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Coherence temperature in the diluted periodic Anderson model
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The Kondo and periodic Anderson model (PAM) are known to provide a microscopic picture of many of
the fundamental properties of heavy-fermion materials and, more generally, a variety of strong correlation
phenomena in 4 f and 5 f systems. In this paper, we apply the determinant quantum Monte Carlo method to
include disorder in the PAM, specifically the removal of a fraction x of the localized orbitals. We determine the
evolution of the coherence temperature T ∗, where the local moments and conduction electrons become entwined
in a heavy-fermion fluid, with x and with the hybridization V between localized and conduction orbitals. We
recover several of the principal observed trends in T ∗ of doped heavy fermions, and we also show that, within
this theoretical framework, the calculated nuclear magnetic resonance relaxation rate tracks the experimentally
measured behavior in pure and doped CeCoIn5. Our results contribute to important issues in the interpretation of
local probes of disordered, strongly correlated systems.
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I. INTRODUCTION

Materials poised at the cusp of magnetic to nonmagnetic
phase boundaries exhibit a myriad of complex properties.
As systems ranging from cuprate superconductors [1,2] to
heavy fermions [3–5] and iron pnictides [6,7] are moved with
pressure, chemical doping, or temperature away from a regime
where magnetic order is dominant, an incredible variety of
alternate patterns of spin, charge, and pairing emerges. A
description of the resulting competition has been an ongoing
challenge to the condensed-matter community [8].

To address these phenomena, nuclear magnetic resonance
(NMR) has been extensively used to explore local micro-
scopic properties of correlated materials, providing great in-
sight into their nature [9–11]. In particular, NMR experiments
have determined the energy scale at which a heavy-fermion
state emerges, i.e., when 4 f electrons become delocalized.
This scale has been associated [12–18] with a coherence
temperature, T ∗, whose signature appears, e.g., as an anomaly
in Knight shift (KS) measurements: while for normal metals
the KS tracks the magnetic susceptibility, for most heavy-
fermion materials this tracking breaks down below a cer-
tain temperature, which is identified with T ∗ [12,13]. The
presence of several distinct contributions to the magnetic
susceptibility in these materials, in particular the one from a
singlet d- f channel that delocalizes 4 f -electrons, leads to this
anomaly, signaling the emergence of a heavy-fermion state.
Remarkably, when the KS anomaly is singled out by remov-
ing the high-temperature contribution to the susceptibility,
many heavy-fermion materials exhibit a universal behavior
for temperatures below T ∗ [12,13]. The coherence temper-
ature is evident in multiple experimental probes, including
transport, thermodynamic, and tunneling measurements, but
its microscopic origin, and its relation to the Kondo screening
temperature, remain open questions [17–19].

Additional complexity is introduced by added chemical
impurities [19–23], so that treating the effects of disorder is
essential to understand many of the properties of correlated
electron materials. Randomness is central to the emergent
physics since it acts to limit the growth of charge-ordered
regions [24]. Likewise, dopant disorder can stabilize localized
antiferromagnetic (AF) regions, explaining the persistence
of AF even deep in the d-wave phase [25]. A similar phe-
nomenon occurs in heavy-fermion materials where AF long-
range order is induced via Cd doping of CeCoIn5 [22,26]. Of
particular interest is the crossover between Kondo screening
in the single-impurity limit and collective screening with
intersite interactions among multiple sites in a lattice.

A powerful approach to investigate these crossover regimes
is to systematically replace the f -sites with nonmagnetic
atoms. This leads to inhomogeneities in the magnetic re-
sponse, with some spatial regions favoring strong spin corre-
lations, while in others a paramagnetic behavior is preferred.
Thus, instead of having a single external parameter that glob-
ally tunes a system through a magnetic/nonmagnetic bound-
ary, one should also investigate how the physical quantities
behave in the presence of internal and highly inhomogeneous
degrees of freedom. One expects NMR quantities like T ∗ and
the spin-lattice relaxation rate to have a strong dependence
with impurity doping (e.g., La substitution on Ce-based com-
pounds) and even acquire a distribution of values depending
on the local environment of the nuclei [27–33]. Indeed, NMR
and scanning tunneling microscopy (STM) measurements on
the cuprates have examined the links between charge order,
superconductivity, and pseudogap physics in the cuprates.

From a theoretical point of view, the nature of these
emergent phenomena may be described by simplified models
that take into account their most fundamental mechanisms,
such as the periodic Anderson model (PAM) [34–38] and the
closely related Kondo lattice model [39–43], which consider
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weakly correlated “conduction” electrons hybridized with
strongly correlated “localized” ones. Tuning the strength of
the hybridization in these models leads to a quantum phase
transition (QPT), in which the ground state evolves from an
antiferromagnetic (AF) ordering to a spin liquid state. Recent
numerical work on the homogeneous PAM has captured the
KS anomaly and provided T ∗ by quantitatively characterizing
the different orbital contributions to the global susceptibility
[44,45]. In the context of impurity doping [46], the PAM
successfully describes the enhancement of AF correlations
around doped impurities in CeCo(In1−xCdx )5 [47–49], and
it also provides evidence of a magnetic suppression when
nonlocal hybridization terms are included [50,51], as in the
case of CeCo(In1−xSnx )5 [23,52].

Here we study the combination of randomness and strong
interactions with an exact numerical approach, which allows
for “real-space imaging” of spin correlations. We investigate
the behavior of the coherence temperature and NMR quan-
tities in chemically doped heavy-fermion materials, such as
in Ce1−xLaxCoIn5, with quantum simulations that accurately
incorporate sites with missing magnetic moments. Our focus
is on whether the calculated trends of these quantities re-
semble those from experimental NMR measurements [31] on
the evolution with impurity doping and external parameters.
To this end, we extend previous [44] determinant quantum
Monte Carlo (DQMC) simulations to treat the randomly
diluted PAM (dPAM), as presented in the next section. In
Secs. III and IV we discuss our findings, from which our key
results are as follows: (i) the KS anomaly exhibits a universal
scaling behavior below T ∗, even in the presence of disorder;
(ii) T ∗ increases with hybridization V (or pressure); and
(iii) it linearly decreases with impurity concentration x. Fi-
nally, (iv) the NMR relaxation rate, 1/T1, exhibits a strongly
inhomogeneous pattern throughout the lattice. These demon-
strate that several of the most fundamental conclusions of
NMR experiments can be predicted, including the scaling be-
havior of T ∗. In Sec. V we summarize our main conclusions.

II. MODEL AND METHOD

The Hamiltonian for the dPAM reads [53]

H = − t
∑
〈i,j〉,σ

(c†
iσ cjσ + H.c.) −

∑
i,σ

Vi (c†
iσ fiσ + H.c.)

− μ
∑
i,σ,α

nα
iσ +

∑
i

U f
i

(
n f

i↑ − 1

2

)(
n f

i↓ − 1

2

)
, (1)

where the sums run over a two-dimensional square lattice,
with 〈i, j〉 denoting nearest-neighbor sites, and α = c or f ;
the notation for the operators is standard. The first term
corresponds to the hopping of conduction electrons (the hop-
ping integral, t , sets the energy scale), while the last term
describes the Coulomb repulsion on localized f -orbitals. The
hybridization between these two orbitals is modeled by a
site-dependent hopping Vi

Here we consider full orbital dilution, in which we ran-
domly set Ui = Vi = 0 on a fraction x of the sites. Physically,
this is equivalent to completely removing f -orbitals, similarly
to the replacement of a magnetic 4 f 1 Ce atom by a 4 f 0 La
one in CeCoIn5, which locally suppresses both the moment

on the f -orbital and the possibility of c- f mixing (due to the
distance of the La level from the Fermi energy).

The DQMC method [54–59] employed here to solve
Eq. (1) is an unbiased technique commonly used to inves-
tigate Hubbard-like Hamiltonians: it maps a d-dimensional
quantum system in a classical (d + 1)-dimensional one, via
the inclusion of an imaginary-time coordinate. Within this
approach, one separates the one-body (K̂) and two-body (P̂)
pieces in the partition function by using the Trotter-Suzuki
decomposition, i.e., by defining β = Lτ�τ , with Lτ being the
number of imaginary-time slices, and �τ is the discretization
grid. Then

Z = Tr e−βĤ = Tr [(e−�τ (K̂+P̂ ) )Lτ ]

≈ Tr [e−�τ K̂e−�τ P̂e−�τ K̂e−�τ P̂ · · · ], (2)

with an error proportional to (�τ )2. This is exact in the
limit �τ → 0. The resulting partition function is rewritten
in quadratic (single-body) form through a discrete Hubbard-
Stratonovich transformation (HST) on the two-body terms,
e−�τ P̂ . This HST introduces discrete auxiliary fields with
components on each of the space and imaginary-time lattice
coordinates, which are sampled by Monte Carlo techniques.
In this work, we choose t�τ = 0.1, so that the error from
the Trotter-Suzuki decomposition is less than, or comparable
to, that from the Monte Carlo sampling. DQMC is able to
measure a general set of single- and two-particle response
functions, such as susceptibilities, which can be directly com-
pared with experimental results.

Although numerically exact, DQMC is constrained by
the infamous minus-sign problem [57,59], which restricts
our analyses to the half-filling case, i.e., when both c- and
f -orbitals have 〈nc, f

i,σ 〉 = 1/2. Determinant quantum Monte
Carlo is especially well-matched to analyze the problem of
disorder and the local structures that form around an impurity,
since it is formulated in real space. Furthermore, many types
of randomness, such as local variations in hybridization, on-
site repulsion, and site removal, do not affect particle-hole
symmetry. Therefore, there is no sign problem at half-filling,
regardless of the presence of disorder (dilution) on the lattice.
This allows us to investigate the behavior of correlations in all
temperature scales.

To connect with NMR measurements, the central quanti-
ties of interest are magnetic susceptibilities, from which the
Knight shift and spin-lattice relaxation rate are obtained; see
below. Due to the presence of two orbitals, the total spin on a
given site i is Si = Sc

i + εiS
f
i , with εi ≡ 1 at sites containing

f -orbitals, and 0 otherwise. Thus, the total magnetic suscepti-
bility is given by

χ = χcc + 2χc f + χ f f , (3)

where

χαα′ = 1

Ns

∑
ij

Qαα′
ij

∫ β

0
dτ

〈
Sα

i (τ ) · Sα′
j (0)

〉
. (4)

Here Sα
i (τ ) = eτH Sα

i (0) e−τH, with α, α′ = c or f , and
Qαα′

ij = [(δα,c + εiεjδα, f )δα,α′ + (εiδα, f δα′,c + εjδα,cδα′, f )];
the number of lattice sites is Ns = L × L. Similarly, the Knight
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FIG. 1. (a) Knight shift as a function of total susceptibility χ . (b) χ and the renormalized Knight shift K̃ as a function of temperature, for
V/t = 1.2 and x = 0.20. The vertical dashed line defines T ∗/t = 1.05 (see text). (c) Experimental NMR results for Ce1−xLaxCoIn5 reproduced
from Ref. [31]. (d) Data collapse of DQMC results for the KS anomaly, KHF, for T � T ∗. Here, and in all subsequent figures, when not shown,
error bars are smaller than the symbol size.

shift is

K = Aχcc + (A + B)χc f + Bχ f f + K0, (5)

where A (B) corresponds to the hyperfine coupling between
the nuclear spin of In(1) atoms and conduction (localized)
electrons. K0 is a temperature-independent term arising from
orbital and diamagnetic contributions to K , which we set to
zero. Recall that the Knight shift is a local quantity, which
depends on the distribution of nearest-neighbor site (Ce or
La) moments to the central In(1) atom [31]. Thus, our data
correspond to the average K of representative sites that couple
to both Sc and S f spins. Since the hyperfine couplings are
generally different [12,60], and strongly material-dependent,
we follow a previous study [44] and take A/B = 0.3; general
trends are not sensitive to the precise choice of A/B [44]. Our
simulations capture qualitative features of χ, K , and 1/T1, but
not material-specific details. In what follows, our DQMC data
are averages over 20–30 different disorder configurations on
a 10 × 10 square lattice, and U f / t = 4. Most of our results
were obtained for V �1, corresponding to the singlet region
for the clean PAM [37,38].

III. THE COHERENCE TEMPERATURE

At high temperatures, localized electrons are weakly cou-
pled to conduction bands, so the contribution of χcc and χc f

may be disregarded. As a result, the Knight shift [Eq. (5)]
tracks the localized electron susceptibility and, under the same
assumptions, the total susceptibility χ as well. Following
the procedure adopted in analyses of the experiments, we
perform a linear fit to our DQMC Knight shift data as a
function of the susceptibility in the high-temperature region,
i.e., K = Beffχ + K0,eff [see Fig. 1(a)]. Next, we define the
renormalized KS,

K̃ ≡ (K − K0,eff )/Beff , (6)

which is equal to χ at high temperatures. This equality holds
as long as the c- f singlet channel is small. However, since
(A + B)/B �= 2, K̃ fails to track χ when χc f becomes relevant:
the associated energy scale is T ∗; see Fig. 1(b). In this way the
Knight shift, which detects the contribution of a c- f channel

(hence the presence of delocalized 4 f electrons), provides
an important tool to investigate the emergence of a heavy-
fermion state and its temperature scale. The KS anomaly
persists even in strongly diluted materials, as displayed in
Fig. 1(c), for the heavy-fermion Ce1−xLaxCoIn5, with x ≈
0.75.

It is worth emphasizing that the continued appearance of
the coherence temperature in the presence of disorder at a
value similar to that of the pure system [44,61] is a nontrivial
observation. Indeed, electrons in unpaired orbitals (which
survive dilution) are known to give large contributions to the
susceptibility, regardless of whether they are conducting or
localized [49,62,63]. This could, in principle, significantly
affect the assumptions under which K̃ would track χ , hence
the value of T ∗ as well. As we shall see, these effects are
more relevant at very low temperatures, due to the possibility
of long-range order setting in the ground state. The relatively
weak dependence of the NMR quantities with dilution, as
presented in Figs. 1(a)–1(c), is an important step toward a
global understanding of T ∗ in diluted systems.

Within a two-fluid model [12,13,28,64,65], one singles out
the “heavy-fermion fluid” contribution to the KS by subtract-
ing its “normal” (high-temperature) contribution, i.e.,

KHF ≡ Beff (K̃ − χ ). (7)

Remarkably, experimental results suggest a universal behavior
of KHF for many different heavy-fermion materials,

KHF(T )

K0
HF

= f (T ) ≡ (1 − T/T ∗)3/2[1 + ln(T ∗/T )], (8)

where K0
HF and T ∗ depend on the specific material, and on

external parameters. We use this phenomenological scaling
form for a more accurate estimate of T ∗ through the collapse
of our DQMC data, as shown in Fig. 1(d).

The behavior of the KS in Fig. 1, in particular its scaling
behavior [Fig. 1(d)], provides robust evidence that DQMC
simulations qualitatively reproduce trends observed experi-
mentally, even in the presence of disorder. We now turn our
attention to the dependence of T ∗ with external parameters,
such as the hybridization, V , which is tuned in experiments
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FIG. 2. (a) The coherence temperature T∗ as a function of V for
different dilution fractions x. (b) Dependence of T ∗ on f -orbital
dilution x in the PAM. Data for different c- f hybridizations V are
normalized to their clean (x = 0) system value. Experimental NMR
results on Ce1−xLaxCoIn5 are reproduced from Ref. [27] (open red
circles) and Ref. [31] (open orange squares). The black dashed line
is a guide to the eye for DQMC data. The DQMC results are in
excellent qualitative (and, indeed, almost quantitative) agreement
with experiment.

by applying pressure. Figure 2(a) displays the behavior of T ∗
as a function of V for different impurity concentrations, x.
Regardless of the level of disorder, the coherence temperature
increases monotonically with V . This reproduces fundamental
features of NMR measurements (e.g., for CeRhIn5 [66]):
larger hybridization increases the probability of a hopping
from f -orbitals to conduction ones, which in turn increases
the energy scale (∼V 2/U f ).

The effect of dilution on T ∗ is already apparent in Fig. 2(a):
although the clean and disordered cases share the same qual-
itative trend, the value of T ∗ decreases with x. This reduction
in the coherence temperature with f -orbital dilution reflects
a crossover between dense and diluted Kondo regimes; that
is, the material goes from a heavy-fermion state at small x
to a single-impurity Kondo regime at x ≈ 1 − ε, with ε 
 1.
To further emphasize this crossover, Fig. 2(b) displays T ∗ as
a function of dilution for different values of hybridization.
Notice that T ∗ has a (roughly) linear dependence with x, with
T ∗ �= 0 even at strong dilution. Our DQMC predictions are in
good agreement with recent NMR results for Ce1−xLaxCoIn5,
as shown in Fig. 2(b); see Ref. [31]. Data from early attempts
to measure T ∗ in Ce1−xLaxCoIn5 (see, e.g., Ref. [27]) are also
included in Fig. 2(b): they also display a monotonic decrease
of the coherence temperature with La doping.

FIG. 3. Spin-lattice relaxation rate of the clean PAM as a func-
tion of temperature, for different hybridizations V . Solid lines are
guides to the eye.

IV. RELAXATION TIME

The NMR relaxation rate is defined as (see, e.g., Ref. [10])

T −1
1 = γ 2kBT lim

ω→0

∑
q

A2(q)
χ

′′
(q, γ )

h̄ω
, (9)

where A2(q) is the square of the Fourier transform of the
hyperfine interaction, and γ is the gyromagnetic ratio. The
latter is related to the nuclear magnetic moment by γ h̄ =
gμN

√
I (I + 1), with μN being the nuclear magneton, g the

nuclear g-factor, and I the nuclear spin. T −1
1 quantifies a

characteristic time in which a component of the nuclear spin
(of a given site) reaches equilibrium after an external perturba-
tion (magnetic-field pulse). It is a dynamical (real frequency)
quantity whose numerical evaluation usually requires an ana-
lytic continuation of the imaginary-time DQMC data. Instead,
we use an approximation to this procedure [67],

1

T1
= 1

π2T

∑
i

〈Si(τ = β/2)Si(0)〉 . (10)

As a benchmark for our results for the diluted case, we first
examine the behavior of T −1

1 for the clean (x = 0) system.
Previous DQMC studies [36,37] of the PAM have provided
evidence of a QPT from an antiferromagnetically (AFM)
ordered ground state to a spin liquid phase at Vc ≈ 1.0. Then,
one expects that the behavior of T −1

1 for decreasing temper-
atures should reflect the properties of these different ground
states [63]. Figure 3 displays the behavior of the relaxation
rate as a function of temperature for different values of V .
Here we show the results from extrapolating data for lattice
sizes L = 8, 10, and 12 to L → ∞. Within the AFM phase,
V/t = 0.8 or 0.9, T −1

1 approaches a finite nonzero value as
T → 0, consistent with the absence of a spin gap, i.e., the
presence of spin-wave excitations. On the other hand, for
larger V, T −1

1 decreases monotonically when T is lowered,
reflecting a spin-gapped (spin liquid) ground state. Notice that
the change in behavior of T −1

1 occurs around V/t ∼ 1.0, in
line with the Vc reported in Ref. [37].
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FIG. 4. Local contributions to the spin-lattice relaxation rate for
x = 0.20 and 0.80, as compared with the clean case (x = 0). Vertical
red dashed lines correspond to T ∗ and 0.2T ∗ for x = 0, and V/t =
1.20.

Turning to the disordered case, the lack of translational
symmetry requires the analysis of local contributions to T −1

1
by considering two species of sites: (i) Ce sites, those with
an active f -orbital, and (ii) La sites, those which had their
f -orbitals removed. Accordingly, we define T −1

1 for Ce and
La as the average over their individual contributions, i.e., we
average over the available sites of each type, and subsequently
we average over disorder configurations. Figure 4 displays the
behavior of the local T −1

1 for fixed V/t = 1.2 and for dif-
ferent concentrations. For reasons that will become apparent
below, we separate the discussion of Fig. 4 into two regimes:
intermediate temperatures, T ∼ T ∗, and low temperatures,
T 
 T ∗, when properties reflect the dominant correlations in
the ground state. In the intermediate-temperature range, we
note that data for the spin relaxation rate on Ce sites for the
clean case and for both dilution cases (x = 0.20 and 0.80)
are almost indistinguishable; for the La sites, data for these
same concentrations are also nearly identical, though much
smaller than those for the Ce sites. When compared with the
experimental results in Fig. 10 of Ref. [31], we see that the
same data grouping occurs, and that the decrease of T −1

1 as
the temperature decreases (below the broad maxima) is also
present; the difference in magnitude between data for Ce and
La sites is also noticeable. These features, therefore, provide
evidence that the T −1

1 distribution is quite inhomogeneous
throughout the lattice, with Ce sites behaving as in the clean
case even for strong dilution. A possible explanation for this
inhomogeneity may be a local nature of singlet formation, i.e.,
singlets have a short correlation length.

In the low-temperature regime, the strong attenuation ob-
served in our DQMC results for the pure case is due to the
spin-gapped ground state. For the diluted systems, however,
our T −1

1 data on Ce sites seem to converge to finite values

as T decreases, consistent with gapless behavior due to either
enhanced magnetic correlations or metallic (Pauli-like) behav-
ior, depending on the degree of dilution. It is worth noting that
the T −1

1 for x = 0.20 and 0.80 have similar behavior, despite
the large difference in the disorder strength. In fact, previous
theoretical works [68,69] have suggested that the dense Kondo
regime occurs just for nc ≈ n f , while the diluted Kondo
regime is established for a wide region of nc < n f , which is in
line with our findings here. The difference between these two
dilutions occurs only for La sites at very low temperatures.
The data for La sites when x = 0.20 show that T −1

1 increases
with decreasing temperatures for T/t � 0.1, corresponding
to an enhancement of magnetic correlations on these sites, a
behavior also found for the regularly depleted PAM [49]. We
note that the half-filling of our model for dilution may impose
a bias toward an AFM ground state, since conduction sites
with removed partners are unable to form singlets [63].

V. CONCLUSIONS

In summary, we have presented results for the magnetic
susceptibility, Knight shift, and NMR relaxation rate com-
puted using DQMC simulations for the diluted periodic An-
derson model. We showed that even in the presence of dis-
order, the Knight shift anomaly displays a behavior with a
phenomenological universal function shared with the clean
case. We have also obtained the coherence temperature, T ∗,
and its dependence on c- f hybridization, V , and with the
dilution fraction x. We have found that T ∗ is a linearly
decreasing function of x, reproducing a crucial feature of
the experimental results for La-doped CeCoIn5. Finally, we
have also discussed the spin-lattice relaxation rate, which
is distributed inhomogeneously throughout the lattice. The
qualitative agreement of our results with experimental NMR
measurements for Ce1−xLaxCoIn5 suggests DQMC is a pow-
erful theoretical tool to model accurately the nature of spin
correlations in disordered heavy-fermion materials.

Although we have emphasized the use of DQMC within
the context of condensed-matter materials, our work also has
important implications for “quantum gas microscopes” and
their use to explore ultracold trapped atoms [70–72]. Like the
NMR measurements described here, quantum gas microscopy
allows the resolution of single atoms, doubly occupied sites,
and (local) magnetic order. A central focus is on nonequi-
librium properties directly connected to the relaxation times
studied here.
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