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We study the spin- 1
2 Kitaev-Heisenberg (KJ) model in a two-leg ladder. Without a Heisenberg interaction, the

Kitaev phase in the ladder model has Majorana fermions with local Z2 gauge fields, and is usually described as
a disordered phase without any order parameter. Here we identify a long-range nonlocal string order parameter
(SOP) in the Kitaev phase which survives with a finite Heisenberg interaction. The SOP is obtained by relating
the Kitaev ladder, through a nonlocal unitary transformation, to a one-dimensional XY chain with an Ising
coupling to a dangling spin at every site. This differentiates the Kitaev phases from other nearby phases including
a rung singlet. Two phases with nonzero SOP corresponding to ferromagnetic and antiferromagnetic Kitaev
interactions are identified. The full phase diagram of the KJ ladder is determined using exact diagonalization
and density matrix renormalization group methods, which shows a striking similarity to the KJ model on a
two-dimensional honeycomb lattice.
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I. INTRODUCTION

Identifying a topological order and associated phase tran-
sitions has become one of the most fascinating subjects in
condensed matter physics. Exactly solvable models offering
a topological order are rare, and one example is the Kitaev
model described by bond-dependent interactions between
nearest neighbors on a two-dimensional (2D) honeycomb
lattice [1]. The exact solvability relies on the fact that the
plaquette operator defined on every honeycomb plaquette
commutes with the Kitaev Hamiltonian, which leads to a
ground state with free Majorana fermions and gapped Z2

vortices [1]. However, when other interactions such as the
Heisenberg interaction are present, the plaquette operator no
longer commutes with the Kitaev-Heisenberg (KJ) Hamilto-
nian, and identifying the quantity that characterizes the phase
and associated phase transitions becomes a challenging task.

Taking a quasi-one-dimensional (1D) limit may give an
insight into this task, because a topological phase transition
can be accompanied by a nonlocal string order parameter
(SOP) in 1D systems depending on the symmetry of the
Hamiltonian. The best example is the spin S = 1 Haldane
phase [2,3]. A feature of the Haldane phase is the breaking
of a hidden Z2 × Z2 symmetry revealed by a SOP defined
through a nonlocal unitary transformation [4–7]. However,
identifying a relevant SOP in S = 1

2 ladder systems is nontriv-
ial, particularly for highly frustrated spin interactions such as
the Kitaev model, although heuristic extensions of the S = 1
SOP to S = 1

2 ladders have been discussed [8–12].
The bond-dependent S = 1

2 Kitaev ladder can be generated
by taking two rows of the honeycomb lattice and connecting
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the dangling bonds (dashed lines in Fig. 1). A previous study
[13] attempted to find a SOP on this pure isotropic Kitaev
ladder, and concluded that it is a disordered phase without any
SOP [13,14], while another study investigated its symmetry
classification [15].

Here we study the KJ model in the two-leg ladder. We iden-
tify a long-range nonlocal SOP for the Kitaev phase found in
the KJ model. The full phase diagram of the KJ model on the
ladder is determined using the exact diagonalization (ED) and
density matrix renormalization group (DMRG) techniques. A
striking similarity to the 2D phase diagram on the honeycomb
lattice [16] is found, despite the different geometries. The SOP
differentiates the Kitaev phase from a rung singlet, and other
phases corresponding to the zigzag, stripy, and ferromagnetic
phases found in the 2D limit are also captured in the ladder.

II. PHASE DIAGRAM

The KJ Hamiltonian defined on a two-leg ladder is
given by

H = K
∑

γ∈〈i, j〉
Sγ

i Sγ
j + J

∑
〈i, j〉

Si · S j, (1)

where S = 1/2, 〈i, j〉 are site indices defined on nearest-
neighbor bonds, and γ = x, y, or z depending on bond type
as shown in Fig. 1. The first term is the bond-dependent
Kitaev interaction while the second is the isotropic Heisenberg
interaction. We parametrize the spin exchanges by K = sin φ

and J = cos φ where φ ∈ [0, 2π ). When φ = π
2 or 3π

2 , the
Hamiltonian reduces to the Kitaev ladder studied in Ref. [13].

We first determine the entire phase diagram of the Hamilto-
nian as a function of φ. We have numerically diagonalized the
KJ model using ED on a N = 24 site ladder using periodic
boundary conditions (PBC), and DMRG. Phase boundaries
were determined by identifying singular features of the second
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FIG. 1. Phase diagram of the KJ model as a function of φ with
numerically determined phase boundaries labeled by black bars. Six
phases are identified. The rung singlet (RS) is a singlet state, and
the ZZ and ST phases have a ferromagnetic Ising ordering only
along a leg and rung, respectively, shown by colored spins with
accompanying quantization axes. FM has a ferromagnetic long-range
order. AFK and FK are the Kitaev phases. The phase transition
boundaries are similar to those of the two-dimensional (2D) KJ
model. The two-leg ladder with bond definitions for the Kitaev term
in Eq. (1) is depicted underneath with bond-dependent interactions
denoted by x, y, and z.

derivative of the ground state energy per site, χE = −∂2
φe0,

the presence of a gap and the presence of a nonzero SOP. Six
different phases were identified as shown in Fig. 1: (a) a rung
singlet (RS) [17–19] phase, (b) an easy-plane ferromagnetic
(FM) phase, (c) a phase with opposing long-range FM Ising
order on each leg (ZZ), (d) a phase with alternating long-
range FM Ising order on the rungs (ST), (e) antiferromagnetic
Kitaev (AFK) phase, and (f) FM Kitaev (FK) phase. With the
exception of the FM phase, which is gapless and extensively
degenerate, all of the phases are gapped and their nature have
been explored [20–22].

The AF and FM Heisenberg limits at φ = 0 and π are
located in the RS and FM phases (black dots in Fig. 1). In
the thermodynamic limit, the ZZ, ST, AFK, and FK phases
all have twofold degenerate ground state while the RS phase
has a unique ground state. We estimate the other transitions
as: RS-AFK: φ � 0.487π , AFK-ZZ: φ � 0.53π , ZZ-FM:
φ � 0.81π , FM-FK: φ � 1.377π , FK-ST: φ � 1.562π , and
ST-RS: φ � 1.71. Despite the manifestly 1D nature of the
ladder geometry, the phase diagram is strikingly similar to
that of the 2D 24-site honeycomb ED phase diagram for the
KJ model [20–22] and we have chosen the naming of the
ZZ and ST magnetically ordered phases to correspond. The
only qualitative difference though is that at the AFK to ZZ
transition no feature is observed in χE nor in the fidelity
susceptibility in the ladder, implying that the transition is
likely high order with 2/ν − d < 0 [23] or ν > 2, which is
different from the 2D honeycomb. A level crossing between
the two ground states, split by finite-size effects, is however

observed at φ � 0.515π . A further discussion on this transi-
tion is presented in the Supplemental Material (SM) [24].

Let us first focus on the nature of Kitaev phases near φ = π
2

and 3π
2 . The ground states of the ladder at the Kitaev points,

with ±K , have been described as disordered without a SOP
[13,14]. Here we demonstrate the existence of a long-range
SOP in both AFK and FK phases with and without Heisen-
berg interaction. We shall do this by explicitly establishing
a nonlocal unitary transformation V that maps H to another
Hamiltonian with a nonzero local order parameter. Applying
the inverse transformation to this local order parameter then
yields the (hidden) SOP in the original model. As we shall
demonstrate, this SOP differentiates the Kitaev phases from
neighboring phases.

III. THE UNITARY OPERATOR V

Previous studies [5–7] have exclusively considered S = 1
models for the technical reason that the integer spin identity
exp(2iπSx

j S
z
k ) = I is not satisfied for S = 1

2 . However, even
without this identity we can still define a suitable unitary
operator for the Kitaev ladder. In order to define such a unitary
operator, we group the S = 1

2 spins in pairs. We make the sim-
ple choice to group spins on the rungs of the ladder. Following
the numbering convention of the lattice sites shown in Fig. 1
we then define the following nonlocal unitary operator for a
N-site ladder with open boundary conditions (OBC):

V =
∏

j + 1 < k
j odd, k odd

j = 1, . . . , N − 3
k = 3, . . . , N − 1

U ( j, k), (2)

where the individual U ( j, k) is given as follows: U ( j, k) =
eiπ (Sy

j +Sy
j+1 )(Sx

k +Sx
k+1 ). Clearly all U ( j, k) and V are unitary;

and, as mentioned above, j, j + 1 and k, k + 1 group the
S = 1

2 spins on a rung. We note that [U ( j, k),U (l, m)] =
0 ∀ j, k, l, m which allows us to rearrange terms in a con-
venient manner.

Under the unitary transformation V , Sα
i will transform in

a way that depends on i as shown in the SM [24]. Note
that V effectively moves the bond and changes the sign of
the interaction as sketched in Fig. 2(a). Using the numbering
of the sites as in Fig. 1, the interactions around a plaquette
transform under V as follows:

V Sx
2n+1Sx

2n+3V
−1 = −Sx

2n+1Sx
2n+4,

V Sx
2n+2Sx

2n+4V
−1 = −Sx

2n+2Sx
2n+3, (3)

with n = 0, 1, 2, . . . . For the y-y interaction, it changes to

V Sy
2n+1Sy

2n+3V
−1 = −Sy

2n+2Sy
2n+3,

V Sy
2n+2Sy

2n+4V
−1 = −Sy

2n+1Sy
2n+4. (4)

On the other hand, the z-z interaction on the rungs, i.e., Sz
i Sz

i+1
for i = 1, 3, 5, . . . , is unchanged. Other transformations of
interaction terms are given in the SM [24].

With these transformations the original Kitaev Hamilto-
nian in Eq. (1) (with J = 0 and OBC) is transformed as
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FIG. 2. (a) The movement of bonds by the unitary operator V
is indicated in the first part of the chain. Schematic view of (b) the
ordering at the AF Kitaev point φ = π

2 , and (c) the FM Kitaev point
φ = 3π

2 for the Hd−Z . In each case one of two degenerate ground
states is shown, with the other one obtained by interchanging up
and down spins on the dangling spin sites. The red/blue coloring
represents the Sz components of the spin, up/down, at each site.
Large arrows at the dangling sites are ±1/2.

V HV −1 = Hd−Z with

Hd−Z = K
∑
n=0

S̃z
2n+1S̃z

2n+2

− K
∑

n,α=x,y

(
S̃α

4n+1S̃α
4n+4 + S̃α

4n+4S̃α
4n+5

)
, (5)

where S̃ denotes the spins in Hd−Z . The transformed Hamil-
tonian is essentially an XY chain with Ising coupling to a
dangling spin at every site, which we therefore name the
“dangling-Z” model.

Hd−Z has several interesting properties, most importantly,
all the “dangling” S̃z commute with Hd−Z . With our number-
ing:

[
S̃z

4n+2, Hd−Z
] = 0,

[
S̃z

4n+3, Hd−Z
] = 0, (6)

for all integers n � 0. Hence, each eigenstate of Hd−Z will
be part of a 2N/2 manifold of states generated by the dif-
ferent configurations of the free S̃z spins. All 2N/2 states are
twofold degenerate, corresponding to flipping all the dangling
spins. Sketches of one of the two ground states at the Kitaev
points with the dangling-Z spins fully polarized are shown in
Figs. 2(b) and 2(c). Following Kitaev’s idea, one can represent
Hd−Z in terms of Majorana operators.

Hd−Z can be mapped to free Majorana fermions along the
deformed zigzag chain which couple to a Z2 flux at dangling
sites via the S̃zS̃z interaction as shown in the SM [24].

Thus the 2N/2 manifold of states can be understood in terms
of Z2 flux degrees of freedom.

IV. STRING ORDER PARAMETER

With the dangling spin integrals of motion, Hd−Z can
have long-range order in the sense that limr→∞〈S̃α

i S̃α
i+r〉 	= 0,

α = x, y, z. We can then define string correlation functions in
the original H , Eq. (1), that are ordinary correlation func-
tions in the transformed Hamiltonian Hd−Z . We define a
z-string correlation function starting from the leftmost dan-
gling site 2:

〈Oz(r)〉 = 4
〈
S̃z

2S̃z
2+r

〉 = (−1)
(r+1)/2�

×

⎧⎪⎪⎨
⎪⎪⎩

〈
σ

y
1 σ x

2

(∏r+1
k=3 σ z

k

)
σ x

2+rσ
y
3+r

〉
r even,

〈
σ

y
1 σ x

2

(∏r+1
k=3 σ z

k

)
σ

y
2+rσ

x
3+r

〉
r odd,

(7)

where σi are the Pauli matrices in the original H . Note that
Oz(r) contains a combination of x, y, z Pauli matrices. With
this definition, long-range order in 〈S̃z

i S̃z
i+r〉 results in long-

range order in Oz(r). Similarly, an x-string operator that starts
in the leftmost site 1 is found:

〈Ox(r)〉 = 4
〈
S̃x

1S̃x
1+r

〉 = (−1)
(r+1)/2�

×

⎧⎪⎨
⎪⎩

〈
σ x

1

(∏r−1
k=3 σ x

k

)
σ x

r

〉
r odd,

〈
σ x

1

(∏r
k=3 σ x

k

)
σ x

r+2

〉
r even,

(8)

with a similar expression for the y-string operator. Note that
in this case the string of σ x’s is not consecutive.

Oz(r) is clearly long ranged at the Kitaev points, φ =
π/2 and 3π/2, because of the dangling S̃z local integrals of
motion. However, in the presence of a nonzero Heisenberg
term J , new terms arise in V HV −1 (see the SM [24]) which
is no longer simply equal to Eq. (5). It is therefore not at all
obvious that Oz(r) will show long-range order. To understand
the hidden order near the Kitaev points with J 	= 0, we define
an associated string order parameter as follows:

Oz =
√

|Oz(3L/4)|max, (9)

where |Oz(3L/4)|max refers to the maximal value Oz(r) takes
in the neighborhood of r = 3L/4. This definition avoids ef-
fects from the open boundary at r = L. With this definition
of an SOP, we now map out the phase around φ = π/2
and φ = 3π/2 where the “hidden” order associated with
the z-string correlation functions Oz(r) is present. On the
other hand, the x- and y-string correlation functions Ox/y(r)
show exponentially decaying behavior at the Kitaev points,
Ox/y(r) = ae−r/ξ with ξ ∼ 4 and Ox/y is not long ranged in
the FK and AFK phases although it is trivially long range in
the FM phase where instead Oz is zero.

Numerical results for 〈Oz〉 as well as the gaps �E1 and
�E2 to the first and second excited states are shown near the
AFK and FK phases in Fig. 3. Clearly 〈Oz(r)〉 attains the
extremal values of ±1 in both cases exactly at the Kitaev
points even though we have verified that all usual spin-spin
correlators are extremely short range. Here 〈Oz〉 is obtained
from the 〈S̃z

2S̃z
2+r〉 correlation function but we have checked

that using 〈S̃z
N/2S̃z

N/2+r〉 only makes minor changes. In the
N → ∞ limit the SOP remain finite in the FK and AFK
phases with �E1 and �E2 disappearing at the quantum critical
points.
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FIG. 3. 〈Oz〉 determined from DMRG calculations on a ladder
with N = 120/400 sites (solid/open red circles) and OBC with a
typical truncation error of 10−11. (a) Near the AFK [inset for 〈Oz(r)〉
vs r at φ = 0.51π ], and (b) near the FK [inset for 〈Oz(r)〉 vs r at φ =
1.40π ]. The energy gap to the first excited state �E1 and the second
excited state �E2 are shown by blue triangles and green circles,
respectively. Both gaps are determined by DMRG calculations with
N = 60 and PBC with a typical truncation error of 10−9 (10−6) on
the ground (excited) state.

V. ENTANGLEMENT SPECTRUM

A topological phase is characterized by a double degener-
acy of the entire entanglement spectrum (ES) [25,26] obtained
from the Schmidt coefficients λα of the partition. Indeed the
ES spectrum shown in Fig. 4 is doubly degenerate for both
AFK and FK, and RS when partitioned with one middle-rung
cut as shown in the 12-site ED with open boundary conditions
(Fig. 9 in the SM [24]). The middle-rung cut is important to
generate the double degeneracy of the entire ES because a
pairing term of Majorana fermions occurs via the dangling
sites in Hd−Z as shown in the SM [24].

Thus, without the middle-rung cut, the degeneracy is not
expected. We have indeed confirmed that a vertical cut, not
involving the middle-rung cut, does not give the ES degener-
acy.

The transition between the FK and ST/FM as well as
the AFK-ZZ transition is signaled by the disappearance of
the double degeneracy present in the FK. However, with our
cut the RS-AFK transition is between two phases both with
doubled ES that can only be differentiated by the SOP. It is
also important to differentiate the different natures of RS and
AFK/FK. The edge states of RS are S = 1

2 , as they appear

FIG. 4. Entanglement spectrum (ES) partitioned with a cut of
one middle rung is shown around (a) the AFK and (b) FK phases with
iDMRG and OBC. Open and filled red circles, open and filled blue
triangles, and open and filled green squares correspond to the first to
sixth eigenvalues, respectively. See the main text for implications of
the ES results.

when a singlet formed on the middle rung is cut, while the
edge states of AFK/FK are Majorana fermions. They are
fractionalized excitations of S = 1

2 , similar to the original
Kitaev honeycomb model.

The ES flow at the AFK-ZZ phase is rather unusual.
Instead of a discrete jump in the ES spectrum at the AFK-ZZ
transition, a smooth splitting of the fourfold degenerate lowest
level is observed, indicative of a high order transition. A
further study is required to fully understand the nature of the
AFK-ZZ transition.

VI. SUMMARY AND DISCUSSION

We identified a nonlocal SOP in the KJ ladder model,
which is a unique quantity that characterizes a topological
phase. This SOP is nonzero in the AFK and FK phases of the
KJ ladder, differentiating them from other nearby phases. We
note that the short-range string 〈Oz(r = 4)〉 = 〈Wp〉, where the
plaquette operator Wp = σ

y
1 σ x

2 σ z
3σ z

4σ x
5 σ

y
6 and the subscripts

1–6 refer to the consecutive sites on a hexagon shown in
Fig. 1. This implies that the plaquette expectation value is
insufficient to capture the Kitaev phase when the Heisenberg
term is present. Thus, the long-range SOP is essential to
characterize the Kitaev phases of the KJ ladder. Furthermore,
the transition boundaries surrounding the AFK and FK phases
are strikingly close to those of the 2D 24-site honeycomb ED
result [16], suggesting that the transitions are determined by
the closing of the Z2 vision gap.

The ladder ZZ, ST, and RS phases develop a local magnetic
order parameter in the 2D limit. On the other hand, the AFK
and FK phases become the Kitaev spin liquid in the 2D
limit, and one may expect long-range entanglement to develop
only in the true 2D limit. Such development of long-range
entanglement starting from the Kitaev phase of the ladder
with its characteristic SOP to the 2D Kitaev spin liquid is
a particularly interesting question for a future study. Addi-
tionally, further studies on the Kitaev model including other
interactions and/or magnetic field using the ladder geometry
will advance our understanding of Kitaev materials [27–31].
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