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Charge density wave in a doped Kondo chain
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We report the existence of a charge density wave (CDW) in the ground state of the one-dimensional (1D)
Kondo lattice model at the filling of n = 0.75 in the weak-coupling region. The CDW is driven by the effective
Coulomb repulsion induced by the localized spins. Based on our numerical results using the density matrix
renormalization-group method, we show that the CDW phase appears in the paramagnetic region previously
known as the Tomonaga-Luttinger liquid. The emergence of this phase serves as an example of a CDW phase
induced without bare repulsive interactions, and it enriches the phase diagram of the 1D Kondo lattice model.
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I. INTRODUCTION

As a fundamental model for a strongly correlated system
describing heavy-fermion materials [1–3] and quantum mag-
netism [4], the Kondo lattice (KL) model [5–7] has been
intensively studied over the past three decades, especially
in one dimension [8,9]. While most studies have focused
on the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida
(RKKY) [10–12] interaction, the effective Coulomb repulsion
induced by the localized spins was neglected. In the one-
dimensional (1D) bosonization theory, if the interaction is
strong enough, the system undergoes a phase transition from
the Tomonaga-Luttinger liquid (TLL) to an insulating phase.
The TLL phase with a large Fermi surface has been found
in the weak coupling [13–15] of the 1D KL model. Whether
the effective Coulomb repulsion is strong enough to induce
a charge-ordered phase at commensurate filling remains an
open question.

The origin of the effective repulsive interaction in a KL
model is proposed by a strong-coupling perturbation expan-
sion [16]. However, for 1D the strong-coupling region is dom-
inant by the Kondo effect, which results in ferromagnetism
[17,18] at less than half-filling. At half-filling, the insulating
phase is caused by the formation of the Kondo singlet, and
the Coulomb repulsion is suppressed. The 1D KL model at
quarter-filling has also been investigated [19,20] to realize
a dimerization of the localized spins induced by the RKKY
interaction, although there is some controversy about the
existence of true dimer order [21,22]. Thus a charge order may
be expected in the next-order commensurate filling of 1

8 or 3
8 .

The charge order in the KL model has been investigated
in higher dimensions. Using the dynamical mean field theory
(DMFT) method and the variational Monte Carlo method, a
charge density wave in the weak coupling has been found in
both two dimensions [23–25] and infinite dimensions [26] at
quarter-fillings. The intriguing question remains whether the
charge order exists in one dimension, as the DMFT method
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generally gets less accurate in low dimensions, especially in
one dimension. Additionally, the charge order in higher di-
mensions is stabilized by the Kondo singlet formation, which
is different from the 1D case.

In this work, we identify a charge density wave (CDW)
phase at commensurate filling of 3

8 , corresponding to n = 3
4

in the 1D KL model, as shown in Fig. 1. The phase is char-
acterized by a finite density oscillation in an arbitrarily long
chain, and a vanishing Luttinger parameter. The formation
of the CDW opens a gap in the charge sector, similar to
the metal-insulator transition in the 1D extended Hubbard
model [27,28], while the spin part remains gapless. Our re-
sults showing the charge-ordered phase in 1D at higher-order
commensurate filling provide an insight into the exotic phase
of the KL model, and a possible mechanism of the charge
order in 1D organic compounds [29,30], especially the Peierls
instabilities of D2X salt, where D is a fluoranthene or perylene
derivative and X is AsF6 or PF6 [31,32]. Besides, a direct
test of our results could be made through the experimental
laboratory of ultracold atoms [33], or an artificial 1D KL by
precise ion beam irradiation of a 1D quantum wire [34]. In
the existence of a CDW, the behavior of the localized spin is
the result of the competition between RKKY interaction and
CDW, which provides an example of how the CDW interacts
with the localized spins.

II. MODEL AND METHODS

In this work, we consider the standard one-dimensional
Kondo lattice (KL) model, which describes the itinerant elec-
trons coupled to the localized spins on every unit with a SU(2)
symmetric antiferromagnetic interaction:

H = −t
L−1∑

i=1,σ

c†
i,σ ci+1,σ + H.c. + J

L∑

i=1,σ

−→
Si · −→si . (1)

The first term in the Hamiltonian is the hopping term,
where c†

i,σ refers to the creation operator of an electron
on site i with spin index σ , the second term describes the
spin-spin interaction where

−→
Si denotes the localized spin- 1

2 ,
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FIG. 1. A schematic diagram of the 1D Kondo lattice model in
the region of n > 0.5 and J < 2.2, where n is the electron density
and J is the coupling between electrons and localized spins.

and −→si = 1
2

∑
α,β c†

i,α
−→σ α,βci,β (with Pauli matrices −→σ ) is the

conduction electron spin.
The strong correlations in the weak coupling between

electrons and localized spins makes it notoriously difficult
for exact solutions. Thus the numerical method becomes
important in order to determine the phase diagram.

We use the U(1) density matrix renormalization group
[35–37] (DMRG) method with an open boundary condition
for lattice sizes up to L = 208. Calculations are performed
using the ITensor library [38]. Smaller sizes are also used for
finite-size extrapolation. The largest bond dimension is 7000
during the sweeps. A total of 140 sweeps with increasing bond
dimension were used in order to reach a stable and convergent
ground state. The cutoff error during the last few sweeps is
10−7. The hopping parameter t and the lattice spacing are set
to unity to fix the energy scale.

III. CDW ORDER AT n = 3
4

Under the open boundary condition, the electron density in
the CDW phase shows a modulation in real space as a result of
spontaneous symmetry breaking. While the Mermin-Wagner
theorem [39] forbids any spontaneous breaking of continuous
symmetry in 1D, the CDW only breaks the lattice translational
symmetry, which is discrete. In Fig. 2(a) we show 〈Ni〉 at
J = 0.9 and L = 160. There are strong oscillations around
the average electron density with the amplitude ≈0.03. The
oscillation decays very slowly away from the boundary and
remains finite in the middle of the chain. This allows us to
define the order parameter as A = limL→∞ A(L/2), which is
the amplitude of electron density oscillation in the middle.

The finite-size extrapolation is needed to determine the
order parameter in the large system limit. The extrapolated
order parameter is plotted against J in Fig. 2(c). When J
is close to the critical point slightly above 1.0, the order
parameter quickly rises from 0, and then it decreases slowly
to 0 as J decreases. Figure 2(d) shows the finite-size extrap-
olation of the order parameter for various couplings. Inside
the parameter range from J = 0.7 to 1.0, A(L/2) has a weak
dependence of L, and it remains a finite value as L goes to
infinity.

The Fourier transform of the electron density in Fig. 2(a)
is plotted in Fig. 2(b). We have used the smoothed Fourier
transform in order to minimize the effect caused by the open
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i
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FIG. 2. Part (a) is the electron density at J = 0.9, L = 160, and
n = 3

4 . Only half of the lattice is shown. Part (b) is the Fourier
transform of the density oscillation in (a). The dominant peak shows
up at k = π

2 . The inset of (b) shows the intensity of the k = π

2
peak divided by the length. Part (c) is the J dependence of the
oscillation amplitude in the middle after finite-size extrapolation. The
extrapolation in (d) is conducted in this way. If the fitting agrees
well with the power decay of the Friedel oscillation [13] in TLL,
then the order parameter is considered zero when L → ∞ (see the
Supplemental Material [40]), otherwise we use a least-squares fit to
the second order of polynomials in 1/L. For J close to the transition,
we find it better to fit to 1/

√
L as the similar scaling in TLL.

boundary. The details of the window function that we use are
discussed in Refs. [41,42]. Here the CDW phase is dominant
by a single peak at k = π

2 , which corresponds to the oscillation
period of four lattice spacings. There may be a superposition
of another oscillation frequency such as k = π

4 , but they all
vanish in the thermodynamic limit as illustrated later. The
inset of Fig. 2(b) shows the intensity of the dominant peak
divided by the lattice size. The intensity has an almost linear
dependence on L and remains finite after the extrapolation.

The structure factor N (k) of the charge-ordered phase
always scales as the order parameter multiplied by the lattice
length. In the infinite chain limit, the order parameter defined
by the structure factor is essentially equivalent to the definition
of the oscillation amplitude in the middle of the chain. As
shown in Fig. 2(d) and the inset of Fig. 2(b), the order
parameters both remain finite in the CDW phase.

The Luttinger parameter kL in the TLL of the 1D KL
model shows a monotonic decrease as J decreases at the
fixed electron density [14,15], indicating a strong repulsive
interaction between electrons in the weak-coupling region.
This could explain the formation of a CDW under strong
repulsion. However, in the limit of J → 0, the system goes
back to free 1D electrons with kL = 1. Thus it is natural to see
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FIG. 3. Part (a) is the log-log plot of the Friedel oscillation
amplitude in the middle of various lengths. The Luttinger parameter
kL is determined by the slope = −2kL . The error of kL is given
by the standard deviation of the least-squares fit. The Luttinger
parameter decreases as we lower J into the weak-coupling region,
which agrees with previous papers. For J = 1 it cannot be linearly fit,
indicating the onset of CDW. Part (b) is the finite-size extrapolation
of the charge gap at n = 3

4 . Four examples of J are given for the
least-squares fit. The inset of (b) shows the extrapolated charge gap
for various J .

a critical point where the effective repulsive interaction is not
strong enough to stabilize CDW, and the system goes back to
TLL. In the bosonization picture, the umklapp-type scattering
term, which carries a fast oscillation phase factor, only appears
in the low-energy effective Hamiltonian at special fillings
[43],

�
†
R,↑�

†
R,↓�L,↑�L,↓ ∝ e−i4KF xei2

√
2φρ (x). (2)

If 4KF = 2π , corresponding to n = 1, the fast oscillation
term becomes constant in Eq. (2) and enters in the low-energy
effective Hamiltonian. If kL < 1, then this term is relevant in
the renormalization procedure, and it opens a gap in the charge
sector. Higher-order terms of umklapp scattering could also
occur at other commensurate fillings. In our case of n = 3

4 ,
the fourth power term of the umklapp scattering can occur
in the extremely small value of kL < 1

16 . In fact, as we vary
J at n = 3

4 , kL → 1
16 when the system is close to the phase

transition.
To determine the Luttinger parameter in the TLL phase, we

compare the Friedel oscillation [13] amplitude at the center for
different lattice sizes. The methods that we used to determine
the Luttinger parameter are adopted from Ref. [42]. As shown
in Fig. 3(a), we fit the log-log plot of the oscillation amplitude
and find that for J = 1.1 the Luttinger parameter is 0.067,
which is very close to the critical value of 1

16 . This agrees with
the assumption that the CDW is driven by the strong effective
Coulomb repulsion. Near the critical J , the oscillation decay
rate is so slow that we cannot be sure whether the oscillation
will vanish in the limit of an infinitely long chain [42].
Although it is hard to determine the exact critical value of J ,
the Luttinger parameter close to the transition point provides
additional evidence of the emergence of the CDW.

Now we investigate the charge gap in the CDW. Figure 3(b)
shows the J dependence of the charge gap at n = 3

4 , which is

defined as

	c = limL→∞[E0(Ne = N + 2)

+ E0(Ne = N − 2) − 2E0(Ne = N )], (3)

where the E0(Ne) refers to the ground-state energy of a given
electron number. Here we set N = 3

4 L to fix the electron den-
sity. We choose J carefully to avoid the ferromagnetic region
so that the ground state is always in the Stot

z = 0 subspace. The
charge gaps here only depend on the ground-state energy cal-
culated by the DMRG method, thus they are very reliable. In
Fig. 3(b), the charge gap is extrapolated by a least-squares fit
to the second order of polynomials in 1/L. A nonzero value of
the gap can be distinguished in the thermodynamic limit. The
inset of Fig. 3(b) shows the extrapolated result of the charge
gap at different values of J . The gap reaches a maximum value
at around J = 0.9, and it decreases monotonically to 0 apart
from the peak. Generally in a gapped phase the correlation
function either has an exponential decay or it decays to a
constant at large separations. The electron density oscillation
agrees with the latter case here. The emergence of a nonzero
charge gap is consistent with the CDW, and together with the
CDW order parameter, we can establish the TLL-CDW phase
boundary at J ≈ 1.1 and 0.7.

The measurement of the Zeeman field needed to close
the charge gap could be used as a scale of finite transition
temperature Tc ∼ μBhc

k . We found hc = 0.03 at J = 0.9, where
the CDW is also destroyed.

The spin gap is defined in a similar way, 	s =
E0(Stot

z = 1) − E0(Stot
z = 0), except that E0(Stot

z = −1) is not
needed due to the spin symmetry. We have calculated the spin
gaps for several J with different lattice sizes, and the gap is
always zero with an error bar in the order of the truncation
error. Although numerically we can never rule out a very tiny
spin gap in larger sizes, additional evidence to support the
vanishing spin gap is found considering the density oscillation
period. The effective spin in one unit cell remains a half-
integer number, which resembles the spin-half Heisenberg
model with gapless spin excitation.

IV. CORRELATIONS

We then turn to the correlation of the localized spins in
the CDW. Unlike the charge part, the total spin of the ground
state preserves the SU(2) symmetry (see the Supplemental
Material [40]). The RKKY interaction between the localized
spins could lead to a possible valence bond solid, as was
reported in the 1D KL at quarter-filling [19].

We first investigate the nearest-neighbor correlation of the
localized spins, i.e., 〈SiSi+1〉. Figure 4(a) shows that the cor-
relation has k = π

2 oscillations with a superposition of incom-
mensurate oscillations with k = π

L , which is size-dependent.
Generally in a valence bond solid, the dimer order described
by the short-ranged spin correlation should be L-independent
away from the boundary, as in the example of the KL model
on the zigzag ladder at half-filling [44]. Quantum fluctuations
will destroy any incommensurate order in 1D, so the leading
order at the weak coupling of n = 3

4 is just the charge order.
The average correlation of the nearest-neighbor spins is anti-
ferromagnetic, which is consistent with the RKKY interaction
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FIG. 4. The nearest-neighbor (a) and long-range dimer-dimer
(b) correlation of the localized spins at J = 0.9, L = 208, and
n = 3

4 . In (a) the average correlation is around −2.0, which is
L-independent. The incommensurate oscillation refers to the upper
bound in the middle with k = π

L . The amplitude of the incommen-
surate oscillations has almost no dependence of the lattice length.
The inset of (a) shows the dominant oscillation of the correlation
with a period of 4, which is the same period as the CDW. In (b) we
calculate the correlation at x = 29 to minimize the boundary effect.
The plot uses a logarithmic scale on both axes in order to identify
the decay mode. The dimer-dimer correlation also has an oscillation
period of 4. The four colored dashed lines are merely the correlation
of every four points connected, because they each have a different
pattern. The correlation functions of the TLL are not shown here
as they have monotonic power-law decays, which agrees with the
bosonization theory.

close to half-filling. Here the correlation of the localized spins
cannot be explained by the low-energy effective Heisenberg
model with RKKY couplings because of the existence of
charge fluctuations. We believe the k = π

2 oscillation of the
localized spin correlation is mainly induced by the k = π

2
CDW because of the antiferromagnetic coupling between the
electron spins and the localized spins.

For further illustration, we study the dimer-dimer correla-
tions, which are defined as the two-point correlation functions
of the localized spins 〈OxOx+i〉, where Ox = SxSx+1 refers to
the nearest-neighbor spin correlation. The 〈OxOx+i〉 plotted
in Fig. 4(b) shows a decay over distance, although in an

oscillation fashion. The correlation is dominant by the blue
line, indicating a slow exponential decay. This is different
from the TLL where correlation functions generally have
power-law decays. It seems that the correlation saturates to-
ward a finite value for the green and red line at around i = 80,
but after analyzing the dimer-dimer correlation at different
points, we find that it always “saturates” near the middle of the
lattice. The similar “saturation” is also found in the TLL phase
at J = 2.1 and n = 3

4 . We argue that this is just an artificial
effect due to the finite size of system, as the correlation will
have a monotonic decay in the limit of an infinite chain. This
is consistent with our conclusion that the phase at n = 3

4 for
weak J is dominant by the charge order.

V. CONCLUSIONS

We have used the DMRG method to obtain the ground
state of the 1D KL model and provide compelling evidence
for CDW at n = 3

4 ; a similar CDW is not found at the
other commensurate filling of n = 1

4 (see the Supplemental
Material [40]). Our numerical results are consistent with the
bosonization prediction near the phase transition, suggesting
that the CDW is driven by the effective Coulomb repulsion,
which is qualitatively different from the CDW in higher
dimensions [23,26], and at extremely small J in 1D predicted
recently [45]. We also find that the CDW is insulating, while
the phase at incommensurate filling or generally in TLL is
metallic. Under the existence of the CDW, the localized spin
has formed a similar oscillation pattern, while preserving the
total spin SU(2) symmetry. Other magnetic orders such as
the antiferromagnetic order have not been found in the CDW
phase. Our results provide a simple mechanism of the charge
order in 1D organic compounds. The emergence of the CDW
may have implications for the novel phase diagram of the KL
model in higher dimensions.

ACKNOWLEDGMENTS

We thank E. Miles Stoudenmire for the helpful discussions
on the DMRG implementation. Y.H and C.S.T were supported
by the Texas Center for Superconductivity and the Robert A.
Welch Foundation Grant No. E-1146. D.N.S was supported
by National Science Foundation Grant PREM DMR-1828019
and by the Princeton MRSEC through the National Science
Foundation Grant No. DMR-1420541. Numerical calculations
were completed in part with resources provided by the Center
for Advanced Computing and Data Science at the University
of Houston.

[1] Z. Hossain, M. Schmidt, W. Schnelle, H. S. Jeevan, C. Geibel,
S. Ramakrishnan, J. A. Mydosh, and Y. Grin, Phys. Rev. B 71,
060406(R) (2005).

[2] A. Ochiai, T. Suzuki, and T. Kasuya, J. Phys. Soc. Jpn. 59, 4129
(1990).

[3] L. Wang, Z. Fu, J. Sun, M. Liu, W. Yi, C. Yi, Y. Luo, Y. Dai, G.
Liu, Y. Matsushita et al., npj Quantum Mater. 2, 36 (2017).

[4] G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

[5] S. Doniach, Physica B+C 91, 231 (1977).
[6] C. Lacroix and M. Cyrot, Phys. Rev. B 20, 1969 (1979).
[7] P. Fazekas and E. Müller-Hartmann, Z. Phys. B 85, 285 (1991).
[8] H. Tsunetsugu, M. Sigrist, and K. Ueda, Phys. Rev. B 47, 8345

(1993).
[9] H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys. 69,

809 (1997).
[10] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).

195109-4

https://doi.org/10.1103/PhysRevB.71.060406
https://doi.org/10.1103/PhysRevB.71.060406
https://doi.org/10.1103/PhysRevB.71.060406
https://doi.org/10.1103/PhysRevB.71.060406
https://doi.org/10.1143/JPSJ.59.4129
https://doi.org/10.1143/JPSJ.59.4129
https://doi.org/10.1143/JPSJ.59.4129
https://doi.org/10.1143/JPSJ.59.4129
https://doi.org/10.1038/s41535-017-0040-9
https://doi.org/10.1038/s41535-017-0040-9
https://doi.org/10.1038/s41535-017-0040-9
https://doi.org/10.1038/s41535-017-0040-9
https://doi.org/10.1103/RevModPhys.73.797
https://doi.org/10.1103/RevModPhys.73.797
https://doi.org/10.1103/RevModPhys.73.797
https://doi.org/10.1103/RevModPhys.73.797
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1103/PhysRevB.20.1969
https://doi.org/10.1103/PhysRevB.20.1969
https://doi.org/10.1103/PhysRevB.20.1969
https://doi.org/10.1103/PhysRevB.20.1969
https://doi.org/10.1007/BF01313231
https://doi.org/10.1007/BF01313231
https://doi.org/10.1007/BF01313231
https://doi.org/10.1007/BF01313231
https://doi.org/10.1103/PhysRevB.47.8345
https://doi.org/10.1103/PhysRevB.47.8345
https://doi.org/10.1103/PhysRevB.47.8345
https://doi.org/10.1103/PhysRevB.47.8345
https://doi.org/10.1103/RevModPhys.69.809
https://doi.org/10.1103/RevModPhys.69.809
https://doi.org/10.1103/RevModPhys.69.809
https://doi.org/10.1103/RevModPhys.69.809
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99


CHARGE DENSITY WAVE IN A DOPED KONDO CHAIN PHYSICAL REVIEW B 99, 195109 (2019)

[11] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[12] K. Yosida, Phys. Rev. 106, 893 (1957).
[13] N. Shibata, K. Ueda, T. Nishino, and C. Ishii, Phys. Rev. B 54,

13495 (1996).
[14] N. Shibata, A. Tsvelik, and K. Ueda, Phys. Rev. B 56, 330

(1997).
[15] I. Khait, P. Azaria, C. Hubig, U. Schollwöck, and A. Auerbach,

Proc. Natl. Acad. Sci. USA 115, 5140 (2018).
[16] J. E. Hirsch, Phys. Rev. B 30, 5383 (1984).
[17] I. P. McCulloch, A. Juozapavicius, A. Rosengren, and M.

Gulacsi, Phys. Rev. B 65, 052410 (2002).
[18] R. Peters and N. Kawakami, Phys. Rev. B 86, 165107 (2012).
[19] J. C. Xavier, R. G. Pereira, E. Miranda, and I. Affleck, Phys.

Rev. Lett. 90, 247204 (2003).
[20] J. C. Xavier and E. Miranda, Phys. Rev. B 78, 144406 (2008).
[21] C. Hotta and N. Shibata, Physica B 378, 1039 (2006).
[22] N. Shibata and C. Hotta, Phys. Rev. B 84, 115116 (2011).
[23] T. Misawa, J. Yoshitake, and Y. Motome, Phys. Rev. Lett. 110,

246401 (2013).
[24] Y. Motome, K. Nakamikawa, Y. Yamaji, and M. Udagawa,

Phys. Rev. Lett. 105, 036403 (2010).
[25] T. Sato, F. F. Assaad, and T. Grover, Phys. Rev. Lett. 120,

107201 (2018).
[26] R. Peters, S. Hoshino, N. Kawakami, J. Otsuki, and Y.

Kuramoto, Phys. Rev. B 87, 165133 (2013).
[27] E. Jeckelmann, Phys. Rev. Lett. 89, 236401 (2002).
[28] A. W. Sandvik, L. Balents, and D. K. Campbell, Phys. Rev. Lett.

92, 236401 (2004).

[29] H. Seo, C. Hotta, and H. Fukuyama, Chem. Rev. 104, 5005
(2004).

[30] P. Monceau, Adv. Phys. 61, 325 (2012).
[31] V. Ilakovac, S. Ravy, A. Moradpour, L. Firlej, and P. Bernier,

Phys. Rev. B 52, 4108 (1995).
[32] J.-P. Pouget, P. Foury-Leylekian, and M. Almeida,

Magnetochemistry 3, 13 (2017).
[33] L. Riegger, N. Darkwah Oppong, M. Höfer, D. R. Fernandes,

I. Bloch, and S. Fölling, Phys. Rev. Lett. 120, 143601
(2018).

[34] L. Pfeiffer, H. Störmer, K. Baldwin, K. West, A. Goni, A.
Pinczuk, R. Ashoori, M. Dignam, and W. Wegscheider, J. Cryst.
Growth 127, 849 (1993).

[35] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[36] S. R. White, Phys. Rev. B 48, 10345 (1993).
[37] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[38] http://itensor.org/.
[39] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[40] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.99.195109 for detailed numerical results.
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