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Topological chiral superconductivity with spontaneous vortices
and supercurrent in twisted bilayer graphene
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We study d-wave superconductivity in twisted bilayer graphene and reveal phenomena that arise due to
the moiré superlattice. In the d-wave pairing, the relative motion (RM) of two electrons in a Cooper pair
can have either d + id or d − id symmetry with opposite angular momenta. Due to the enlarged moiré
superlattice, the center-of-mass motion (COMM) can also carry a finite angular momentum while preserving
the moiré periodicity. By matching the total angular momentum, which has contributions from both the RM
and the COMM, Cooper pairs with d + id and d − id RMs are intrinsically coupled in a way such that the
COMM associated with one of the RMs has a spontaneous vortex-antivortex lattice configuration. Another
phenomenon is that the chiral d-wave state carries spontaneous bulk circulating supercurrent. The chiral d-wave
superconductors are gapped and also topological as characterized by an integer Chern number. Nematic d-wave
superconductors, which could be stabilized, for example, by uniaxial strain, are gapless with point nodes.
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I. INTRODUCTION

The twist angle in van der Waals bilayers has emerged
as a new tuning knob to control electronic properties [1–6].
Theory has predicted that the Dirac velocity of twisted bilayer
graphene (TBLG) vanishes at a set of magic twist angles [7],
near which the low-energy moiré bands are extremely flat and
electron interaction effects are therefore magnified. Correlated
insulating states and superconductivity have recently been
experimentally observed in TBLG near the largest magic
angle (∼1◦) [8,9]. These discoveries have generated great
interest in moiré pattern physics [10–13]. A recent experiment
demonstrated that superconductivity in TBLG can be further
tuned by pressure [14]. In theory, various aspects of TBLG are
being actively studied, including single-particle band structure
theory [15–27], many-body theory on the low-temperature
superconducting and correlated insulating states [18,28–53],
and also transport theory in the high-temperature metallic
regime [54].

In this work, we study d-wave superconductivity in TBLG
and reveal phenomena that arise due to the enlarged moiré
superlattice. The d wave has been proposed to be a candi-
date pairing symmetry for TBLG in the Coulomb repulsion
mechanism [28,34,38–40] as well as the phonon mechanism
[43]. Theory presented in this paper builds upon the theoret-
ical framework developed in our previous work [43], where
phonons mediate pairing, while our qualitative results for the
d-wave channel should be largely independent of the exact
pairing mechanisms. The continuum model that we employ
captures the sublattice and layer dependence of the moiré
electronic wave function, which is crucial for our findings.
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We demonstrate two phenomena for chiral d-wave states in
a moiré superlattice, i.e., spontaneous vortices in the pairing
order parameters and spontaneous bulk supercurrent. The
presence of spontaneous vortices can be anticipated by ex-
amining the angular momentum of a Cooper pair, which is
explained briefly in the following and thoroughly in Sec. III.
In the d-wave pairing, the relative motion (RM) of two
electrons in a Cooper pair has either d + id (d+) or d − id
(d−) symmetry, which carry opposite angular momenta under
the transformation of a threefold rotation. The total angular
momentum of a Cooper pair has contributions from both the
RM and the center-of-mass motion (COMM). Due to the
enlarged moiré superlattice, COMM can also carry a finite
angular momentum while preserving the moiré periodicity. By
matching the total angular momentum, Cooper pairs with d+
and d− RMs are intrinsically coupled. Overall, there are still
two independent chiral pairing channels, which are respec-
tively labeled �̂1 and �̂2 [see Eq. (8) for the definition]. In
�̂1, COMM associated with d+ RM has an s-wave symmetry,
while COMM for d− RM has a spontaneous vortex-antivortex
lattice configuration. The other channel �̂2 is the time-reversal
counterpart of �̂1. The above order parameter structures are
illustrated in Fig. 3. We note that Ref. [47] also reported spon-
taneous vortices in the superconductivity order parameters but
for a mixed d- and p-wave pairing state. In this paper we
explain the origin of vortices based on the angular momentum
of Cooper pairs.

The chiral d-wave ground state carries spontaneous cir-
culating supercurrent in the bulk. This is possible because
each moiré unit cell contains a large number of atomic
sites that support current flow. We find that supercurrent has
one component circulating around the ẑ axis (perpendicular
to TBLG) and another component circulating between the
two graphene layers in TBLG. The supercurrent distribution
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FIG. 1. (a) Moiré pattern in TBLG. (b) The small black hexagon
represents the moiré Brillouin zone, while the gray and yellow
hexagons show the Brillouin zone associated with the bottom and
top layers.

pattern is characterized by both a magnetic dipole moment
and a magnetic toroidal dipole moment.

We also discuss the gap structure in the superconducting
states. The chiral d-wave states are gapped and also topo-
logical as characterized by an integer Chern number. The
two-component d-wave pairing channels can also lead to
nematic states, which break rotation symmetry but preserve
time-reversal symmetry. Nematic d-wave superconductors are
gapless with point nodes. Within weak-coupling mean-field
theory, chiral d-wave states are energetically more favored.
However, nematic d-wave states could be stabilized near the
critical temperature when the sixfold rotational symmetry of
the TBLG is broken, for example, by uniaxial strain.

This paper is organized as follows. Section II sets up
the single-particle moiré Hamiltonian. In Sec. III, we study
d-wave pairing within mean-field theory, present the critical
temperature, and discuss the superconductivity order parame-
ters, including the spontaneous vortices. In Sec. IV, we illus-
trate the spontaneous supercurrent in the chiral d-wave state.
Sections V and VI respectively present the gap structures of
chiral and nematic d-wave states. In Sec. V, we also show that
the chiral d-wave state is topological by computing the Berry
curvature and the Chern number. Finally, a brief discussion
and summary are given in Sec. VII.

II. MOIRÉ BANDS

We construct TBLG with point group D6 by starting from
AA stacked bilayer graphene and then rotate the bottom and
top layers by angles −θ/2 and +θ/2 around one of the
hexagon centers, as illustrated in Fig. 1(a). The origin of
coordinates is chosen to be on this rotation axis and halfway
between layers. The D6 point group symmetry with respect
to this origin is generated by a sixfold rotation Ĉ6 around
the ẑ axis and twofold rotations M̂x and M̂y around the
x̂ and ŷ axes, respectively. The operations M̂x,y swap the
two layers. Because spin-orbit interactions are negligible in
graphene [55,56], electrons have accurate spin SU(2) sym-
metry. Therefore, superconductivity can be classified as spin
singlet and triplet.

At a small twist angle θ , TBLG has a triangular moiré
pattern with a long period aM = a0/[2 sin(θ/2)], where a0 is
the lattice constant of monolayer graphene. In the moiré pat-
tern, there are three notable regions, where the local interlayer

coordinations are of AA, AB, and BA types, as highlighted in
Fig. 1(a).

The single-particle physics of TBLG with small θ can be
described using a continuum moiré Hamiltonian, in which
the atomic-scale commensurability plays no role. The moiré
Hamiltonian [7] is spin independent and is given in valley τK
by

Hτ =
(

hτb(k) Tτ (r)
T †

τ (r) hτt(k)

)
, (1)

where τ = ± is the valley index. hτb and hτt are the Dirac
Hamiltonians of the bottom (b) and top (t) layers:

hτ�(k) = e−iτ� θ
4 σz [h̄vF (k − τκ�) · (τσx, σy)]e+iτ� θ

4 σz , (2)

where � is +1 (−1) for the b (t) layer, vF is the bare Dirac
velocity(∼106 m/s), and σx,y are Pauli matrices that act in
the sublattice space. Because of the rotation, the Dirac cone
position in layer � and valley τ is shifted to τκ�. We choose
a moiré Brillouin zone (MBZ) in which κ� is located at the
corners and refer to the MBZ center below as the γ point. κ�

is then given by [4π/(3aM )](−√
3/2,−�/2). The interlayer

tunneling terms are sublattice dependent and vary periodically
with the real-space position r:

Tτ (r) = T (0)
τ + e−iτb+·rT (+1)

τ + e−iτb−·rT (−1)
τ , (3)

where b± are moiré reciprocal lattice vectors given
by [4π/(

√
3aM )](±1/2,

√
3/2) and T ( j)

τ = w0σ0 +
w1 cos(2π j/3)σx + τw1 sin(2π j/3)σy. Here w0 and w1

are parameters that respectively determine the tunneling in
AA and AB/BA regions. w0 and w1 are different because
the interlayer distance in the AA region is larger than that
in AB/BA regions, and therefore, |w0| < |w1| is expected.
We take w0 = 90 meV and w1 = 117 meV from Ref. [57].
For this choice of parameters, the largest magic angle at
which the Dirac velocity reaches a minimum value is about
1.025◦. Near this magic angle, the two nearly flat bands
close to zero energy (set by the Dirac point energy) are
separated from higher- or lower-energy bands by a gap of
about 35 meV, which is consistent with experiments [8,9] and
motivates the use of the two tunneling parameters. Figure 2
shows the moiré band structure at θ = 1.05◦, which will be
used below as a representative example for the discussion of
superconductivity properties.

We note that the moiré Hamiltonian builds in the D6 point
group symmetry and also the time-reversal symmetry T̂ , as
h∗

τ�(k) = h(−τ )�(−k) and T ∗
τ (r) = T−τ (r). The T̂ symmetry

implies that ετ (q) = ε−τ (−q), where ετ is the band energy in
valley τK and q is the momentum relative to the γ point. The
band structure within one valley has strong trigonal warping,
as demonstrated in Fig. 2, and therefore, ετ (q) �= ετ (−q).
Because of this feature in the band structure, intervalley
electron pairing is more favored.

III. d-WAVE PAIRINGS

We studied the coupling between moiré electrons and in-
plane optical phonon modes associated with each graphene
layer in Ref. [43] and found that this coupling mediates the
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FIG. 2. (a) Moiré band structure along high-symmetry lines for
the +K valley and θ = 1.05◦. Only the two bands close to zero
energy (set by the Dirac point energy) are shown. Energy contour
plots for the lower and upper bands in (a) are shown respectively in
(b) and (c). The yellow contours in (b) and (c) indicate the Fermi
surface when the lower or upper band is half filled.

following intervalley electron pairing interactions:

HBCS = −4
∫

d2r{gE2 [ψ̂†
+A�sψ̂

†
−A�s′ψ̂−B�s′ψ̂+B�s + H.c.]

+ gA1 [ψ̂†
+A�sψ̂

†
−A�s′ψ̂+B�s′ψ̂−B�s + H.c.]

+ gA1 [ψ̂†
+A�sψ̂

†
−B�s′ψ̂+A�s′ψ̂−B�s + (A ↔ B)]}, (4)

where the operators ψ̂† and ψ̂ are at the same coarse-grained
position r. The subscript plus and minus signs distinguish the
two valleys, A and B label sublattices, � refers to layers, and
s and s′ are spin indices. In Eq. (4), interactions in the first
line are induced by phonon modes near the � point, and those
in the second and third lines are generated by phonon modes
near the ±K points. The coupling constants gE2 and gA1 are,
respectively, about 52 and 69 meV nm2.

In HBCS, there are two distinct spin-singlet pairing chan-
nels: (i) intrasublattice pairing, e.g., εss′ψ̂

†
+A�sψ̂

†
−A�s′ , and

(ii) intersublattice pairing, e.g., εss′ψ̂
†
+A�sψ̂

†
−B�s′ , where ε

is the fully antisymmetric tensor with ε↑↓ = 1. While the
intrasublattice pairing channels are generated by both �

and ±K phonons, only the ±K phonons contribute to
intersublattice pairing. The intra- and intersublattice pair-
ings have s-wave and d-wave symmetries, respectively, be-
cause electrons at different sublattices and opposite val-
leys share the same angular momentum under the three-
fold rotation Ĉ3ψ̂

†(r)Ĉ−1
3 = exp[i2πσzτz/3]ψ̂†(R3r), where

R3 is the real-space threefold rotational matrix. Intersub-
lattice pairings P̂�+(r) = εss′ψ̂

†
+A�s(r)ψ̂†

−B�s′ (r) and P̂�−(r) =
εss′ψ̂

†
+B�s(r)ψ̂†

−A�s′ (r) carry opposite angular momenta (±2),

Ĉ3P̂�+(r)Ĉ−1
3 = e+i 4π

3 P̂�+(R3r),

Ĉ3P̂�−(r)Ĉ−1
3 = e−i 4π

3 P̂�−(R3r). (5)

Here the angular momentum is defined based on the Ĉ3

operation and therefore is determined up to modulo 3. We
refer to P̂�+ and P̂�− as chiral d+ and d− pairings, respec-
tively. At the atomic scale, chiral d-wave pairings are realized
by forming nearest-neighbor spin-singlet Cooper pairs with
bond-dependent phase factors, as illustrated in Figs. 3(a) and
3(b). The opposite angular momenta associated with P̂�± arise
from the relative motion between two electrons in one Cooper
pair.

We focus on the d-wave pairing, assuming that the
s-wave pairing is suppressed by Coulomb repulsion effects.
In Ref. [43], the d+ and d− pairings are considered to be
independent, which is a good approximation when estimating
the critical temperature. Here we present the full theory and
show that d+ and d− pairings are coupled in the linearized
gap equation, although only weakly.

We perform mean-field theory, and the local pair amplitude
is given by

�
(+)
� (r) = 〈ψ̂−B�↓(r)ψ̂+A�↑(r)〉 = −〈ψ̂−B�↑(r)ψ̂+A�↓(r)〉,

�
(−)
� (r) = 〈ψ̂−A�↓(r)ψ̂+B�↑(r)〉 = −〈ψ̂−A�↑(r)ψ̂+B�↓(r)〉.

(6)
We further assume that the pair amplitude has moiré periodic-
ity and can be expressed using harmonic expansion �

(d )
� (r) =∑

b eib·r�(d )
b,� , where the superscript d = ± represents the two

d-wave pairings and b is the moiré reciprocal lattice vectors.
The linearized gap equation is given by

�
(d )
b,� =

∑
b′�′d ′

χ
(b�d )
(b′�′d ′ )�

(d ′ )
b′,�′ ,

χ
(b�d )
(b′�′d ′ ) = 4gA1

A
∑

q,n1,n2

{
1 − nF [εn1 (q)] − nF [εn2 (q)]

εn1 (q) + εn2 (q) − 2μ

× [〈un1 (q)|σd |un2 (q)〉b,�]∗

× 〈un1 (q)|σd ′ |un2 (q)〉b′,�′

}
, (7)

where A is the system area, q is a momentum within the moiré
Brillouin zone, n1,2 are moiré band labels in the +K valley for
one spin component, εn and |un〉 are the corresponding ener-
gies and wave functions, nF (ε) is the Fermi-Dirac occupation
function, and μ is the chemical potential. The band energy εn

is measured relative to the Dirac point. The overlap function
〈· · · 〉b,� is the layer-resolved matrix element of the combined
operator exp(ib · r)σ±, where σ± = (σx ± iσy)/2. Note that
the time-reversal symmetry of the moiré Hamiltonian has been
employed to simplify (7).

The operator σ± is closely related to the velocity operator
h̄v̂τ = ∂Hτ /∂k. Near the magic angle, the velocity of the
flat bands is strongly suppressed, but the layer counterflow
velocity, which is approximately determined by the opera-
tor �σ±, remains large [7]. As a result, the leading d-wave
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FIG. 3. (a) d+ and (b) d− pairings at the atomic scale, where electrons at nearest-neighbor sites are paired with the indicated bond-dependent
phase factors. The pair amplitudes (c) �

(1,+)
� (r) and (d) �

(1,−)
� (r) in �̂1. In (c), �

(1,+)
� (r), normalized by its value at r = 0 (AA region center),

is real. In (d), �
(1,−)
� (r), also normalized by �

(1,+)
� (0), is complex, and its magnitude and phase are indicated, respectively, by the color scale

and the vectors. (e) Schematic plots of the �̂1 pair amplitudes around r = 0. (f)–(h) Corresponding plots for pair amplitudes in �̂2.

instability has pair amplitudes of opposite signs in the two
layers: �

(d )
b

(r) = −�
(d )
t (r).

The superconductivity critical temperature Tc is obtained
by requiring that the largest eigenvalue of the pair susceptibil-
ity χ is equal to 1. In Fig. 4(a), we show the theoretical Tc as
a function of chemical potential μ for twist angle θ = 1.05◦.
The trend of Tc(μ) does not exactly follow the density of states
shown in Fig. 4(b) because all states in the nearly flat band can
effectively contribute to the pairing. Tc vanishes at the Dirac
point energy (μ = 0) and peaks near the chemical potential at
which the lower or upper flat band is half filled. These features
of Tc(μ) are in qualitative agreement with experiments [8,14].
The maximum Tc in Fig. 4(a) is about 1.2 K, comparable to
the experimental values. We note that theoretical Tc depends
on the flatness of the moiré bands and therefore on the model
parameters, which are not known precisely. In the calculation,
χ is computed by including momenta b up to the third moiré
reciprocal lattice vector shell and by retaining only the two flat
bands near zero energy because of their high density of states.

The largest eigenvalue of χ corresponds to two degenerate
eigenvectors λ1 and λ2, where the degeneracy is protected by
the point group symmetries and also time-reversal symmetry.
The pair amplitudes [�( j,+)

� (r),�( j,−)
� (r)] associated with λ j

( j = 1 and 2) lead to the following mean-field pair potential:

�̂ j = −4gA1

∫
dr�̂ j (r),

�̂ j (r) =
∑

�

�
( j,+)
� (r)P̂�+(r) + �

( j,−)
� (r)P̂�−(r). (8)

We distinguish �̂1 and �̂2 by the Ĉ3 rotational symmetry:

Ĉ3�̂1Ĉ
−1
3 = ei4π/3�̂1, Ĉ3�̂2Ĉ

−1
3 = e−i4π/3�̂2, (9)

which is realized by requiring that

�
(1,+)
� (R3r) = �

(1,+)
� (r),

�
(1,−)
� (R3r) = e−i 2π

3 �
(1,−)
� (r),
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FIG. 4. (a) Critical temperature Tc for d-wave pairing as a func-
tion of the chemical potential μ. The solid and dashed lines are
obtained with and without considering the coupling between d+ and
d− pairings. (b) Density of states per spin and per valley as a function
of energy. The vertical dashed lines in (a) and (b) show the chemical
potential at which the lower or upper flat band is half filled. The twist
angle is 1.05◦.
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�
(2,+)
� (R3r) = e+i 2π

3 �
(2,+)
� (r),

�
(2,−)
� (R3r) = �

(2,−)
� (r). (10)

We interpret the pair amplitude �
( j,±)
� as the envelope wave

function for the COMM of the Cooper pair. In the linearized
gap equation, Cooper pairs with relative motions d+ and d−
are coupled by adjusting their COMMs according to Eq. (10).
The COMM can carry a finite angular momentum without
breaking the moiré periodicity. The total angular momentum
of the pair potential �̂ j is contributed by both the RM and the
COMM. The pair amplitudes [�(1,+)

� (r),�(1,−)
� (r)] in �̂1 are

shown in Figs. 3(c)–3(e). �
(1,+)
� (r) has an s-wave symmetry

and peaks near AA regions following the electron density
distribution, while �

(1,−)
� (r) has a vortex-antivortex lattice

configuration, in which vortices centered around the AA,
AB, and BA regions have a vorticity of +2, −1, and −1,
respectively. Therefore, �

(1,−)
� (r) satisfies (10) and preserves

the moiré periodicity because of the zero total vorticity. As
shown in Figs. 3(c)–3(e), �

(1,+)
� is dominant in �̂1, and the

vortices in �
(1,−)
� can be regarded as a secondary effect.

Figures 3(f)–3(h) show the pair amplitudes in �̂2, which is
the time-reversal partner of �̂1.

We also calculate Tc by neglecting the coupling between
the d+ and d− relative motions, and the maximum Tc calcu-
lated in this way is slightly lower than that obtained from the
full calculation [Fig. 4(a)], which is consistent with the fact
that the vortices are only a perturbative effect.

As a side remark, we note that the periodic modulation
of the pair amplitude is actually a ubiquitous phenomenon
in crystalline superconductors. We can take superconducting
aluminum as an example, which has a long coherence length
(∼1600 nm). However, the s-wave pair amplitude �(r) =
〈ψ↓(r)ψ↑(r)〉 in aluminum has the lattice periodicity and
varies within one unit cell following the variation of the
normal-state electron wave function [58]. This variation of the
pair amplitude in the superconducting ground state is typically
a negligible effect because it is a modulation over a very short
distance determined by the lattice constant (0.4 nm in the
case of aluminum). This modulation becomes noticeable in
the moiré pattern because of the large moiré period (∼13.4 nm
for θ = 1.05◦). Cuprates present another context in which the
spatial modulation of the pair amplitude is important. In the
dx2−y2 pairing state of cuprates, the pair amplitudes along the
x̂ and ŷ bonds within one unit cell are phase shifted by π .

The pair potentials �̂1 and �̂2 form a two-dimensional E2

representation of the D6 point group and lead to chiral d-
wave superconductivities, which are time-reversal symmetry
breaking and fully gapped as discussed in Sec. V. Linear
combinations of �̂1 and �̂2 can give rise to nematic d-wave
superconductivities, which are time reversal symmetric but
break rotational symmetries. Nematic states are gapless, as
discussed in Sec. VI. Therefore, chiral d-wave superconduc-
tivities should be favored over nematic states within the mean-
field theory considered in this paper.

IV. SPONTANEOUS SUPERCURRENT

We demonstrate that the chiral d-wave states support spon-
taneous bulk supercurrent. We first present various current

operators. The in-plane current density operator for layer �

is given by

j�(r) = (−e0)
∑
τ,s

ψ̂
†
τ�s(r)J τ�ψ̂τ�s(r), (11)

where −e0 is the electron charge (e0 > 0) and J τ� is the
velocity operator that acts in the sublattice space:

J τ� = ∂hτ�(k)

h̄∂k
= vF e−iτ� θ

4 σz (τσx, σy)e+iτ� θ
4 σz . (12)

Note that J τ� derived from the Dirac Hamiltonian is inde-
pendent of momentum and position. j�(r) is a two-component
vector representing the in-plane current flow in layer � and has
the unit of current per length. The total in-plane current j‖ is
the sum of jb and jt.

The interlayer tunneling leads to the following out-of-plane
current density operator:

jz(r) = (−e0)
i

h̄

∑
τ,s

[ψ̂†
τbs(r)Tτ (r)ψ̂τts(r) − H.c.], (13)

where jz has a unit of current per area.
We calculate the current density 〈 jα (r)〉 in the chiral

d-wave states using perturbation theory by expanding the
Green’s function in a power series of the pair amplitudes �.
We retain only the leading-order contributions, and 〈 jα (r)〉 is
then proportional to �∗�, as required by gauge invariance.
The bulk current distribution calculated in this way for the
�̂1 pair potential is illustrated in Fig. 5. Because the current
is evaluated for the superconducting state, it is supercurrent
without dissipation. The in-plane currents in the bottom and
top layers flow, respectively, out of and into the centers of
AA regions and nearly compensates each other. This current
pattern is closely related to the layer counterflow velocity in
the nearly flat moiré bands. The total in-plane current 〈 j‖(r)〉
is still finite and circulates around the ẑ axis. The out-of-plane
current pattern is consistent with the in-plane current flow.
Moreover, we numerically find that the current continuity
is satisfied, 〈 jz(r)〉 = −∇ · 〈 jb(r)〉 = ∇ · 〈 jt(r)〉. Overall, the
current flow can be decomposed into two components. One
component is the circulation around the ẑ axis, as shown in
Fig. 5(c), and another component is the current circulation
between the two layers.

The current flow pattern is characterized by two different
moments, the magnetic dipole moment m and the magnetic
toroidal dipole moment t [59]:

m = 1

2

∫
dr[r × j(r)],

t = 1

10

∫
dr[r(r · j(r)) − 2r2 j(r)]. (14)

Because the total bulk current vanishes, both m and t are
extensive quantities proportional to the total number of moiré
unit cells. For the current distribution illustrated in Fig. 5, m
and t per moiré unit cell are, respectively, about 8 × 10−3μBẑ
and −2.4dzμBẑ, where μB is the Bohr magneton and dz is
the interlayer vertical distance of TBLG. m and t scale as
�∗�, and their exact values therefore depend on the pair
amplitudes. The above numbers should be viewed as an order-
of-magnitude estimation. The magnetic dipole moment m
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FIG. 5. In-plane current flow pattern for (a) the bottom layer, (b) the top layer, and (c) the total. The color scale shows the magnitude,
while the vectors indicate the flow direction. (d) Interlayer tunneling current density. The calculation is based on the perturbation theory for
the chiral d-wave state with �̂1 pair potential. The chemical potential used in the calculation corresponds to half filling of the lower flat band.
The pair amplitudes are shown in Figs. 3(c) and 3(d) with the overall scale −4gA1�

(1,+)
b

(0) set to be 1 meV. The magnitude of the current is
proportional to |�(1,+)

b
(0)|2 in the perturbation theory.

could be detected by the magnetization measurement, while
the toroidal dipole moment t could lead to the magnetoelectric
effect [59]. The polar Kerr effect [60] could also be used to
probe the time-reversal symmetry breaking in the chiral state.

We note that the magnetic field induced by the sponta-
neous current also scales as �∗� and therefore does not
enter into the linearized gap equation (7). The feedback
effect of the spontaneously generated magnetic field on
the pairing order parameter is negligible near the critical
temperature.

Our calculation of the supercurrent was initially motivated
by the vortex structure in the pair amplitudes. However, even
if the vortices in the pair amplitudes are neglected theoreti-
cally, for example, by taking �

(1,−)
� in �̂1 to be zero, we find

that the bulk circulating supercurrent remains qualitatively
the same. The supercurrent is therefore not directly tied to
the vortices, although both are phenomena that arise due to
the enlarged moiré superlattice.

V. TOPOLOGICAL CHIRAL D-WAVE SUPERCONDUCTOR

We study the gap structure and topological characters of the
d-wave superconducting states. The mean-field Hamiltonian
for spin-singlet superconductivity can be generally written as

HMF =
∫

dr[ξ̂ †HBdGξ̂ + ζ̂ †HBdGζ̂ ],

ξ̂ † = (ψ̂†
+↑, ψ̂−↓), ζ̂ † = (ψ̂†

+↓,−ψ̂−↑),

(15)

where the + and − subscripts of ψ̂ again refer to valleys
and ↑ and ↓ still label spins but the layer and sublattice

indices are suppressed for conciseness. The Bogoliubov–de
Gennes (BdG) Hamiltonians HBdG for ξ̂ and ζ̂ are the same,
which reflects the spin SU(2) symmetry of the spin-singlet
superconductivity.

In momentum space, HBdG can be organized as follows:

HBdG(q) =
(

H0(q) �

�† −H0(q)

)
, (16)

where q is the momentum within the moiré Brillouin zone.
H0(q) is the moiré Hamiltonian (including the chemical po-
tential term) in valley +K , while the moiré Hamiltonian in
valley −K after performing the particle-hole transformation
is given by −H0(q). The off-diagonal terms � and �† are the
matrix representation of the pair potentials. In our case, � is
independent of q because the pairing interaction in (4) is local
in space.

It is instructive to project HBdG(q) to states on the Fermi
surface, leading to the following 2 × 2 matrix:

H̃BdG(q) =
(

0 �(q)
�∗(q) 0

)
, (17)

where �(q) = 〈u(q)|�|u(q)〉 and |u(q)〉 is a state with mo-
mentum q on the Fermi surface. �(q) is generally referred to
as the gap function. If the pair potential is time reversal sym-
metric, then � = �†, and therefore, �(q) is real; otherwise,
�(q) is generally complex.

We apply the above discussion to chiral d-wave states.
Figure 6(a) shows the band structure of HBdG(q) determined
by using the chemical potential for the half-filled lower flat
band and the �̂1 pair potential with pair amplitudes shown in

195114-6



TOPOLOGICAL CHIRAL SUPERCONDUCTIVITY WITH … PHYSICAL REVIEW B 99, 195114 (2019)

(b) (c)

2

1

0

1

2(a)

FIG. 6. (a) Band structure (blue curves) of HBdG(q) determined by using the chemical potential for the half-filled lower flat band and the
�̂1 pair potential. The pair amplitudes are shown in Figs. 3(c) and 3(d) with the overall scale −4gA1�

(1,+)
b

(0) set to be 1 meV. The gray dashed
curves show the band structure of HBdG(q) without pair potential. (b) The corresponding gap function �(q) on the Fermi surface (yellow curve)
in the extended moiré Brillouin zone. The blue arrows indicate the magnitude and phase of �(q). (c) The Berry curvature F for the two lower
bands (blue curves) in (a). The dashed curves show the Fermi surface of the normal state.

Figs. 3(c) and 3(d); Fig. 6(b) illustrates the corresponding gap
function �(q) on the Fermi surface, which indicates that the
chiral d-wave state is fully gapped and that the phase of �(q)
changes by 4π when q moves along the Fermi surface once.
These features are generally expected for chiral d-wave states.

To characterize the topological property, we calculate the
Berry curvature for all occupied bands in Fig. 6(a). The
corresponding Berry curvature, as shown in Fig. 6(c), is
strongly peaked near the Fermi surface of the normal state.
The Chern number of HBdG(q), obtained by integrating the
Berry curvature in Fig. 6(c), is equal to −2; the total Chern
number is then −4 after taking into account the spin de-
generacy. Table I summarizes the dependence of the total
Chern number on the chemical potential and the pairing
potential, which is reminiscent of the topological character
of a model Hamiltonian for chiral d-wave superconductiv-
ity in monolayer graphene. At μ = 0 (the Dirac point en-
ergy), the energy spectrum of HBdG(q) remains gapless at
κ� points even if the pair amplitudes in �̂1 or �̂2 are finite,
which explains the abrupt change in the Chern number as μ

crosses zero.

VI. NEMATIC d-WAVE SUPERCONDUCTOR

Chiral and nematic d-wave pairing order parameters be-
long to the same multiplet. Two independent basis functions
for nematic d-wave pairings are given by

�̂x = i(�̂1 − �̂2)/
√

2,

�̂y = (�̂1 + �̂2)/
√

2. (18)

TABLE I. The dependence of the total Chern number on the
chemical potential and the pairing potential. εγ ,± are the upper (+)
and lower (−) flat band energies at γ point.

εγ ,− < μ < 0 0 < μ < εγ ,+

�̂1 −4 +4
�̂2 +4 −4

�̂x and �̂y transform, respectively, as dx2−y2 and dxy under Ĉ6

rotation. A generic nematic pair potential can be parametrized
as

�̂η = ηx�̂x + ηy�̂y, (19)

where η = (ηx, ηy) is the nematic director. A superconductor
with the nematic pair potential preserves time-reversal sym-
metry but breaks rotational symmetry, which is characterized
by a nematic order parameter:

N = (|ηx|2 − |ηy|2, η∗
xηy + η∗

yηx ). (20)

Because �̂η is time reversal symmetric, there is no sponta-
neous bulk supercurrent, and the corresponding gap function
�η(q) is real. On the other hand, �η(q) integrated over the
Fermi surface (FS) vanishes:∫

q∈FS
dq�η(q) = 0. (21)

Therefore, �η(q) must have point nodes on the Fermi surface,
as illustrated in Fig. 7. �x(q) of the pair potential �̂x has
four point nodes. However, �y(q) of the pair potential �̂y has
six point nodes, two of which annihilate each other when η

deviates slightly away from the ŷ axis.
Chiral and nematic superconducting order parameters have

degenerate superconducting transition temperature Tc, as they
belong to the same E2 representation. Because of the different
gap structures, chiral states are energetically more favored
below Tc in a weak-coupling mean-field theory that takes into
account only the superconductivity instability.

An external uniaxial strain breaks the sixfold rotational
symmetry and therefore lifts the twofold degeneracy between
�̂x and �̂y. The uniaxial strain tensor εi j couples linearly to
the nematic order parameter N and extrinsically stabilizes
nematic superconductivity near Tc. An in-plane magnetic field
B‖ also breaks the rotational symmetry and could play a role
similar to uniaxial strain. Interplay between the B‖ field and
the strain εi j field can lead to a twofold anisotropy in the
critical in-plane magnetic field. The nematic superconduc-
tivity could also be intrinsically stabilized by density wave
fluctuations, as proposed by a recent theoretical work [51].
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FIG. 7. (a) Gap function �x (q) (blue curve) for the nematic pair
potential �̂x and for q on the Fermi surface (yellow curve). �x (q) is
real and crosses zeros at the four red points. (b) Gap function �y(q)
for the pair potential �̂y. �y(q) has six point nodes. Point node 4 can
be annihilated by node 3 or 5 when the nematic director η is slightly
away from ŷ axis. Parameters used in the calculation are the same as
those in Fig. 6.

VII. DISCUSSION

In TBLG, optical phonon modes can mediate d-wave
pairing because of the sublattice pseudospin chirality. It
recently became recognized through the study of topological
superconductivity that phonon fluctuations assisted by strong
spin-orbital coupling can generate non-s-wave pairing inter-
actions [61–64]. Our work provides a distinct example in

which the sublattice pseudospin chirality enables the d-wave
pairing without the need of real spin-orbit coupling. A recent
theoretical study showed that acoustic phonons in TBLG can
also mediate unconventional pairing such as d wave [54]. We
note that the pairing mechanism in TBLG is a subject under
intense theoretical study, and many different mechanisms are
being explored. Our findings on the properties of d-wave
states are largely independent of the exact pairing mechanism,
as they are mainly controlled by symmetry and topology.
We have used a weak-coupling theory, which can be partly
justified within our theoretical framework because the pairing
energy scale kBTc is still an order of magnitude smaller than
the bandwidth. Our results are fully self-consistent within
mean-field theory, while effects beyond mean-field theory,
such as fluctuations, are not included in our work.

In summary, we have studied the pairing order parameters,
gap structure, and topological character of d-wave supercon-
ductivity in TBLG. The presence of spontaneous vortices and
supercurrent could be a very generic effect for multicompo-
nent superconductivity and superfluidity in superlattices; a
theory that incorporates microscopic physics within the su-
perlattice unit cell is crucial to study this effect. Two-particle
bound states with a finite center-of-mass angular momentum
were also recently studied in the context of excitons in moiré
pattern [65].
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