoherent since
the temperature is greater than their dispersion, leading to
essentially the dispersion of the bare hole.

V. COMPARISON WITH FIELD THEORY

Let us now turn to the low-energy part of the spectra.
Both the two-leg ladder and the dimer system can be mapped
[18,34] at the studied magnetic point to an anisotropic spin-
1/2 � = 1

2 XXZ model. This allows us to use the standard
bosonization method to extract the dynamical correlation
functions [4] both at zero temperature and using the conformal
invariance of the field theory at low temperature. In a similar
way to what was done for the NMR relaxation time [33] one
can thus compare the numerical results with the field theory
description.

A. Bosonization of the spin-1/2 chain

Let us give a brief reminder of the field theory description.
One introduces [4] two continuous real bosonic fields φ and
θ to represent the low-energy excitations. For an XXZ spin
chain, the effective Hamiltonian is

H = h̄

2π

∫
dx

uK

h̄2 [∇θ (x)]2 + u

K
[∇φ(x)]2 (10)

where u is the velocity of excitations and K is a dimensionless
parameter, controlling the decay of the correlation functions.
The spin operators are represented in terms of the fields φ and
θ by [4]

Sz(r) = mz + −1

π
∇φ(r) + 2

2πα

× cos[2φ(r) − π (1 + 2mz )x],

S±(r) = e∓iθ (r)

√
2πα

{cos(πx) + cos[2φ(r) − 2πmzx]} (11)

where mz is the magnetization.
For ladders and dimerized chains, we use the spin-chain

mapping described in Sec. II C to relate the observables to the
ones of a spin chain:

Sz
l = 2Sz

l,k − 1

2
,

S±
l = (−1)k

√
2 S±

l,k . (12)

The spin-spin correlation functions are given in the re-
tarded susceptibility form by [4,47,48]

χκ (q̆, ω) = − sin(πκ )α2

u

(
2πα

βu

)2κ−2

× B

(
κ

2
− i

β(ω − uq̆ + iε)

4π
, 1 − κ

)

× B

(
κ

2
− i

β(ω + uq̆ + iε)

4π
, 1 − κ

)
(13)

where β is the inverse temperature, α is a short distance
cutoff, and q̆ is the momentum centered on the field-dependent
dispersion (the usual momentum q is defined in Sec. IV A 1). κ
is an exponent that depends on the precise correlation function
under consideration. In this paper we look at the studied
magnetic point and at slices at q = π ± 0.14 (note that we are
slightly above half saturation too), which would correspond to
the q̆ = 0 slice with TLL exponents 2κ = 2K or 1

2K according
to Eq. (14).
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TABLE III. TLL parameters extracted from T = 0 DMRG data
for the chain, dimer, and two-leg ladder systems. In italic in row Az,
AC

z could not be extracted directly from the DMRG but has been fixed
between the chain and the ladder (see text).

TLL parameters Chain C Dimer D Ladder L

Ax 0.135 0.1469 0.166
Bx 0.021 0.0135 0.007
Az 0.09 0.082 0.078
K 0.745 0.754 0.85

The nonuniversal parameters of the field theory (TLL
parameters and amplitudes for the correlation functions) can
be computed directly allowing an essentially parameter-free
calculation of the correlation functions. For the spin chain
with � = 1

2 , exact Bethe-Ansatz results [49] fix K = 0.75
and u = 1.299. However, for the two-leg ladder and the dimer
those parameters need to be fixed from a numerical calculation
with the microscopic model.

B. Extraction of TLL parameters at T = 0

In order to fix the various parameters we use the expression
of the correlation functions at zero temperature [4]:

〈
Sx

i Sx
j

〉 = (−1)|i− j|Ax

(
1

|i − j|
) 1

2K

− Bx

(
1

|i − j|
)2K+ 1

2K

,

〈
δSz

i δSz
j

〉 = −K

2π2

(
1

|i − j|
)2

+ Az(−1)|i− j|
(

1

|i − j|
)2K

.

These expressions can then be used, by comparison with
the numerical results, to extract [18,50] the nonuniversal
amplitudes Ax, Bx, and Az and the K parameter. We perform
the zero-temperature DMRG calculation of the correlation
functions using the ALPS library [51].

We first extracted the Ax and K parameter from the 〈Sx
i Sx

j 〉
correlation since it has the slowest decay. We then use the
obtained value of K in the 〈Sz

i Sz
j〉 correlation and fix Az. We

avoid boundary effects by considering correlations near the
middle of the chain and by using space invariance for few sites
in the bulk. With this procedure, we estimate all errors on the
extracted values of about 20%. The velocity u is computed
from the compressibility K

uπ
= ∂m

∂h . In this paper we used
u 
 1.3. The TLL values can be found in Table III and are
consistent when they can be compared with previous results
[18,50].

For the dimer system, it is more difficult than for the chain
and the ladder to extract the TLL parameters. For instance, the
〈Sz

i Sz
j〉 correlation decreases very fast while on the other hand

the local magnetization still oscillates. With the asymmetry in
the correlation, it becomes difficult to extract from there any
estimation of AD

z . This particular value has thus been fixed to
be between the chain and the ladder value.

C. Bosonization and T-DMRG comparison

Since we have now fixed all the nonuniversal TLL pa-
rameters and amplitudes from Table III, we can use the field
theory expression (13) to obtain the correlation functions at

finite temperature without any adjustable parameter. For the
comparison between the direct numerical calculation of the
correlations and the field theory, we consider the correlations
at q = π which are directly related to (B2) and (13) by

Ax Im[χ 1
4K

(q̆ = 0, ω)] = 1−e−βω

−2 〈Sx(q = π,ω)Sx〉,
Az Im[χK (q̆ = 0, ω)] = 1−e−βω

−2 〈δSz(q = π,ω)δSz〉. (14)

The short-distance cutoff α can be taken as equal to 1 in-
side the retarded susceptibility since it is reabsorbed in the

nonuniversal amplitudes Ax = ( α
1

2K −1

4πa
1

2K −1
) and Az = ( α2K−2

a2K−22π2 )

according to definition (11), where a is the lattice spacing unit
cell.

Let us first compare the field theory prediction with the
numerical calculations of the correlations for the anisotropic
spin-1/2 chain. The result is shown in Fig. 10.

As can be seen from the slices 10, 11, and 12 the agreement
is excellent both for the longitudinal and the transverse corre-
lations, for temperatures up to T � 0.5J for all frequencies
up to ω � J at which one would expect in any case the field
theory description to cease to be valid, irrespective of the
thermal effects. Note that the frequency regime for which
the field theory is valid is much broader than what was the
case for the NMR relaxation time [33]. This is probably
due to the fact that here we focus on a specific value of q
(slice) for which massless modes down to zero energy exist,
rather than perform a summation over all q modes. It also
confirms that for a quite broad range of temperatures and fre-
quencies the conformal modification of the zero-temperature
correlations correctly gives the finite temperature behavior. At
larger temperatures T > 0.64J and above, deviations start to
appear, even if the low-energy part of the spectrum remains
remarkably robust even at quite high temperatures. Note in
particular the axis intensities in Fig. 10 that clearly show how
well Eq. (13) predicts the low spectrum behavior.

Quite remarkably, a similar excellent agreement is found
for dimer and ladder systems as, respectively, shown in
Figs. 11 and 12. The range of temperatures and frequencies
for which the low-energy effective theory works remarkably
well is again quite broad. Both ladders and dimers also show
an excellent agreement with the field theory prediction for
frequencies up to the natural cutoff of the model, J‖ for the
two-leg ladder, or Jw/2 for the dimer system. For the ladder,
although we can only reach the relatively high temperatures
of more than half J‖, the field theory remains quite excellent
up to frequencies of order ω � J‖.

The extension of the TLL theory to finite temperature
gives an excellent quantitative description of the correlations
up to temperatures and energies close to the bandwidth of
the problem. This very robust behavior of the field theory
description, in a broad range of frequencies and temperatures,
up to—and sometimes even beyond—the natural cutoff of
the theory is of course directly relevant in the way that we
can trust the application of such theories for treating more
complex realizations (such as, e.g., coupled systems). This
is of course especially important to tackle the physics of
compounds with low enough magnetic exchanges, such that
they can be manipulated by realistic magnetic fields. The
drawback of such compounds is of course that the natural
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FIG. 10. Transverse (top) and longitudinal (bottom) spin-spin correlation functions for a spin-1/2 chain as a function of the frequency ω for
a fixed wave vector q = π and q̆ = 0, respectively [see Eq. (14)]. The field theory expression (13) in red is directly compared with the numerical
T-DMRG calculation of the correlation (blue). The numerics are obtained from the Fourier transform of the output simulation without Gaussian
filter (Sec. IV A 4). We have taken AC

x 
 0.135, AC
z 
 0.09, and KC 
 0.745. The shadow region corresponds to the maximum and minimum

of all TLL parameters moving by ±10%.

scale of energies (e.g., in INS experiment) or temperatures that
one can reach is getting closer to the magnetic exchange.

VI. CONCLUSION

In this paper, we computed using a T-DMRG technique the
dynamical structure factor of a two-leg spin-1/2 ladder sys-
tem, as a function of the energy, momentum, and temperature.
We use an optimal scheme for the implementation of the time

evolution in order to be able to reach the necessary resolution
for the two-leg ladder system. We focus on the intermediate
magnetic field regime for which the magnetization per rung or
per dimer is half of the saturation value. There the system has
massless excitation and a low-energy part that can be mapped
onto a Tomonaga-Luttinger liquid.

The results are indicated in Figs. 3 and 4. We compare
these spectra with those of dimerized systems and of an
anisotropic � = 1

2 XXZ chain, to which the low-energy
part of the previous systems can be mapped. We examine
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FIG. 11. Transverse (top) and longitudinal (bottom) spin-spin correlation functions for a dimerized chain as a function of the frequency
ω for a fixed wave vector q = π and q̆ = 0, respectively [see Eq. (14)]. The field theory expression (13) in red is directly compared with
the numerical T-DMRG calculation of the correlation (blue). The numerics are obtained from the Fourier transform of the output simulation
without Gaussian filter (Sec. IV A 4). We have taken AD

x 
 0.1469, AD
z 
 0.082, and KD 
 0.754. The shadow region corresponds to the

maximum and minimum of all TLL parameters moving by ±10%.
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FIG. 12. Transverse (top) and longitudinal (bottom) spin-spin correlation functions for a two-leg ladder as a function of the frequency
ω for a fixed wave vector q = π and q̆ = 0, respectively [see Eq. (14)]. The field theory expression (13) in red is directly compared with
the numerical T-DMRG calculation of the correlation (blue). The numerics are obtained from the Fourier transform of the output simulation
without Gaussian filter (Sec. IV A 4). We have taken AL
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 0.166, AL
z 
 0.078, and KL 
 0.85. The shadow region corresponds to the maximum

and minimum of all TLL parameters moving by ±10%.

in particular the evolution of the intermediate energy part
of the spectrum getting thermally populated by the triplet
|t0〉. For the low-temperature part we examine the spin-chain
mapping and compare the finite temperature correlations with
the conformal modification of the TLL field theory. We show
that there is an excellent agreement between the numerics
and the field theory for energies and temperatures that ex-
tend up to values corresponding to the spin exchange of
the weak-coupling energy scale (J‖ for ladders and Jw/2 for
dimers).

Our paper shows clearly the direct possibility to use with an
excellent accuracy the field theory description to study more
complex systems of ladders such as weakly three-dimensional
coupled ladders even if the temperature or the interladder
coupling reaches reasonably strong values. It also shows that
for systems as complex as the ladders we have an essentially
exact description even at finite temperatures from the numer-
ics and similar features can be found in related models (that
we have already analyzed in that way), namely, spin chains
and dimerized systems.

Our calculation can potentially be directly compared to
measurment done with neutron scattering on two-leg lad-
der systems. Compounds such as (C5H12N)2CuBr4 (BPCB)
[52], (C7H10N)2CuBr4 (DIMPY) [53], and (C5H12N)2CuCl4
(BPCC) [38] are of course prime candidates for such study.
Very successful comparisons of the broad features of the
neutrons have already been done with the zero-temperature
numerics and no high temperature as the one we have studied
yet exists in the literature in the gapless regime. We hope that
the present paper will stimulate experimentalists to perform
these experiments, either in BPCB or in similar compounds
at larger temperature J‖ � T � J⊥, in particular to probe the
|t0〉 incoherent dispersion. For BPCB [18], the couplings are,
respectively, J‖ 
 3.55 K and J⊥ 
 12.6 K and the |t0〉 mode

is situated around the J⊥ energy scale (see Figs. 3 and 4) and
therefore located at a neutron energy of approximately 1 meV.
One could thus expect to see the change of behavior for the
|t0〉 mode, as described by Figs. 8 and 9, when going from
T = 200 mK to 10 K.

Our results open the door to a finer study of the temperature
effects, or the study via numerics of the vicinity of quantum
critical points in ladders for which such temperature effects
are crucial to take into account.
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APPENDIX A: CONVERGENCE AND PRECISION

Note first that we use the Suzuki-Trotter decomposition
in the normalized units of the biggest energy scale to be
consistent with the diverse numerical precision and matrix
conditioning.

As a rule of thumb, we set the maximal bond dimension
for the problem (χL = 620, χD = 2400). Of course, it requires
much less computational resources to run the less consuming
observables ( e−βH

Z S− and e−βH

Z Sz, see Fig. 13) at smaller bond
dimension χ . However, the artificial oscillation would start at
different precision scales which we try to avoid. We always
start with some maximal value χ and then, if needed, reduce
the bond dimension to more quickly reach the final resolution
of the problem. This gives full accuracy for the initial short
time evolution which reduces the possibility of cumulative
errors.
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FIG. 13. Example of how the precision—truncated weight εi

(dashed black line), sum of all discarded weight
∑

i εi (solid blue
line), and bond dimension χ (red line)—grows with the time for

three different observables e+iHt e−β̃H Sα√
Z2β̃

e−iHt in the ladder case at low

temperature β = 2β̃ = 20.0 J−1
s . From top to bottom, we have α

equal to “+”, “−,” and “z.” The bond dimension truncation grows
first until reaching 2400. The computation starting to be too heavy,
we reduce it to 2200. Then after a computational time of the order
of a few days we reduced it again to 1700 to reach reasonable
computational times.

We present in Fig. 13 a plot of the bond dimension with the
truncated weight εi (one step) of the Suzuki-Trotter process
and the sum of all discarded weights

∑
i εi (integration) for

three observables.
The typically used measure of errors in the simulation,

namely, the εi, is shown as the dashed black curve. In this
paper we, however, use the sum of all the discarded weights
as the relevant error

∑
i εi. We believe that this more stringent

criterion helps to obtain results which are more accurate and
reproducible.

APPENDIX B: LEHMANN REPRESENTATION
AND THE DETAILED BALANCE

The Lehmann representation consists of computing the
averages using the exact eigenenergies En and eigenvectors
|n〉 of the Hamiltonian:

〈A(t )B〉 = 1

Z

∑
n,m

e−βEn ei(En−Em )t 〈n|A|m〉〈m|B|n〉.

It follows that the imaginary part of the susceptibility has the
following symmetries:

Im
[
χ

αγ
ret (q, ω)

] = − Im
[
χ

γα
ret (−q,−ω)

]
(B1)

due to

−π
Z

∑
n,m (e−βEn −e−βEm )〈n|Sα

q
2
|m〉〈m|Sγ

− q
2
|n〉δ(ω+En−Em )=

−π
Z

∑
n,m (e−βEm −e−βEn )〈n|Sγ

− q
2
|m〉〈m|Sα

q
2
|n〉δ(−ω+En−Em ).

The dynamical structure factor is related to the imaginary part
of the susceptibility:

Sαγ (q, ω) = −2

1 − e−βω
Im

[
χ

αγ
ret (q, ω)

]
(B2)

due to

−π
Z

∑
n,m (e−βEn −e−βEm )〈n|Sα |m〉〈m|Sγ |n〉δ(ω+En−Em ) =

(1−e−βω )
(−2)

(2π )
Z

∑
n,m e−βEn 〈n|Sα |m〉〈m|Sγ |n〉δ(ω+En−Em ).

Thus the detailed balance equation follows from the two
equations (B1) and (B2):

Sαγ (q, ω) = e−βωSγα (−q,−ω). (B3)

APPENDIX C: SYMMETRIES IN LADDERS AND DIMERS

The symmetries around the middle cell rung �0 = N+1
2 of

a ladder with an odd number of rungs N lead to〈
Sα

η1,�
(t )Sγ

η2,�0

〉 = 〈
Sα

η2,−�(t )Sγ

η1,�0

〉 =〈
Sα

η2,�
(t )Sγ

η1,�0

〉 = 〈
Sα

η1,−�(t )Sγ

η2,�0

〉
with η1, η2 ∈ {1, 2}. All correlations are space symmetric in
the � coordinate and we have equivalence between top-top
and bottom-bottom correlations as well as bottom-top and
top-bottom correlations. This makes the decomposition of the
correlation in the q⊥ ∈ {0, π} sectors appropriate.

For the dimer, there is only one rung or leg symmetry.
For the middle rung cell �0 = N+1

2 and for an odd number of
rungs, we have〈

Sα
1,�(t )Sγ

1,�0

〉 = 〈
Sα

2,−�(t )Sγ

2,�0

〉 �=〈
Sα

2,�(t )Sγ

2,�0

〉 = 〈
Sα

1,−�(t )Sγ

1,�0

〉
.

The left-left and right-right correlations have the same num-
ber of couplings in both � directions with reversed order
(strong + weak vs weak + strong). They are pretty similar up
to boundary effects.

The left-right and right-left correlations〈
Sα

1,�(t )Sγ

2,�0

〉 = 〈
Sα

2,−�(t )Sγ

1,�0

〉 �=〈
Sα

2,�(t )Sγ

1,�0

〉 = 〈
Sα

1,−�(t )Sγ

2,�0

〉
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are, however, very sensitive to the dimer geometry. For
the first site correlations � − �0 ∈ {−1,+1}, one crosses
different amounts of coupling in each direction (weak vs
strong + weak). This asymmetry makes those correlations
very sensitive to the dimerization structure even in the infinite-
size limit. For those reasons, the q⊥ ∈ {0, π} is not a valid
quantum number for the dimer even though there exist many
similarities with the ladder.

APPENDIX D: DIMER SPECTRUM ALONG
THE CHAIN DIRECTION

The main text presents the results of the dimer (see Fig. 5)
using the two-leg ladder representation (as shown in Fig. 1).
For completeness and more easy comparison with [34] we
also show in Fig. 14 the results in the chain geometry. The
figure shows how the left-left cell 〈Sα

1 (q, ω)Sγ

1 〉 and left-right
cell 〈Sα

1 (q, ω)Sγ

2 〉 disperse.
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FIG. 14. Correlations along the chain of the weakly coupled
dimerized chain at T = 0.05 Js with Jw = 0.39 Js and Js = 1 for
magnetic field corresponding to mD 
 0.25 (compare with Fig. 5).
Note that, due to the geometry, the unit cells are now two sites
periodic and the reciprocal space is π periodic.
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