
PHYSICAL REVIEW B 99, 195107 (2019)
Editors’ Suggestion

Two-dimensional Peierls instability via zone-boundary Dirac line nodes in layered perovskite oxides

Jin-Hong Park,1 Seung Hun Lee,1,2 Choong H. Kim,1,2 Hosub Jin,3,* and Bohm-Jung Yang1,2,4,†

1Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
2Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

3Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
4Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea

(Received 17 February 2019; published 6 May 2019)

Interplay of Fermi surface topology and electron correlation is the quintessential ingredient underlying
spontaneous symmetry breaking in itinerant electronic systems. In one-dimensional (1D) systems at half filling,
the inherent Fermi surface nesting makes the translationally invariant metallic state unstable, which is known as
Peierls instability. Extending the scope of Peierls instability to two (2D) or three dimensions (3D), however, is
not straightforward, since the Fermi surface in higher dimensions is generally not nested. In this work, we show
that a perfectly nested Fermi surface can be realized in a class of 2D perovskite oxides, giving rise to 2D Peierls
instability. Here the central role is played by the zone-boundary Dirac line node (DLN) protected by two orthog-
onal glide mirrors induced by the rotation of oxygen octahedra. Especially at a critical angle of the octahedron
rotation, the zone-boundary DLN flattens, leading to logarithmically diverging susceptibility. We propose the 2D
Peierls instability driven by dispersionless DLN as a principle mechanism for spontaneous symmetry breaking
in various layered perovskite oxides including the antiferromagnetism of Sr2IrO4. As a clear signature of the 2D
Peierls instability, we predict that the magnetic domain wall in Sr2IrO4 hosts localized soliton modes.
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I. INTRODUCTION

Peierls instability is a ubiquitous mechanism originally
suggested in a one-dimensional (1D) lattice at half filling that
leads to the spontaneous dimerization [1]. Due to the inherent
nesting of the 1D Fermi surface topology, the translationally
invariant metallic state becomes unstable even in the presence
of an infinitesimally weak interaction, manifested by the loga-
rithmic divergence in its static susceptibility at the momentum
q = 2kF where kF indicates the Fermi momentum [Fig. 1(a)].
In two (2D) or three dimensions (3D), however, the Fermi
surface nesting is less likely, and the metallic state is stable
as long as there is no effective attraction between electrons on
the Fermi surface and the repulsive interaction between them
is smaller than a certain threshold value [2]. Thus the interplay
of Fermi surface topology and electron correlation lies at the
heart of the weak coupling instability of the metallic state with
translational invariance.

As an attempt to realize a 2D Peierls system, the laterally
stacked 1D Peierls system can be constructed. For a 1D Peierls
building block, let us consider a well-known polyacetylene
chain at its critical point preserving the translation symmetry.
In this system, Fermi surface nesting occurs in the form
of a 1D Dirac point at the Brillouin zone (BZ) boundary
[Fig. 1(b)]. By considering 1D polyacetylene chains at the
critical point as being embedded in 2D, the 1D Dirac point
can be extended to a flat Dirac line node (DLN) spanning
the 2D BZ boundary. Therefore, the 2D extension of the
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Peierls instability is clued by the presence of dispersionless
zone-boundary DLN at the critical point. In general, however,
it is not easy to protect a line degeneracy in 2D systems,
especially when both time-reversal T and inversion P sym-
metries exist together with spin-orbit coupling. In fact, even
the zone-boundary 1D Dirac point in a polyacetylene chain at
its critical point is not a symmetry protected degeneracy but
merely resulting from the unit cell doubling.

All those difficulties are remediable in the presence of
nonsymmorphic crystalline symmetries such as glide mirrors
or screw rotations, which is known to protect band degenera-
cies at the BZ boundary in general [3]. For instance, let us
deform a straight 1D chain at its critical point to a zigzag
form as shown in Fig. 1(c). Due to the unit cell doubling,
the deformed chain has a 1D Dirac point at the BZ boundary.
Moreover, the deformation makes the zigzag chain invariant
under a mirror or a twofold rotation symmetry combined
with a half translation along the chain direction, that is, a
glide mirror or a twofold screw rotation symmetry is induced
by the lattice deformation. Such an induced nonsymmorphic
symmetry renders the zone-boundary Dirac point symmetry
protected, thus it remains gapless as long as the corresponding
nonsymmorphic symmetry is preserved [Fig. 1(d)] [4]. Arbi-
trary stacking of the zigzag-shaped chain does not guarantee a
line degeneracy along the BZ boundary, since the combination
of the twofold screw rotation and inversion can at most
protect the fourfold degeneracy only at a point [Fig. 1(e)] [5].
However, when the stacked chain system preserves the glide
mirror of a 1D chain and has an additional in-plane mirror
symmetry embracing the 2D plane, the fourfold degeneracy
of the zone-boundary DLN can remain intact even in the
presence of spin-orbit coupling [Fig. 1(f)]. Moreover, if the
bandwidth of the symmetry-protected zone-boundary DLN

2469-9950/2019/99(19)/195107(24) 195107-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.195107&domain=pdf&date_stamp=2019-05-06
https://doi.org/10.1103/PhysRevB.99.195107


PARK, LEE, KIM, JIN, AND YANG PHYSICAL REVIEW B 99, 195107 (2019)

FIG. 1. Peierls instability and glide mirror in one dimension (1D) and two dimensions (2D). (a) A monatomic chain having a single
electron per site has a nested half-filled band structure with the Fermi momentum kF . The relevant static susceptibility χ (q), which diverges
logarithmically at the wave vector q = 2kF . (b) Band structure at the critical point after zone folding. (c) A zigzag shaped 1D chain having
induced glide mirror symmetry and the resulting band structure. Here the band degeneracy at the BZ boundary at k = ±kF is protected by the
glide mirror induced by the lattice deformation. (d) Consequence of glide symmetry breaking. Here the white and black dots indicate the two
sites with different on-site potentials resulting from electron correlation. (e) A 2D system composed of coupled 1D chains. A generic structure
with a twofold screw rotation can protect only a few Dirac points at the Brillouin zone (BZ) boundary. (f) When the coupled 1D chains have
an additional mirror symmetry about the 2D plane together with the original glide mirror, a Dirac line node appears along a BZ boundary.

can be controlled to become completely dispersionless, 2D
Peierls instability can occur, leading to various symmetry
breaking phenomena.

Here we show that such an intriguing idea can be realized
in a wide class of layered perovskite oxides. The central role
is played by the in-plane rotation of oxygen octahedra, which
is a common lattice distortion among layered 2D perovskite
oxides. It doubles the size of the unit cell and, at the same
time, generates two orthogonal glide mirrors, leading to the
DLN at the BZ boundary. Interestingly, the bandwidth of the
nodal line dispersion can be controlled by changing the in-
plane rotation angle θ of oxygen octahedra. When θ reaches
a certain critical value θc, the DLN on the BZ boundary
becomes completely dispersionless, manifesting 2D Peierls
instability with the logarithmically diverging susceptibility.
We propose that the instability induced by the dispersionless
zone-boundary DLN is the principle mechanism for the canted
antiferromagnetic ground state of Sr2IrO4. Given the magnetic
ground state as a consequence of 2D Peierls instability, a
magnetic domain wall (DW) of Sr2IrO4 is shown to host 1D
localized soliton modes along the DW boundary. Since the
origin of such a flat DLN is solely coming from the crystalline
symmetry, we believe that the 2D Peierls instability can occur
ubiquitously in various layered perovskite oxides sharing the
same crystalline symmetry.

The outline of this paper is as follows. The rotation dis-
tortion induced nonsymmorphic crystalline symmetries are
described in Sec. II. In Sec. III, we present the nonsymmor-

phic symmetry protection of the DLN on the BZ boundary.
The bandwidth of the DLN can be controlled by rotation
angle of octahedra, which is discussed in Sec. IV. In Sec. V
we explain the mechanism of the dispersionless DLN by
the localized line states. The magnetic instability induced by
the dispersionless DLN on the BZ boundary is discussed in
Sec. VI. As a consequence of 2D Peierls instability, we predict
the domain wall fermion in Sec. VII, which is followed by
the discussion in Sec. VIII. The detailed analysis about the
DLN with fourfold degeneracy along the BZ boundary can be
found in Appendix A. The details of the hopping parameters
of the tight-binding Hamiltonian is given in Appendix B. The
controllable bandwidth is supported by the DFT calculations
in Appendix C. The stability of DLN including staggered
tetragonal distortion is presented in Appendix D. We perform
susceptibility calculations in the presence of sublattice, spin,
and layer degrees of freedom in Appendix E. In Appendix F,
the detailed information about the self-consistent mean-field
calculation is provided. We explain the dispersionless DLN
by the diagonal localized line states in Appendix G. Finally,
the detailed analysis on the magnetic domain wall fermion is
given in Appendix H.

II. LATTICE DISTORTION INDUCED NONSYMMORPHIC
SYMMETRY

Layered perovskite oxides with the chemical formula
A2BO4, as shown in Fig. 2(a), normally undergo several
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FIG. 2. Rotation of oxygen octahedra and induced glide mirror in layered perovskite oxides. (a) Three-dimensional (3D) structure of a
layered perovskite oxide. (b) Rotation distortion of an octahedron due to the rotation about the Z axis. (c) Structure of a layer with the rotation
distortion. (d) Operation of the mirror symmetry about the Y Z plane (X mirror) and XZ plane (Y mirror) on a layer with rotation distortion. (e)
Tilting distortion of an octahedron due to the rotation about an in-plane axis. (f) Structure of a layer with the tilting distortion. (g) Operation of
the mirror symmetry about Y Z and XZ planes on a layer with the tilting distortion. (h) A two-dimensional (2D) layer with rotation distortion
can be considered as a coupled one-dimensional (1D) zigzag chain with GY symmetry stacked along the Y direction.

kinds of structural distortions [6]. The most widely occurring
distortions are the in-plane rotation of oxygen octahedra about
the z axis [rotation distortion, see Fig. 2(b)] and another
rotation of oxygen octahedra about an axis lying in the 2D
plane [tilting distortion, see Fig. 2(e)]. Both rotation and
tilting distortions double the size of the in-plane unit cell as
shown in Figs. 2(c) and 2(f), and the relative orientation of
the distorted octahedra between layers determines the overall
space group symmetry of the 3D structure. In many cases, the
bulk properties are mainly determined by the property of a
monolayer due to the weak interlayer coupling.

There are several materials exhibiting rotation distortion
[7–11]. For instance, Sr2IrO4 undergoes a rotation distortion
of oxygen octahedra with the angle θ ∼ 11◦ in a staggered
manner leading to the

√
2 × √

2-type doubled unit cell before
the antiferromagnetic (AFM) ordering is developed [7]. [See
Fig. 2(c).] A similar distortion is observed in Refs. [8,9]
with θ ∼ 9◦. Such an in-plane rotation distortion changes
the space group symmetry of the lattice from the symmor-
phic group I4/mmm (no. 139) to the nonsymmorphic group
I41/acd (no. 142) [10] exhibiting two orthogonal glide mir-
rors [Fig. 2(d)]. Below we show that the nonsymmorphic
symmetry induced by the rotation brings about remarkable
physical consequences.

Explicitly, the two glide mirrors GX,Y ≡ {MX,Y | 1
2

1
2 } are the

combination of an ordinary mirror MX,Y which inverts the
sign of the X or Y coordinate and a partial translation ( 1

2 , 1
2 )

along the diagonal direction [see Fig. 2(d)]. Here we choose
the

√
2 × √

2-type doubled cell as a unit cell, and then the
translations of the unit cell along the X and Y directions
span the whole 2D lattice as shown in Fig. 2(h). The whole
lattice can be viewed as a vertical stacking of horizontal
zigzag chains analogous to Fig. 1(f). The presence of these
two orthogonal glide mirrors together with time-reversal T
and inversion P guarantees the presence of a Dirac line node

with fourfold degeneracy along the BZ boundary as explained
in detail below.

Let us note that, in the case of the tilting distortion [12],
which exists in various materials including La2CuO4 and
T-phase cuprates [13,14], the distorted lattice hosts only one
glide mirror as shown in Fig. 2(g), which can protect at most
Dirac point nodes on the BZ boundary as shown in Ref. [15].
In this case, one cannot expect a significant enhancement of
the susceptibility, thus we neglect the tilting distortion and
focus on the rotation distortion in the forthcoming discussion.

III. DIRAC LINE NODES (DLN) ON THE BRILLOUIN
ZONE BOUNDARY

The two glide mirrors induced by the rotation distortion of
oxygen octahedra can generate the fourfold degenerate DLN
on the full BZ boundary due to the following reason. The point
group symmetry of the system is generated by inversion P,
and two glide mirrors GX and GY , which transform the spatial
coordinate as

P : (X,Y ) → (−X,−Y ),

GX : (X,Y ) → ( − X + 1
2 ,Y + 1

2

) × iσX , (1)

GY : (X,Y ) → (
X + 1

2 ,−Y + 1
2

) × iσY ,

where σX,Y,Z indicate the spin Pauli matrices. By combining
P and GX,Y , one can also define two twofold screw rota-
tions SX ≡ GX P and SY ≡ GY P and an in-plane mirror MZ ≡
GX GY P. In general, when P and T exist simultaneously,
every band is doubly degenerate at each momentum. Due
to the strong level repulsion between degenerate bands, it is
not easy to achieve band crossing without proper additional
symmetries [15], which in the present case are GX and GY .

Explicitly, let us first explain the role of GY in protecting
the band degeneracy along the BZ boundary, kX = ±π . As
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shown in Fig. 2(h), the distorted 2D lattice with rotation
distortion can be considered as coupled 1D chains having GY .
Since each chain hosts Dirac points at the BZ boundary with
kX = ±π , the distorted 2D lattice can have a DLN along the
BZ boundary with k = (±π, kY ) [kY ∈ (−π, π )]. On the BZ
boundary, the system is invariant under PT , MZ = GX GY P,
and SY = GY P = {C2Y |( 1

2 , 1
2 )} where C2Y ≡ MY P is an ordi-

nary twofold rotation about the Y axis. Let us note that SY

contains a half translation along the X direction perpendicular
to its rotation axis. This indicates that the rotation axis of
SY is not located at the inversion center, that is, SY is an
off-centered twofold rotation symmetry [16]. Because of such
an off-centered nature of SY , it anticommutes with PT on the
BZ boundary

PT SY = −e−ikY SY PT, (2)

which forces each Kramers pair on the BZ boundary to
carry the same SY eigenvalues, i.e., either +ieikY /2 or −ieikY /2

(see Appendix A and Ref. [16]). Then a DLN with fourfold
degeneracy can occur, if two different Kramers pairs having
distinct SY eigenvalues are degenerate due to the presence of
an additional symmetry. In fact, this is exactly the role played
by MZ symmetry. Let us note that the spin orientation of
SY (MZ ) eigenstates is parallel to the Y (Z) axis since SY ∝
iσY (MZ ∝ iσZ ) due to spin-orbit coupling. The orthogonal
spin orientation between SY and MZ eigenstates indicates the
following anticommutation relation

MZSY = −SY MZ , (3)

which, combined with Eq. (2), guarantees the fourfold degen-
eracy of the relevant DLN. The DLN on the BZ boundary
kY = ±π can also be understood in a similar way. Therefore,
the DLN spanning the full BZ boundary arises from the
presence of two orthogonal glide mirrors in systems with P
and T symmetries.

IV. TUNING THE BANDWIDTH OF THE DLN VIA
ROTATION DISTORTION

To demonstrate the presence of the DLN spanning the
BZ boundary and how to control its bandwidth, we study
a tight-binding Hamiltonian relevant to Sr2IrO4. Sr2IrO4 is
a representative system in which the interplay of strong
spin-orbit coupling and electron correlation can give rise to
novel spin-orbit entangled ground states [17–22]. Since strong
spin-orbit coupling splits 5d t2g orbitals into a lower energy
quartet and a higher energy doublet with the effective angular
momentum Jeff = 3/2 and Jeff = 1/2, respectively, an Ir4+ ion
has a half-filled Jeff = 1/2 state and fully-occupied Jeff = 3/2
states. Thus, the low energy band structure near the Fermi
energy is dominated by the Ir Jeff = 1/2 states, from which
a lattice model Hamiltonian can be constructed.

The unit cell of Sr2IrO4 is composed of four layers of
iridium oxide planes. For convenience, however, we first
focus on the property of a single iridium oxide layer and
then include the influence of weak interlayer coupling. By
introducing ψ†(k) = [c†

A,↑(k), c†
A,↓(k), c†

B,↑(k), c†
B,↓(k)] as a

basis, the lattice Hamiltonian for a single layer with a rota-
tion distortion of an oxygen octahedron by an angle θ [see
Fig. 3(a)] can be written as Ĥθ = ∑

k ψ†(k)H (k, θ )ψ (k) in

which

H (k, θ ) = ε1(k, θ )σ0τx + ε1d (k, θ )σzτy

+ [ε2(k, θ ) + ε3(k, θ )]σ0τ0, (4)

where ε1,1d (k, θ ) = 2t1,1d (θ )[cos(kx ) + cos(ky)], ε2(k, θ ) =
4t2(θ ) cos kx cos ky, ε3(k, θ ) = 2t3(θ )[cos(2kx ) + cos(2ky)].
Here we choose the unit translation vectors x̂ and ŷ of
the undistorted lattice as a unit of real space coordinates
for convenience. The explicit form of the hopping integral
t1,1d,2,3(θ ) is shown in Appendix B. The Pauli matrices
τ0,x,y,z (σ0,x,y,z) denote the A and B sublattice (the Jeff = 1/2
pseudospin) degrees of freedom. The diagonal term ε2(k, θ )
[ε3(k, θ )] indicates the second (third) nearest neighbor
hopping processes between the same sublattices with the
same effective angular momenta. The θ dependence of
the hopping integrals is derived from the Slater-Koster
approximation [23].

From Eq. (4), we have obtained the evolution of the band
structures as a function of the rotation angle θ , which is shown
in Figs. 3(b)–3(g). The presence of the DLN spanning the
full BZ boundary is clearly observed. The band structure of
Sr2IrO4 with its rotation angle θ ∼ 11◦ matches well with the
previously reported results [7]. It is worthwhile to note that the
overall bandwidth of the DLN on the BZ boundary strongly
depends on θ . Especially when θ ∼ 16◦, the DLN becomes
completely flat as depicted in Figs. 3(a) and 3(e). Then
the resulting semimetal with zone-boundary DLN should be
unstable even in the presence of an infinitesimally small
interaction, which indeed links to the 2D Peierls instability.

The emergence of the flat DLN under rotation distortion
is further supported by ab initio density functional theory
(DFT) calculations including spin-orbit coupling as shown
in Figs. 3(h)–3(q). To observe the θ dependence in DFT
band structure, the in-plane lattice constant is varied while
the Ir-O bond length is fixed. Figures 3(h)–3(l) show the
evolution of DFT band structure for a single Sr2IrO4 layer.
During the variation of the rotation angle θ , the bandwidth of
the zone-boundary DLN (M-X line) also changes, consistent
with the tight-binding calculations. The fourfold degenerate
DLN eventually becomes almost flat around the critical angle
θ ∼ 23◦ as shown in Fig. 3(j). For the bulk Sr2IrO4 where
the unit cell is composed of four monolayers, four distinct
DLNs derived from Jeff = 1/2 states on the BZ boundary are
displayed in Figs. 3(m)–3(q). Since GX , GY , P, T symmetries
are all preserved in the 3D structure, the fourfold degeneracy
of each DLN is maintained. The nearly degenerate DLNs
along the BZ boundary (M-X line) around the Fermi level
become almost dispersionless at the critical angle θ ∼ 23◦
as shown in Fig. 3(o). Although the critical angle predicted
by the DFT calculations is not the same as that from the
tight-binding calculations, the overall θ dependence of the
zone-boundary DNL indicates the consistency between them.
To provide additional evidence for the tunability of the DLN
via rotation distortion, we also have examined another type
of θ variation, which is obtained by changing the Ir-O bond
length while the in-plane lattice constant is fixed. One can
again observe the emergence of the flat bands at a certain
critical angle θ in both a monolayer and the bulk system,
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FIG. 3. Dispersion of the Dirac line node (DLN) as a function of in-plane rotation angle θ in Sr2IrO4. The band structures in (a)–(g) are
from tight-binding calculations while those in (h)–(q) are from first-principles calculations. (a) The paramagnetic band structure of a single
Sr2IrO4 layer when θ = 16◦. Here the DLN is dispersionless along the full Brillouin zone boundary. The definition of the rotation angle θ

relative to the undistorted lattice structure is also described. (b)–(g) Dispersion of the DLN as θ varies. Here the purple and green lines are
doubly degenerate. The DLN becomes completely flat at the critical angle θ ≈ 16◦. (h)–(l) DFT band structures of a single Sr2IrO4 layer as θ

varies while the Ir-O bond length is fixed. Jeff = 1/2 (blue circle) and Jeff = 3/2 (red triangle) bands are displayed by using different colors.
The DLNs along the BZ boundary (M-X line) around the Fermi level become dispersionless at the critical angle θ ≈ 23◦. (m)–(q) DFT band
structures of the bulk Sr2IrO4 as θ varies while the Ir-O bond length is fixed. All symbols and colors are the same as in the case of a single
Sr2IrO4 layer of (h)–(l). The DLNs along the BZ boundary (M-X line) around the Fermi level become almost dispersionless at the critical
angle θ ≈ 23◦.

which supports the robustness of our theory on the bandwidth-
controllable DNL. (For details, see Appendix C 2.)

V. DISPERSIONLESS DLN AND THE
LOCALIZED LINE STATES

When a band is completely dispersionless, it can be ex-
pressed as a linear combination of spatially localized eigen-
states of the Hamiltonian. To fully account for the origin of the
flat DLN on the BZ boundary, let us first consider a localized
state shown in Fig. 4 defined along a diagonal line in the
2N × 2N square lattice as

|	〉α�α,σ = 1√
2N

∑
r∈�α

(−1)rx c†
σ (r)|0〉, (5)

where �α=p,n = 1, 2, ..., 2N is the labeling for a diagonal line
with positive (α = p) or negative (α = n) slope, while a diag-
onal line with odd (even) �α is composed of sites belonging
to the A(B) sublattice. r = (rx, ry) indicates the coordinate
of a lattice site, and σ = ± denotes the effective angular
momentum Jeff,z = ±1/2. Basically, |	〉α�α,σ represents a line
of states whose local wave function amplitude changes the
sign alternatively along the line. Illustrations of such diagonal
line states with positive and negative slopes are shown in
Figs. 4(d) and 4(e).

A strictly localized wave function can be an eigenstate of
the Hamiltonian only when the sum of hopping amplitudes
onto sites outside the support of the wave function vanishes
[24]. To examine the condition for |	〉α�α,σ to be an eigenstate
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FIG. 4. The origin of the flat Dirac line node (DLN) and the relevant localized line states. (a) Illustration of the origin of a localized line
state. The hopping amplitudes from two neighboring sites on a line to the common nearest neighbor site are canceled when the sign of the
wave function alternates along the line. (b) The hopping processes from a localized line state to its first, second, and third nearest neighbor
sites. (c)The first Brillouin zone. (d) The wave function of the flat DLN at the momentum k = (π, 0). (e) The wave function of the flat DLN at
the momentum k = (0,−π ). (f) Two neighboring localized line states can form two degenerate eigenstates of a zigzag shaped chain with the
momentum π . Including spin degrees of freedom, the localized line states can span four degenerate states with the momentum π .

of the Hamiltonian, we first consider the hopping processes
between nearest-neighbor sites described by the following
Hamiltonian

Ĥ1 = t1(θ )
∑

〈r,r′〉,σ

[
c†
σ (r)cσ (r′) + H.c.

]

+ t1d (θ )
∑

〈r,r′〉,σ
σ
[
ic†

σ (r)cσ (r′) + H.c.
]
, (6)

where 〈r, r′〉 denotes a pair of nearest-neighbor sites belong-
ing to different sublattices located at r and r′, respectively.
In momentum space, Ĥ1 gives rise to the terms ε1/1d (k, θ ) =
2t1/1d (θ )[cos(kx ) + cos(ky)] in Eq. (4). By applying Ĥ1 to
|	〉α�α,σ , one can easily find that Ĥ1|	〉α�α,σ = 0. Namely, due
to the alternating sign of the wave function along the line,
the hopping amplitudes to neighboring sites are canceled [see
Fig. 4(a)], thus |	〉α�α,σ becomes a localized eigenstate with
zero energy. Therefore the diagonal line states {|	〉α�α,σ } form
a set of 8N independent and degenerate localized eigenstates.

Now we construct momentum eigenstates by taking a suit-
able linear combination of the localized diagonal line states as
follows

|	〉αA,σ (φ) = 1√
N

N∑
m=1

ei2mφ |	〉α�α=2m,σ ,

|	〉αB,σ (φ) = 1√
N

N∑
m=1

ei(2m−1)φ |	〉α�α=(2m−1),σ . (7)

As shown in Appendix G, it is straightforward that |	〉p
A,σ (φ)

is a plane wave state with momentum k satisfying kx + ky =
π . Likewise, one can check that |	〉p

B,σ (φ) is another plane
wave state with the same momentum. Taking the pseudospin
σ into account, we have found four linearly independent
degenerate eigenstates which are dispersionless along the BZ
boundary satisfying kx + ky = π . By repeating similar pro-
cedures, one can also show that {|	〉n

A/B,σ (φ)} form fourfold
degenerate eigenstates which are dispersionless along another
BZ boundary satisfying kx − ky = π .

When the hopping processes between the second and third
nearest-neighbor sites are included, the diagonal line states
become dispersive. Thus dispersionless DLN can be spanned
by the diagonal line states only under a certain limited condi-
tion, which, in the present problem, corresponds to the case
when the rotation angle of an oxygen octahedron reaches
the critical value θc ∼ 16◦. The Hamiltonian describing the
hopping amplitudes between the second (t2) and the third (t3)
nearest-neighbor sites is given by

Ĥ23 = t2
∑

〈〈r,r′〉〉,σ

[
cσ (r)†cσ (r′) + H.c.

]

+ t3
∑

〈〈〈r,r′〉〉〉,σ

[
c†
σ (r)cσ (r′) + H.c.

]
, (8)

which, in momentum space, gives rise to ε2(k, θ ) and ε3(k, θ )
in Eq. (4). By applying Ĥ23 to |	〉α�α,σ , we obtain

Ĥ23|	〉α�α,σ = (2t3 − t2)
[|	〉α�α+2,σ + |	〉α�α−2,σ

]
− 2t2|	〉α�α,σ . (9)
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Thus, for |	〉α�α,σ to be the eigenstate of Ĥ23, the condition
t2 = 2t3 should be satisfied. In fact, this is an identical condi-
tion to obtain θc at which the dispersionless DLN appears on
the BZ boundary. When further neighbor hopping processes
are included additionally, diagonal line states may not be
localized eigenstates anymore, but the suitable linear combi-
nation of them can recover compact localized states spanning
a flat zone-boundary DLN. Therefore a zone-boundary DLN
is generally expected to exist as along as the symmetry of
the system is maintained and there is enough of a number
of control parameters such as the rotation angle of oxygen
octahedra.

It is worthwhile to note that a pair of neighboring diago-
nal line states can construct the degenerate eigenstates of a
zigzag-shaped chain shown in Fig. 4(f), which consist of the
aforementioned zone-boundary Dirac point of the 1D Peierls
system. This again supports the idea of viewing the distorted
2D lattice as stacking 1D zigzag-shaped chains with glide
symmetry.

VI. MAGNETIC INSTABILITY DRIVEN BY THE
DISPERSIONLESS DLN

Here we discuss the physical consequence induced by the
dispersionless DLN on the BZ boundary. Let us note that
in a polyacetylene chain with zigzag-type deformation at its
critical point, the static susceptibility diverges logarithmically
at the momentum q = 0 (modulo a reciprocal lattice vector)
signaling a sublattice symmetry breaking. Although the nature
of the resulting ground state depends on the effective interac-
tion, the sublattice symmetry breaking always accompanies
the breaking of the glide mirror that otherwise protects the
Dirac point, leading to a gapped phase with lower energy. A
similar idea can be applied to a 2D Peierls system driven by
a flat zone-boundary DLN. Due to the perfect Fermi surface
nesting from the dispersionless DLN, the uniform static sus-
ceptibility with the momentum q = 0 (modulo a reciprocal
lattice vector) diverges logarithmically. An order parameter
breaking the glide mirror symmetry can lift the degeneracy of
DLN leading to a gapped insulator with lower energy. In the
case of Sr2IrO4, its ground state is known to be a Neel-type
AFM with in-plane spin canting (in-plane canted AFM). In
the following, we examine the magnetic instability of this
system focusing on the role of the zone-boundary DLN whose
bandwidth can be controlled by varying the rotation angle θ

of oxygen octahedra.
Previous theoretical studies have shown that the lattice

model for a monolayer composed of Jeff = 1/2 states cannot
capture the spin anisotropy of the system [7,22]. Thus, to
obtain the in-plane canted AFM ground state numerically,
we consider the 3D structure with the unit cell comprised
of four layers. Let us note that, as long as the glide sym-
metries are preserved, the almost flat DLN can still appear
even in the presence of interlayer coupling, which merely
renormalizes the critical angle at which the zone-boundary
DLN becomes dispersionless. We determine the magnetic
ground state derived from the DLN and the relevant phase
diagram by studying both the RPA-type spin susceptibility and
the self-consistent mean field theory.

The general form of the spin susceptibility is given by
χ

i j
αα′,ll ′ (q) = − ∫ β

0 dτ 〈Si
αl (q, τ )S j

α′l ′ (−q, 0)〉 where the spin

operator is defined as Si
αl (q, τ ) = ∑

p c†
p,αl (τ )[σ i]cp+q,αl (τ ).

Here α, α′ and l, l ′ indicate the sublattice and layer indices,
respectively. To distinguish the two candidate ground states,
the in-plane canted AFM and the c-axis collinear AFM, we
have computed the spin susceptibility χ+−

AFM(q) and χ zz
AFM(q)

at the momentum q considering the staggered spin operator
S′i = Si

A − Si
B in the unit cell. As shown in Fig. 5(b), the spin

susceptibility develops a peak at q = (0, 0). The magnitude
of the spin susceptibility for in-plane AFM ordering is larger
than that of c-axis AFM ordering as indicated in Fig. 5(c),
which agrees with the experimental results [17]. Upon varying
the rotation angle of IrO6 octahedron, the susceptibility at
q = 0 rapidly grows and reaches its maximum at a critical
angle where energy spectrum along the BZ boundary be-
comes almost flat [Fig. 5(d)]. Using the RPA-corrected spin
susceptibility χRPA = χ0

1−Uχ0 , we can determine the critical
value of the Coulomb interaction Uc from the condition that
χRPA diverges at U = Uc, which is summarized in the phase
diagram shown in Fig. 5(e).

Additionally, to confirm the magnetic ordering pattern
suggested by the spin susceptibility, we have performed a self-
consistent mean field calculation of a Hubbard-type model
Hamiltonian with on-site repulsion: H = Ht + HU where Ht

is a 16 × 16 tight-binding Hamiltonian including the sublat-
tice, Jeff = 1/2 pseudospins, and the layer degrees of free-
dom. The mean-field decoupling of the Hubbard interaction
is implemented as HU = U

∑
i ni↑ni↓ → −U

∑
i(2〈Si〉 · Si −

〈Si〉2) with 〈Si〉 = 〈∑σ,σ ′ c†
iσ

σσσ ′
2 ciσ ′ 〉 ≡ mi. We determine the

magnetic ordering pattern by computing the order parameter
mA = (mA

x , mA
y , mA

z ) for sublattice A and mB = (mB
x , mB

y , mB
z )

for sublattice B in the bottom layer self-consistently. Adopting
the “up-down-down-up” type interlayer spin ordering pattern
confirmed in previous studies [7,25], the order parameters in
the other three layers are chosen accordingly. The resulting
phase diagram is demonstrated in Fig. 5(e). The mean field
theory shows that the critical interaction strength U at which
the phase transition occurs becomes minimal when the rota-
tion angle reaches the critical value θ = 16◦. As shown in
Fig. 5(e), Uc determined from χRPA agrees well with the result
from the self-consistent mean field theory, which confirms that
the in-plane canted AFM ground state in Sr2IrO4 manifests
itself as a consequence of 2D Peierls instability.

Let us note that in Ba2IrO4 where Sr is replaced by Ba, the
ground state is an AFM insulator although there is no rotation
distortion (θ = 0) [26]. In this case, since the space group
of the system without rotational distortion is symmorphic,
one may expect that our theory based on the zone-boundary
Dirac line node cannot be applied. However, let us stress
that this is not the case. If we plot the band structure by
using the same doubled unit cell, one can still observe the
zone-boundary Dirac line node, and the magnetic instabil-
ity of the system can still be described by using the same
theoretical framework. The physical property of the system
is independent of the unit cell choice. The existence of the
zone-boundary DLN in Ba2IrO4 is confirmed by the tight-
binding approach [see Fig. 3(b)] as well as DFT calcula-
tions where

√
2 × √

2 unit cell is used (see Appendix C 4).
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FIG. 5. Static susceptibility at the critical angle and the generic phase diagram. (a) The Fermi surface when the dispersion of the Dirac
line node (DLN) along the Brillouin zone (BZ) boundary becomes flat. (b) Susceptibility χ+−

AFM(q) has a sharp peak at q = (0, 0) modulo a
reciprocal lattice vector. (c) The comparison of χ+−

AFM and χ zz
AFM. The susceptibility with RPA correction is shown by the black dashed line.

(d) The susceptibility χ+−
AFM(q) as a function of the rotation angle θ , which diverges logarithmically at the critical angle θ = 16◦. (e) The phase

diagram in the (θ,U/t ) plane where U indicates the local Coulomb repulsion and t indicates the nearest neighbor hopping amplitudes. Here
the red (blue) dot denotes the critical point obtained by the RPA susceptibility (the self-consistent mean field study). At the critical angle the
system shows a magnetic instability even in the presence of an infinitesimally small interaction.

In particular, one can also observe the flattening of the
DLN as θ is increased artificially, although the real system
with θ = 0 can develop AFM state due to the relatively
strong U . This clearly shows that the Dirac line node based
AFM mechanism is still valid in the Ba2IrO4 system as
well.

VII. DOMAIN WALL SOLITONS

The emergence of zero-dimensional (0D) soliton modes
localized at a domain wall (DW) is a hallmark of 1D Peierls
systems, which is normally described by the Su-Schrieffer-
Heeger (SSH) model [27]. As a natural extension, in 2D
Peierls systems, one can expect emerging 1D soliton modes
localized along a DW, which can be considered as the coupled
0D soliton modes stacked along the DW direction. To demon-
strate this idea, we have studied the energy spectrum of a
configuration at the critical rotation angle with a magnetic DW
between two canted AFM domains with the net ferromagnetic
moments along the +Y and −Y directions, respectively, as
shown in Fig. 6(a). For simplicity, we first have considered
a “smooth wall” in which the magnitudes of local magnetic
moments are smoothly scaled down to zero as we approach
the DW from the bulk region whereas the direction of spins
in each domain is fixed. As shown in Figs. 6(b) and 6(c), one

can clearly observe two in-gap states as the 1D soliton modes
localized along the DW. When the local magnetic moment
at the DW (mDW) is zero, the in-gap states appear exactly
at the zero energy, which are dispersionless due to the same
reason as the localized chain states appear. On the other hand,
as mDW increases, the two in-gap states couple and develop
dispersion with a small gap between them. However, even
when mDW becomes as big as the local magnetic moment
in the bulk, the gap between the soliton modes is ten times
smaller than the bulk gap as shown in Fig. 6(d). Both the
lattice model study and the low energy effective Hamiltonian
analysis consistently show that the in-gap states localized at
the DW share the same origin as the DW soliton predicted in
the original SSH model as discussed in detail in Appendix H.

To confirm the robustness of the in-gap states independent
of the detailed structure around the DW, we have studied
the energy spectra of various DW configurations considering
different DW direction and changing the orientation of the
net ferromagnetic moment as shown in Figs. 6(e) and 6(g).
For instance, allowing the rotation of spin directions around
the DW, we have considered the Neel-type and Bloch-type
DWs, both of which possess similar in-gap states. (See Ap-
pendix H 4 b and H 4 c.) When the DW is parallel to either the
x or y direction, the in-gap states appear more dispersive as
compared to the case of DWs parallel to the X or Y directions
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FIG. 6. One-dimensional (1D) soliton modes along magnetic domain walls (DWs). (a) A schematic figure showing a 1D DW parallel to
the X axis. The green and orange arrows indicate the magnetic moments in the domain A with the net magnetic moment pointing perpendicular
to the DW. The red and blue arrows are the magnetic moments in the domain B with the net magnetic moment opposite to that of the domain
A. (b) Spatial distribution (along the Y direction) of the wave function amplitude of a soliton state localized at the DW. (c) Energy spectrum of
the system shown in (a). The orange, red, and blue lines show the dispersion of the in-gap states when the local magnetic moment at the DW,
mDW, is 0.6, 0.1, 0, respectively. (d) The bulk gap (�bulk) vs the gap between in-gap states (�in-gap) as a function of the magnitude of mDW. (e)
A DW configuration and the relevant energy spectrum when the net magnetic moment in each domain is parallel to the DW. (f), (g) A DW
configuration and the relevant energy spectrum when the DW is parallel to the x axis and the net magnetic moment is perpendicular to the DW
(f) and parallel to the DW (g), respectively.

as shown in Figs. 6(f) and 6(g). In all cases, it is found that the
in-gap states localized at the DW are robust and well separated
from the bulk states, thus they are detectable through local
conductivity measurements [28,29].

VIII. DISCUSSION

We conclude with the discussion about experimental evi-
dence supporting the presence of zone-boundary DLN. Ac-
cording to the recent ARPES study of La doped iridates
LaxSr2−xIrO4, a collapse of the charge gap due to electron
doping results in a paramagnetic metallic state with nodal
fermionic excitations [30]. Since electron doping shifts the
position of the Fermi level, which weakens the instability
associated with the DLN, it is natural to expect the recovery
of the zone-boundary DLN as long as two orthogonal glide
symmetries remain intact in the doped paramagnetic state. If
one of the two glide mirrors is broken, for instance due to the
presence of another nonmagnetic order parameter, the zone-
boundary DLN can be deformed to Dirac points protected
by the remaining glide mirror [31]. Overall, the relatively
weak dispersion of the zone-boundary DLN in Sr2IrO4 makes
the critical interaction Uc small, thus the recovery of the

paramagnetic semimetal with DLN requires a huge reduction
of the effective Coulomb repulsion through carrier doping
[32].

On the other hand, in Sr2RhO4 where Ir4+ is replaced by
Rh4+ having five valence electrons in 4d orbitals, a paramag-
netic metallic state is realized due to the weak electron corre-
lation and large effective bandwidth. Previous ARPES study
and first-principles calculation consistently show the presence
of zone-boundary DLN [33–35]. To induce an instability by
controlling the rotation angle of RhO6 octahedra, either by ap-
plying electric field or chemical doping would be an intriguing
topic for future studies. By means of DFT calculations, it can
be shown that the bandwidth of the zone-boundary DLN in
Sr2RhO4 also changes as a function of the rotational angle.
It is minimized by a suitable choice of the rotational angle
as shown in Appendix C 3. It is worthwhile to mention that
the position of the DLN is deviated from the Fermi level
due to the overlap with other dispersive bands resulting in
a large effective bandwidth in total. As a consequence, the
instability of the DLN is compromised and the system remains
the paramagnetic metallic state in Sr2RhO4.

The recent second harmonic generation study as well as the
neutron diffraction measurements [9,36,37] indicate that the
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crystal structure of Sr2IrO4 is described by space group I41/a,
which is different from the nonsymmorphic group I41/acd .
The modification of the crystal structure is associated with the
staggered tetragonal distortion of oxygen octahedron such that
the ratio of the out of plane Ir-O bond length and the in-plane
Ir-O bond length at the two Ir sublattice sites are different by
0.1 percent. Even though such a small tetragonal distortion is
enough to generate superlattice peaks for structure analysis, it
hardly affects the electronic structure and thus the instability
of the DLN as well. The DFT band structure calculations
shows that the energy splitting due to the staggered tetragonal
distortion is indeed negligible. (For details, see Appendix D.)

Finally, let us note that our theory can help resolve the
controversy about the origin of the AFM in Sr2IrO4, which
is typically ascribed either to the Slater mechanism or to the
Mott mechanism [38]. The in-plane AFM ordering doubles
the unit cell and it is accompanied by the insulating behavior,
supporting the Slater mechanism. On the other hand, the fact
that the unit-cell doubling happens above the Neel tempera-
ture and the insulating behavior is accompanied by significant
band renormalization supports the Mott mechanism. Accord-
ing to our theory, the correct way to describe the AFM is to
take into account both viewpoints at the same time. Namely,
the doubling of the unit cell due to the lattice distortion gener-
ates symmetry protected zone-boundary DLNs which provide
a platform for magnetic instability. Then subsequent flattening
of the DLN enhances the effect of Mott correlation, which
eventually drives the AFM ground state. We believe that our
theory reveals a clear microscopic picture to understand the
interplay between the symmetry protected band structure and
the Mott correlation, leading to the AFM ground state in
Sr2IrO4. The intricate balance among the spin-orbit coupled
band structure, lattice symmetry, and electron correlation
underlies the magnetic instability of Sr2IrO4, which would
provide a new perspective to envision various the spin-orbit
coupled complex correlated electron systems in general.
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APPENDIX A: ROLE OF MULTIPLE NONSYMMORPHIC
SYMMETRIES

To describe the symmetry of Sr2IrO4, let us use the
√

2 ×√
2 unit cell from the beginning. Namely, there are two atoms

in a unit cell. Then we define a unit translation along x and

y directions in a way that the first Brillouin zone is defined
as −π � kx, ky � π . Namely, here x and y coordinates cor-
respond to the conventional a and b coordinates in previous
literatures.

1. Point group symmetries

The point group symmetry of the system is generated
by inversion P and two glide mirrors Gx and Gy. Including
time-reversal symmetry, space-time coordinates transforms as
in the following way:

T : (x, y, t ) → (x, y,−t ) × iσy,

P : (x, y, t ) → (−x,−y, t ),

Gx : (x, y, t ) → (−x + 1
2 , y + 1

2 , t
) × iσx,

Gy : (x, y, t ) → (
x + 1

2 ,−y + 1
2 , t

) × iσy. (A1)

Equivalently, one can use two twofold screw rotations Sx ≡
GxP and Sy ≡ GyP instead of Gx,y. Sx,y transforms the space-
time coordinate as

Sx : (x, y, t ) → (
x + 1

2 ,−y + 1
2 , t

) × iσx,

Sy : (x, y, t ) → (−x + 1
2 , y + 1

2 , t
) × iσy. (A2)

2. Dirac line nodes on the Brillouin zone boundary

Here we prove the symmetry protection of the Dirac line
nodes on kx = π or ky = π lines. First, let us consider the
kx = π line. On this line, the system is invariant under PT ,
Gx, Sy. Thus every band on the kx = π line can be labeled
either by Gx eigenvalue or by Sy eigenvalues. The Gx and Sy

eigenvalues can be simultaneously determined only if these
two symmetries commute. In any case, let us use Gx eigen-
values to label bands on the kx = π line. From G2

x = −eiky we
find that Gx has two eigenvalues nx,±(ky) = ±iei 1

2 ky . Then one
can define the Gx eigenstates in the following way.

Gx|nx,±(ky)〉 = nx,±(ky)|nx,±(ky)〉 (A3)

which can be satisfied on the kx = 0 and kx = π lines.
To understand the band connection on the kx = π line, it

is useful to examine the commutation relation between PT ,
Gx, Sy. Again, these symmetries transform the space time
coordinates as

PT : (x, y, t ) → (−x,−y,−t ) × iσy,

Gx : (x, y, t ) → (−x + 1
2 , y + 1

2 , t
) × iσx,

Sy : (x, y, t ) → (−x + 1
2 , y + 1

2 , t
) × iσy. (A4)

Their product transforms the space-time coordinates as

PT Gx : (x, y, t ) → (
x − 1

2 ,−y − 1
2 ,−t

) × (iσy)(−iσx ),

GxPT : (x, y, t ) → (
x + 1

2 ,−y + 1
2 ,−t

) × (iσx )(iσy),

PT Sy : (x, y, t ) → (
x − 1

2 ,−y − 1
2 ,−t

) × (iσy)(iσy),

SyPT : (x, y, t ) → (
x + 1

2 ,−y + 1
2 ,−t

) × (iσy)(iσy),

SyGx : (x, y, t ) → (x, y + 1, t ) × (iσy)(iσx ),

GxSy : (x, y, t ) → (x, y + 1, t ) × (iσx )(iσy), (A5)
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which gives rise to the following commutation relations

PT Gx = eikx−iky GxPT,

PT Sy = eikx−iky SyPT,

SyGx = −GxSy. (A6)

This commutation relation is valid in the whole momentum
space.

Now we again focus on the kx = π line on which we have

PT Gx = −e−iky GxPT,

PT Sy = −e−iky SyPT, (A7)

SyGx = −GxSy,

thus we see that Gx and Sy cannot be diagonalized simultane-
ously. First, let us compare Gx eigenvalues of |nx,±(ky)〉 and
PT |nx,±(ky)〉. From Eq. (A7), we find

GxPT |nx,±(ky)〉 = −eiky PT Gx|nx,±(ky)〉
= −eiky PT

[ ± iei 1
2 ky |nx,±(ky)〉]

= ±iei 1
2 ky

[
PT |nx,±(ky)〉]

= nx,±(ky)
[
PT |nx,±(ky)〉] (A8)

thus a Kramers pair |nx,±(ky)〉 and PT |nx,±(ky)〉 have the same
Gx eigenvalues.

Now we compare Gx eigenvalues of |nx,±(ky)〉 and
Sy|nx,±(ky)〉. From the anticommutation relation between Sy

and Gx, it is obvious that

GxSy|nx,±(ky)〉 = −[nx,±(ky)]Sy|nx,±(ky)〉
= [nx,∓(ky)]Sy|nx,±(ky)〉 (A9)

thus |nx,±(ky)〉 and Sy|nx,±(ky)〉 have different Gx eigenval-
ues. Since the system is invariant under PT , Sy, Gx on the
kx = π line, the four states |nx,±(ky)〉 and PT |nx,±(ky)〉 and
Sy|nx,±(ky)〉 and PT Sy|nx,±(ky)〉 with Gx eigenvalues nx,±(ky),
nx,±(ky), nx,∓(ky), nx,∓(ky), respectively, are all degenerate
with the same energy, thus there should be a Dirac line
node with fourfold degeneracy on the kx = π line. One can
perform similar analysis on the ky = π line, and thus the DLN
spanning the full BZ boundary can be understood.

APPENDIX B: DETAILS OF HOPPING INTEGRALS
IN TIGHT-BINDING HAMILTONIAN

The bandwidth control by varying the rotational angle of
octahedron is important to examine the nesting induced insta-
bility in layered perovskite oxide systems. Here we explain
how the hopping integrals in the tight-binding Hamiltonian
in Eq. (4) are obtained. We use the Slater-Koster methods to
derive the θ -dependent hopping integrals between spin-orbit
coupled states of |Jeff = ± 1

2 〉 = 1√
3
(|dyz ∓ s〉 ± i|dzx ∓ s〉 ±

|dxy ± s〉), where s refers to the spin. It is based on the idea
that the hopping integrals can be decomposed into several
hopping elements such as Vddπ ,Vddδ,Vddσ in the d-orbitals
basis and can be parameterized with respect to the relative
displacement between two orbitals. The relative displacement
is then adjusted by the amount of the angle for rotational dis-
tortion θ . (See also Appendix B 1). Accordingly, the explicit

form of hopping integrals in (4) are

2t1 = 1
12 [12Vddπ − Vddδ − 3Vddσ ] + 2

3 [Vddπ + Vddδ] cos 2θ

− 1
12 [4Vddπ − Vddδ − 3Vddσ ] cos 4θ,

2t1d = 2
3 [Vddπ + Vddδ] sin 2θ,

4t2 = 1
2 [4Vddπ + 3Vddδ + Vddσ ]

− 1
6 [4Vddπ − Vddδ − 3Vddσ ] cos 4θ,

2t3 = 1
4 [4Vddπn + 3Vddδn + Vddσn]

+ 1
12 [4Vddπn − Vddδn − 3Vddσn] cos 4θ. (B1)

The rotational angle dependence ∼cos 4θ results from the
intraorbital hybridization between dxy-orbitals. The rotational
angle dependence ∼cos 2θ in t1 describes the intraorbital
hybridization within dyz orbitals or dzx orbitals whereas the
rotational angle dependence ∼sin 2θ in t1d describes the in-
terorbital hybridization between dyz orbitals and dzx orbitals.
The hopping elements between nearest neighbor sites are
chosen as (Vddπ ,Vddδ,Vddσ ) = (1,−0.25,−1.5) and those
for the next nearest neighbor sites are (Vddπn,Vddδn,Vddσn) =
l × (Vddπ ,Vddδ,Vddσ ) with l = 0.07. The factor l reflects the
reduction of hopping integral with respect to the distance.
Naively, the reduction factor has to be chosen as l = (1/2)5 ≈
0.0312, but considering the results from ab initio calculations
[7], we have used l = 0.07.

1. Slater-Koster parameter method

We use Slater-Koster parameters within the same sublattice
τ as follows:

〈dyz,0,τ |H |dyz,i,τ 〉 = Vddπ cos2(θ − φ) + Vddδ sin2(θ − φ),

〈dzx,0,τ |H |dzx,i,τ 〉 = Vddδ cos2(θ − φ) + Vddπ sin2(θ − φ),

〈dxy,0,τ |H |dxy,i,τ 〉 = Vddπ cos2(2(θ − φ))

+ Vddσ sin2(2(θ − φ)). (B2)

The Slater-Koster parameters depend on the rotation angle
θ and relative displacement angle φ between two adjacent
orbitals where dλ,0 orbital locates at the origin and dλ,i orbital
at ri = (xi, yi ). Thus φ is defined by

(cos φ, sin φ) = (xi, yi )/
√

x2
i + y2

i . (B3)

Similarly, we have the Slater-Koster parameters between dif-
ferent sublattices τ and τ which are given by

〈dyz,0,τ |H |dyz,i,τ 〉 = 〈dyz,0,τ |H |dyz,i,τ 〉
= Vddπ cos(θ − φ) cos(θ + φ)

− Vddδ sin(θ − φ) sin(θ + φ),

〈dzx,0,τ |H |dzx,i,τ 〉 = 〈dzx,0,τ |H |dzx,i,τ 〉
= Vddδ cos(θ − φ) cos(θ + φ)

− Vddπ sin(θ − φ) sin(θ + φ),

〈dxy,0,τ |H |dxy,i,τ 〉 = 〈dxy,0,τ |H |dxy,i,τ 〉
= Vddπ cos(2(θ − φ)) cos(2(θ + φ))

− Vddσ sin(2(θ − φ)) sin(2(θ + φ)).
(B4)
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The collective rotation allows the hopping between different
orbitals of dyz and dzx as follows:

〈dyz,0,τ |H |dzx,i,τ 〉 = − 〈dyz,0,τ |H |dzx,i,τ 〉
= − Vddπ cos(θ − φ) sin(θ + φ)

− Vddδ cos(θ + φ) sin(θ − φ),

〈dzx,0,τ |H |dyz,i,τ 〉 = − 〈dzx,0,τ |H |dyz,i,τ 〉
= Vddπ sin(θ − φ) cos(θ + φ)

+ Vddδ cos(θ − φ) sin(θ + φ). (B5)

2. Hamiltonian with interlayer hopping

The Hamiltonian with interlayer hopping reads

Hll ′
k,θ =

⎛
⎜⎜⎝

Ak,θ Bk,θ 0 eikzcC†
k,θ

B†
k,θ Ak,θ Ck,θ 0
0 C†

k,θ Ak,θ Bk,θ

e−ikzcCk,θ 0 B†
k,θ

Ak,θ

⎞
⎟⎟⎠, (B6)

where

Ak,θ = εa
k,θ τ

0σ 0 + εad
k,θ τ

xσ 0 + εad ′
k,θ τ

yσ z,

Bk,θ = εb
k,θ τ

0σ 0 + εbd
k,θ τ

xσ 0 + εbz
k,θ τ

yσ z

+ ε
by
k,θ

τ yσ y + εbx
k,θ τ

yσ x,

B†
k,θ = εb

k,θ τ
0σ 0 + εbd

k,θ τ
xσ 0 + εbz

k,θ τ
yσ z

− ε
by
k,θ

τ yσ y − εbx
k,θ τ

yσ x,

Ck,θ = εc
k,θ τ

0σ 0 + εcd
k,θ τ

xσ 0 + εcz
k,θ τ

yσ z

+ ε
cy
k,θ

τ yσ y + εcx
k,θ τ

yσ x,

C†
k,θ = εc

k,θ τ
0σ 0 + εcd

k,θ τ
xσ 0 + εcz

k,θ τ
yσ z

− ε
cy
k,θ τ

yσ y − εcx
k,θ τ

yσ x. (B7)

Here, τ i and σ i with i = 0, x, y, z indicate the Pauli matrices
acting on the sublattice spaces and Jeff = 1/2 spaces, respec-
tively. To fully express Eq. (B6) with Pauli matrices, ρ i and ηi

are introduced without any physical meaning:

ρ0η0 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, ρxη0 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠,

(iρy)η0 =

⎛
⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎞
⎟⎠, ρxηx =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠,

ρyηy =

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠. (B8)

With this, we can write down Eq. (B6) as a compact form

Hll ′
k,θ = εa

k,θ τ
0σ 0ρ0η0 + εad

k,θ τ
xσ 0ρ0η0 + εad ′

k,θ τ
yσ zρ0η0

+ εb
k,θ τ

0σ 0ρxη0 + εbd
k,θ τ

xσ 0ρxη0 + εbz
k,θ τ

yσ zρxη0

+ ε
by
k,θ τ

yσ y(iρy)η0 + εbx
k,θ τ

yσ x(iρy)η0

+ εc
k,θ τ

0σ 0ρxηx + εcd
k,θ τ

xσ 0ρxηx + εcz
k,θ τ

yσ zρxηx

+ ε
cy
k,θ

τ yσ yρyηy + εcx
k,θ τ

yσ xρyηy. (B9)

The intralayer couplings are expressed as

εa
k,θ = 4t2(θ ) cos kx cos ky + 2t3(θ )(cos 2kx + cos 2ky),

εad
k,θ = 2t1(θ )(cos kx + cos ky), (B10)

εad ′
k,θ = 2t1d (θ )(cos kx + cos ky),

where the explicit expressions of t1,1d,2,3 can be found in
Eq. (B1). The interlayer couplings associated with Bk,θ are
as follows:

εb
k,θ = 2[2Vddδz + 3Vddπz + Vddσ z

+ (Vddδz − Vddπz ) cos 4θ ] cos(kx + ky)/2,

εbd
k,θ = [Vddσ z − Vddπz + 2(Vddδz + Vddπz ) cos 2θ

+ (Vddπz + Vddσ z ) cos(4θ )] cos(kx − ky)/2,

εbz
k,θ = 2

3 [Vddδz − Vddπz + (Vddδz + Vddπz ) sin 2θ ]

× cos(kx − ky)/2,

ε
by
k,θ

= 1
24 [2Vddδz − 2Vddπz + (Vddδz − 4Vddπz

+ 3Vddσ z ) cos 2θ ] sin(kx − ky)/2,

εbx
k,θ = 1

24 [−2Vddδz + 2Vddπz + (Vddδz − 4Vddπz

+ 3Vddσ z ) cos 2θ ] sin(kx − ky)/2. (B11)

The interlayer couplings associated with Ck,θ are as follows:

εc
k,θ = 2[2Vddδz + 3Vddπz + Vddσ z

+ (Vddδz − Vddπz ) cos 4θ ] cos(kx − ky)/2,

εcd
k,θ = [Vddσ z − Vddπz + 2(Vddδz + Vddπz ) cos 2θ

+ (Vddπz + Vddσ z ) cos(4θ )] cos(kx + ky)/2,

εcz
k,θ = 2

3 [Vddδz − Vddπz + (Vddδz + Vddπz ) sin 2θ ]

× cos(kx + ky)/2,

ε
cy
k,θ

= 1
24 [2Vddδz − 2Vddπz − (Vddδz − 4Vddπz

+ 3Vddσ z ) cos 2θ ] sin(kx + ky)/2,

εcx
k,θ = 1

24 [−2Vddδz + 2Vddπz − (Vddδz − 4Vddπz

+ 3Vddσ z ) cos 2θ ] sin(kx + ky)/2. (B12)

The hopping elements between interlayer sites are chosen as
(Vddπz,Vddδz,Vddσ z ) = l ∗ (1,−0.25,−1.5), where l = 0.04.

APPENDIX C: FIRST-PRINCIPLES CALCULATIONS

Our electronic structure calculations were based on
density-functional theory within the local density approxi-
mation (LDA) as implemented in Elk code [39]. For the
exchange-correlation energy part of the LDA functional, we
used the Perdew-Zunger parametrization of the Ceperly-Alder
data [40]. Spin-orbit coupling (SOC) was included in the
second-variational scheme. Brillouin zone integrations were
performed using 6 × 6 × 3 grid sampling during the self-
consistent calculations.
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FIG. 7. (a)–(c) The DFT+SOC calculations for Sr2IrO4, Sr2RhO4, and Ba2IrO4 with rotational angles from experimental data. The
orange line indicates the Fermi level. (d)–(f) The DFT+SOC+U calculations for Sr2IrO4, Sr2RhO4, and Ba2IrO4 with rotational angles
from experimental data. The critical U for Sr2IrO4, Sr2RhO4, and Ba2IrO4 are Uc = 1.7 eV, 2.3 eV, and 2.0 eV, respectively.

1. DFT band structure calculations

First, we provide the DFT calculations for Sr2IrO4,
Sr2RhO4, and Ba2IrO4 with rotational angles from experi-
mental data. The rotation angles for Sr2IrO4, Sr2RhO4, and
Ba2IrO4 are 11◦, 10◦, and 0◦, respectively. To compare the
magnetic instability in these systems, one needs to carefully
take into account the Coulomb interaction U and the influence
of additional bands on the Fermi level together with the zone-
boundary Dirac line nodes. The paramagnetic band structures
are determined by DFT+SOC calculations, and the critical U
for metal-insulator transition is obtained by DFT+SOC+U
calculations as shown in Fig. 7. One peculiar property of the
Sr2RhO4 paramagnetic band structure compared to that of
Sr2IrO4 is that the Jeff = 3/2 states as well as the Jeff = 1/2
states largely contribute to the Fermi surface due to the weak
spin orbit coupling. Because of this, even if the zone-boundary
DLN becomes flat, its location is away from the Fermi level,
which weakens the magnetic instability driven by DLN. This
is also consistent with the fact that Uc for Sr2RhO4 is bigger
than that for Sr2IrO4. On the other hand, in the case of
Ba2IrO4, the system has an AFM ground state although there
is no rotation distortion. In this case, one may expect that our
theory based on the zone-boundary DLN cannot be applied
since the space group of the system remains symmorphic.
However, even in this case, one can still use the

√
2 × √

2-
type doubled unit cell to describe the magnetic instability
since the property of the system is independent of the unit
cell choice. In fact, according to the DFT+SOC calculations,

the zone-boundary Dirac line node is still present if the band
structure is plotted by using the doubled unit cell as shown
in Fig. 7(c). The Uc for Ba2IrO4 is found to be bigger than
that for Sr2IrO4, which is consistent with the fact that Sr2IrO4

has a bigger rotation angle. If the rotation angle is artificially
introduced, one can also observe the flattening of the zone-
boundary DLN in Ba2IrO4 as shown below.

2. Sr2IrO4

Here we provide additional DFT calculations varying the
rotation angle θ , which is obtained by changing the Ir-O
bond length while fixing the in-plane lattice constant. The
θ -dependent evolution of DFT band structure for a mono-
layer is demonstrated in Figs. 8(a)–8(e). During the evolution
of θ , the bandwidth of the DLNs changes consistent with
Figs. 3(h)–3(l) as well as the tight-binding calculations in the
main text. The emergence of flat DLNs is found in Fig. 8(c).
The θ -dependent evolution of DFT band structure for bulk
Sr2IrO4 is demonstrated in Figs. 8(f)–8(j), which agrees with
Figs. 3(m)–3(q) in the main text. The emergence of almost
flat bands from the DFT calculations strongly supports the
robustness of our theory on the tunability of DLN via rotation
distortion of octahedra in layered perovskite oxides.

3. Sr2RhO4

Here we provide DFT calculations of Sr2RhO4 varying the
rotation angle θ , which is obtained by changing the in-plane
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FIG. 8. (a)–(j) DFT band structures of Sr2IrO4 as a function of in-plane rotation angle θ , which is obtained by changing the Ir-O bond
length while the in-plane lattice constant is fixed. (a)–(e) Band structure of a monolayer. (f)–(j) Band structure of the bulk. Jeff = 1/2 (blue
circle) and Jeff = 3/2 (red triangle) bands are displayed by using different colors. The degenerate DLNs along the BZ boundary (M-X line)
around the Fermi level become almost dispersionless at the critical angle θ ≈ 23◦ in both a monolayer and the bulk Sr2IrO4 as shown in
Figs. 8(c) and 8(h), respectively.

lattice constant while the Rh-O bond length is fixed as in
Figs. 9(a)–9(c) (bulk) and 9(g)–9(i) (1ML), and by changing
the Rh-O bond length while fixing the in-plane lattice con-
stant in Figs. 9(d)–9(f) (bulk) and 9(j)–9(l) (1ML). The large
contribution of Jeff = 3/2 states to the Fermi surface prevents
Sr2RhO4 to fulfill the condition for half-filled Jeff = 1/2
states, but the θ -dependent evolution of DFT band structure
is successfully demonstrated.

4. Ba2IrO4

Here we provide DFT band structure calculations of
Ba2IrO4 varying the rotation angle θ , which is obtained by

changing the in-plane lattice constant while the Ir-O bond
length is fixed as in Figs. 9(a)–9(c) (bulk) and 9(g)–9(i)
(1ML), and by changing the Ir-O bond length while fixing
the in-plane lattice constant in Figs. 9(d)–9(f) (bulk) and 9(j)–
9(l) (1ML). One can find the almost flat band along the BZ
boundary for 1ML of θ = 16◦ as shown in Fig. 10(j).

APPENDIX D: DFT BAND STRUCTURE CALCULATIONS
INCLUDING STAGGERED TETRAGONAL DISTORTION

The second harmonic generation measurement indicates
that Sr2IrO4 has a I41/a space group, which is also sup-
ported by neutron diffraction studies. In particular, the neu-

FIG. 9. The evolution of the Sr2RhO4 band structure obtained by DFT calculations varying the rotation angle θ . Here we implement two
different ways of modifying the rotation angle both for bulk (a)–(f) and for 1ML (g)–(l).
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FIG. 10. The evolution of the Ba2IrO4 band structure obtained by DFT calculations varying the rotation angle θ . Here we implement two
different ways of modifying the rotation angle both for bulk (a)–(f) and for 1ML (g)–(l).

tron diffraction data reported in Ref. [9] identified the stag-
gered pattern for tetragonal distortion of oxygen octahedron.
Namely, in both A and B sublattices, the oxygen octahedron
is elongated along the c direction, but the c/a ratios in A and
B sublattices are slightly different. Here c/a ratio indicates
the ratio of the out-of-plane Ir-O bond length over the in-
plane Ir-O bond length. Such a staggered distortion of oxygen
octahedron breaks the two glide mirror symmetries, which
may affect the stability of the zone-boundary Dirac line node.

However, if we compare the actual Ir-O bond lengths at
the two Ir sublattice sites (Ir1 and Ir2), one can expect that
the staggered tetragonal distortion has a very tiny effect on
the electronic properties. More explicitly, according to the
neutron diffraction data shown in Table I of Ref. [9], the
out-of-plane and in-plane Ir-O distance in the unit of angstrom
are given by (2.056, 1.981) for Ir1 and (2.057, 1.979) for Ir2.
The corresponding c/a ratios are c/a = 1.038 for Ir1 and
c/a = 1.039 for Ir2, respectively. Namely, the relative change
of Ir-O bond distances for two iridium sites is on the order
of 10−3, which is sufficient to produce a superlattice peak for
structure analysis but is too tiny to affect the bulk electronic
properties.

To demonstrate the negligible influence of the staggered
tetragonal distortion on the electronic band structure, we per-
formed additional DFT+SOC calculations taking into account
the staggered tetragonal distortion in Fig. 11. When c/a =
(1.038, 1.039) in two sublattices, which is the experimental
value, one can see that staggered distortion indeed has a
negligible effect on the band degeneracy of the zone-boundary
Dirac line node (on the MX line) as shown in Fig. 11(a). Only
when the staggering of the c/a ratio is increased artificially
up to c/a = (1.030, 1047) shown in Fig. 11(d), the weak
splitting of the band degeneracy along the MX direction can
be observed. This clearly shows that the influence of the stag-
gered tetragonal distortion on the electronic band structure is
negligible and thus our theory of 2D Peierls instability can be
applied to Sr2IrO4.

APPENDIX E: SUSCEPTIBILITY WITH SUBLATTICE,
SPIN, AND LAYER DEGREES OF FREEDOM

The general form of susceptibility depends on the sublat-
tice, spin, and layer indices:

χ
i j
αα′,ll ′ (q) = −

∫ β

0
dτ 〈Si

αl (q, τ )S j
α′l ′ (−q, 0)〉, (E1)

where α, α′ and l, l ′ indicate the sublattice and layer indices,
respectively. The relevant physical susceptibility can be ex-
pressed as

χ zz
AFM(q, iνn) = 1

βV

∑
k

∑
iω

Tr[G(k, iωn)(τ zσ zρzηz )

× G(k + q, iωn + iνn)(τ zσ zρzηz )],

χ zz
FM(q, iνn) = 1

βV

∑
k

∑
iω

Tr[G(k, iωn)(τ 0σ zρzηz )

× G(k + q, iωn + iνn)(τ 0σ zρzηz )],

χ+−
AFM(q, iνn) = 1

βV

∑
k

∑
iω

Tr[G(k, iωn)(τ z(σ x + iσ y)ρzηz )

× G(k + q, iωn + iνn)(τ z(σ x − iσ y)ρzηz )],

χ+−
FM (q, iνn) = 1

βV

∑
k

∑
iω

Tr[G(k, iωn)(τ 0(σ x + iσ y)ρzηz )

× G(k + q, iωn + iνn)(τ 0(σ x − iσ y)ρzηz )].
(E2)

With antiferromagnetic interlayer coupling fixed to ρzηz =(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)
in a manner of the up-down-down-up spin

configuration, we focus on spin susceptibility in 2D. In that
sense, the four susceptibilities of χ zz

AFM, χ zz
FM, χ+−

AFM, χ+−
FM are
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FIG. 11. DFT+SOC calculations of Sr2IrO4 monolayer with staggered tetragonal distortions. (a)–(d) The band structure obtained by
varying c/a ratios with θ = 11◦. The energy splitting due to the staggered tetragonal distortion is negligible in the energy scale of Dirac line
node dispersion. (e)–(h) The band structure obtained by varying c/a ratios with θ = 23◦ when the zone-boundary DLN is flat. The energy
splitting due to the staggered tetragonal distortion is negligible.

taken into account. Further evaluation of Eq. (E2) reads

Tr[· · · ]zz
AFM = 16

((
iωn − ε0

k

)(
iωn + iνn − ε0

k+q

) + �1
k,q

)
× (Nk(iωn)Nk+q(iωn + iνn))−1,

Tr[· · · ]zz
FM = 16

((
iωn − ε0

k

)(
iωn + iνn − ε0

k+q

) + �2
k,q

)
× (Nk(iωn)Nk+q(iωn + iνn))−1,

Tr[· · · ]+−
AFM = 32

((
iωn − ε0

k

)(
iωn + iνn − ε0

k+q

) + �3
k,q

)
× (Nk(iωn)Nk+q(iωn + iνn))−1,

Tr[· · · ]+−
FM = 32

((
iωn − ε0

k

)(
iωn + iνn − ε0

k+q

) + �4
k,q

)
× (Nk(iωn)Nk+q(iωn + iνn))−1, (E3)

where we have

�1
k,q = −εad

k εad
k+q − εad ′

k εad ′
k+q − εb

kε
b
k+q + εbd

k εbd
k+q

+ εbx
k εbx

k+q + ε
by
k ε

by
k+q + εbz

k εbz
k+q + εc

kε
c
k+q

− εcd
k εcd

k+q + εcx
k εcx

k+q + ε
cy
k ε

cy
k+q − εcz

k εcz
k+q,

�2
k,q = εad

k εad
k+q + εad ′

k εad ′
k+q − εb

kε
b
k+q − εbd

k εbd
k+q

− εbx
k εbx

k+q − ε
by
k ε

by
k+q − εbz

k εbz
k+q + εc

kε
c
k+q

+ εcd
k εcd

k+q − εcx
k εcx

k+q − ε
cy
k ε

cy
k+q + εcz

k εcz
k+q,

�3
k,q = −εad

k εad
k+q + εad ′

k εad ′
k+q − εb

kε
b
k+q + εbd

k εbd
k+q

− εbz
k εbz

k+q + εc
kε

c
k+q − εcd

k εcd
k+q + εcz

k εcz
k+q,

�4
k,q = εad

k εad
k+q − εad ′

k εad ′
k+q − εb

kε
b
k+q − εbd

k εbd
k+q

+ εbz
k εbz

k+q + εc
kε

c
k+q + εcd

k εcd
k+q − εcz

k εcz
k+q,

Nk(iωn) = (
iωn − ε0

k

)2 − (
εad

k

)2 − (
εad ′

k

)2 − (
εb

k

)2

− (
εbd

k

)2 − (
εbx

k

)2 − (
ε

by
k

)2 − (
εbz

k

)2

− (
εc

k

)2 − (
εcd

k

)2 − (
εcx

k

)2 − (
ε

cy
k

)2 − (
εcz

k

)2

= ((
iωn − ε0

k

) + Zk
)((

iωn − ε0
k

) − Zk
)
, (E4)
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with

Zk = [(
εad

k

)2 + (
εad ′

k

)2 + (
εb

k

)2 + (
εbd

k

)2 + (
εbx

k

)2

+ (
ε

by
k

)2 + (
εbz

k

)2 + (
εc

k

)2 + (
εcd

k

)2 + (
εcx

k

)2

+ (
ε

cy
k

)2 + (
εcz

k

)2]1/2
. (E5)

The replacement k → k + q and iωn → iωn + iνn in
Eqs. (E4) and (E5) can yield Nk+q(iωn + iνn) and Zk+q.

After Matsubara summation, we arrive at

χ zz
AFM(q, iνn) = 1

V

∑
k

[
1

Z2
k − Z4

k+q

(
4 + 4�1

k,q

ZkZk+q

)

×
(

1

eβZ2
k + 1

− 1

eβZ4
k+q + 1

)

+ 1

Z1
k − Z3

k+q

(
4 + 4�1

k,q

ZkZk+q

)(
1

eβZ1
k + 1

− 1

eβZ3
k+q + 1

)

+ 1

Z2
k − Z3

k+q

(
4 − 4�1

k,q

ZkZk+q

)(
1

eβZ2
k + 1

− 1

eβZ3
k+q + 1

)

+ 1

Z1
k − Z4

k+q

(
4 − 4�1

k,q

ZkZk+q

)(
1

eβZ1
k + 1

− 1

eβZ4
k+q + 1

)]
.

(E6)

The replacement of n in �n
k,q with n = 1, 2, 3, 4 and the

proper choice of constant factors of 4 or 8 can give us all kinds
of physical spin susceptibility defined in Eq. (E2).

1. RPA calculation with sublattice degree of freedom

In this section, we present results for the magnetic nesting
instabilities within the tight-binding random phase approxi-
mation (RPA) model including the sublattice and Jeff = 1/2
degree of freedoms. We thus provide the sign and factor in
front of U for the RPA calculation of the spin susceptibility.
With the final result in Eq. (E14) below, we can determine
the critical value of U when the denominator satisfies the
divergence condition, for example, 1 = Uχ0(q) with the per-
fect nesting vector q. The obtained critical values of U as
a function of the rotational angle θ enable us to determine
the phase boundary of the magnetic phase diagram in the
main text. Let us first write down spin susceptibility in the
AB-sublattice system.

χ+−
AB (q, τ ) = − 1

V

∑
p,k

∑
σ1,σ

′
1

∑
σ2,σ

′
2

∑
α1,α

′
1

∑
β1,β

′
1

〈TτC†
k,α1,σ1

(τ )

× (σ+)σ1,σ
′
1
(sz )α1,α

′
1
Ck+q,α′

1,σ
′
1
(τ )

× C†
p+q,β1,σ2

(0)(σ−)σ2,σ
′
2
(sz )β1,β

′
1
Cp,β ′

1,σ
′
2
(0)〉

= 1

V

∑
p,k

∑
σ1,σ

′
1

∑
σ2,σ

′
2

∑
α1,α

′
1

∑
β1,β

′
1

(σ+)σ1,σ
′
1
(sz )α1,α

′
1

× (σ−)σ2,σ
′
2
(sz )β1,β

′
1
〈TτCp,β ′

1,σ
′
2
, (0)

× C†
kα1,σ1

(τ )Ck+q,α′
1,σ

′
1
(τ )C†

p+q,β1,σ2
(0)〉, (E7)

where α1, α
′
1, β1, β

′
1 denote the sublattice indices and

σ1, σ
′
1, σ2, σ

′
2 the spin indices. Here τ serves as the imaginary

time not sublattice index as in the main text. We formulate the
equation of motion for RPA susceptibility. The derivatives of
�(τ ) function in the bracket gives δ(τ ) function

δ(0)〈Cp,β ′
1,σ

′
2
(0)C†

k,α1,σ1
(0)Ck+q,α′

1,σ
′
1
(0)C†

p+q,β1,σ2
(0)〉

= −〈C†
k,α1,σ1

Ck+q,α′
1,σ

′
1
C†

p+q,β1,σ2
Cp,β ′

1,σ
′
2
〉. (E8)

Employing Wick’s theorem, Eq. (E8) becomes

− 〈C†
k,α1,σ1

Ck+q,α′
1,σ

′
1
〉〈C†

p+q,β1,σ2
Cp,β ′

1,σ
′
2
〉

− 〈C†
k,α1,σ1

Cp,β ′
1,σ

′
2
〉〈C†

p+q,β1,σ2
Ck+q,α′

1,σ
′
1
〉

+ 〈C†
k,α1,σ1

C†
p+q,β1,σ2

〉〈Ck+q,α′
1,σ

′
1
Cp,β ′

1,σ
′
2
〉

= −〈C†
k,α1,σ1

Cp,β ′
1,σ

′
2
〉δp,kδβ1,α

′
1
δσ2,σ

′
1

+ 〈C†
p+q,β1,σ2

Ck+q,α′
1,σ

′
1
〉δp,kδβ ′

1,α1δσ ′
2,σ1 , (E9)

where only the second term in the first line contributes to the
last line accounting for the matrix element of σ+ and σ− and
〈C†C†〉 = 〈CC〉 = 0. Implementing σ+, σ−, and sz, Eq. (E9)
reads

− 〈C†
k,α1,σ1

Cp,β ′
1,σ

′
2
〉(σ+)σ1σ

′
1
(σ−)σ ′

1σ
′
2
(sz )α1α

′
1
(sz )α′

1β
′
1

+ 〈C†
p+q,β1,σ2

Ck+q,α′
1,σ

′
1
〉(σ+)σ1σ

′
1
(σ−)σ2σ1 (sz )α1α

′
1
(sz )β1α1

= −〈nk,α,↑〉 + 〈nk+q,α,↓〉, (E10)

where we reach the last line when the spin index summations
are applied. Next, we should evaluate the ∂

∂τ
C†

k,α,σ (τ ). The
Hamiltonian is given by

H = H0 + Hint =
∑

k′,α,σ

εk′C†
k′,α,σ

Ck′,α,σ

+ U

N

∑
p,l,q1,σ,σ ′,b

C†
p,b,σC†

l,b,σ ′Cl+q1,b,σ ′Cp−q1,b,σ , (E11)

with b the sublattice index. There is no intersublattice mixing
term in the Hubbard interaction due to the nature of on-site
interaction. We obtain

[H0,C†
k,α1,σ1

](τ ) = εkC†
k,α1,σ1

(τ ),

[H0,Ck+q,α′
1,σ

′
1
](τ ) = −εk+qCk+q,α′

1,σ
′
1
(τ ),

[Hint,C†
k,α1,σ1

](τ )

= U

N

∑
p,l,q1,σ,σ ′,b

(
C†

k+q1,α1,σ1
C†

l,α1,σ ′Cl+q1,α1,σ ′

− C†
p,α1,σ

C†
k−q1,α1,σ1

Cp−q1,α1,σ )
)
(τ ),

[Hint,Ck+q,α′
1,σ

′
1
](τ )

= U

N

∑ (
C†

p,α′
1,σ

Ck+q+q1,α
′
1,σ

′
1
Cp−q1,α

′
1,σ

C†
l,α′

1,σ
′Cl+q1,α

′
1,σ

′Ck+q−q1,α
′
1,σ

′
1
)
)
(τ ). (E12)

The third and fourth commutators gives −〈nk,α1,↑〉 and
〈nk+q,α′

1,↓〉 contributions. The resultant Dyson’s equation is
thus

(iωn − εk + εk+k )χ+−
AB (q, iωn)

= (−〈nk,α1,↑〉 + 〈nk+q,α′
1,↓〉)

(
1 + Uχ+−

AB (q, iωn)
)
. (E13)
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So, we have

χ+−
AB (q, iωn) = (χ+−

AB (q, iωn))0

1 − U (χ+−
AB (q, iωn))0

. (E14)

2. Tetrahedron methods in the two-dimensional system

As noted in Eq. (E6), the spin susceptibility takes the
following form

χnn′ (q) = 1

V

∑
k

1

En(k) − En′ (k + q)
. (E15)

The susceptibility diverges when it satisfies the nesting con-
dition En(k) = En′ (k + q). Here we provide the analytic ex-
pression for χnn′ (q) by using the tetrahedron methods. In the
previous work by Rath and Freeman in 1975 [41], the tetra-
hedron methods are subjected to the integral over the three-
dimensional k space. A variant formula to two-dimensional k
space seems obvious, but it is worth clarifying explicit form.
Let us choose the coordinates of the corners of triangle

k1 = (0, 0), k2 = (X1, 0), k2 = (X2,Y2), (E16)

and we define Vi = En′ (ki + q) − En(ki ) where i = 1, 2, 3.
We then expand the energy difference linearly

En′ (k + q) − En(k) = A + Bx + Cy. (E17)

Here the coefficients A, B,C can be obtained from the energy
difference at the corner of the triangle:

A = V1, A + BX1 = V2, A + BX2 + CY2 = V3. (E18)

The integral over the triangle can be written as

χ =
∫ Y2

0
dy

[∫ (X2−X1 )
Y2

y+X1

X2
Y2

y

1

A + Bx + Cy

]
. (E19)

Basically, we assume V1 < V2 < V3. For analytic expression,
we have

χ = V1 ln(|V1|)
(V1 − V2)(V1 − V3)

+ V2 ln(|V2|)
(V3 − V2)(V1 − V2)

+ V3 ln(|V3|)
(V3 − V2)(V3 − V1)

. (E20)

It holds true both for V1,V2,V3 > 0 and V1,V2,V3 < 0.
We must carefully treat the above expression in the limit of

several cases:
(i) V1 = V2 = V3,V1 > 0 or V1 < 0

χ = 1

2V1
. (E21)

(ii) V1 = V2 = V3 = 0

χ = 0. (E22)

(iii) V1 = V2 �= V3, V1 �= 0, V3 �= 0, V1 > 0,V3 > 0 and
V1 < 0,V3 < 0

χ = V1 − V3 + V3 ln
(∣∣V3

V1

∣∣)
(V1 − V3)2

. (E23)

(iv-1) V1 = V2 �= V3, V1 �= 0, V3 = 0, V1 > 0,V1 < 0

χ = 1

V1
. (E24)

(iv-2) V1 = V2 �= V3, V1 = V2 = 0, V3 �= 0

χ = 0. (E25)

(v) V1 �= V2 = V3, V1 �= 0, V3 �= 0, V1 > 0,V3 > 0 and
V1 < 0,V3 < 0

χ = −V1 + V3 + V1 ln
(∣∣V1

V3

∣∣)
(V1 − V3)2

. (E26)

(vi-1) V1 �= V2 = V3, V1 = 0, V3 �= 0, V3 > 0,V3 < 0

χ = 1

V3
. (E27)

(vi-2) V1 �= V2 = V3, V1 �= 0, V2 = V3 = 0

χ = 0. (E28)

(vii) V1 = 0,V2 �= V3, V2,V3 > 0

χ = ln
(∣∣V2

V3

∣∣)
V2 − V3

. (E29)

(viii) V3 = 0,V1 �= V2, V1,V2 < 0

χ = ln
(∣∣V1

V2

∣∣)
V1 − V2

. (E30)

(ix) V2 = 0,V1 �= V3, V1 < 0,V3 > 0

χ = ln
(∣∣V1

V3

∣∣)
V1 − V3

. (E31)

With this exact form of susceptibility one can properly
capture the logarithmically diverging feature as in Fig. 5(d)
in the main text.

APPENDIX F: SELF-CONSISTENT MEAN-FIELD
CALCULATIONS

The divergent susceptibility due to dispersionless DLN
indicates that the metallic state has an instability to a gapped
phase which breaks the crystal symmetry leading to the AFM
state. The specific ordering pattern suggested by the suscepti-
bility calculation is the ab-plane canted AFM rather than the
c-axis collinear AFM as shown in Fig. 5(c). To verify the mag-
netic ground state, we have performed the numerical analysis
by means of self-consistent mean-field calculations. We allow
the order parameters to describe any type of magnetic ordering
patterns, thus we set mA = (mA

x , mA
y , mA

z ) for sublattice A
and mB = (mB

x , mB
y , mB

z ) for sublattice B within a monolayer.
The other order parameters in the remaining three layers
are chosen by assuming the well-known “up-down-down-up”
ordering pattern for net ferromagnetic moments [7,25]. The
chemical potential μ is determined iteratively to ensure the
half-filling condition. The tolerance factor for the numerical
iteration is fixed to 10−5 to ensure the convergence of the
order parameters and chemical potential for given (θ,U )
during several hundreds of iteration times. The resulting phase
diagram is shown in Fig. 5(e). In the regime for the ab-plane
canted AFM phase, due to the spin anisotropy originating
from interlayer coupling, the arbitrary initial value including
the c-axis AFM converges into the ab-plane canted AFM as
a final solution. We also have confirmed that the total energy
of the ab-plane canted AFM is lower than that of the c-axis
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AFM. The critical interaction Uc from self-consistent calcula-
tion agrees well with that from RPA-corrected susceptibility
calculations. Convergence to ordered phase is tricky near
critical rotational angle θc within our mean-field calculation
scheme. More sophisticated numerical calculation may be
needed to elaborate the results near the critical rotational
angle. However, the overall tendency of the critical interaction
Uc as a function of the rotational angle θ is consistent with
each other as shown in Fig. 5(e).

APPENDIX G: LOCALIZED LINE STATES

We have introduced the diagonal line states in Eq. (5)
providing us the basic building blocks to formulate the lo-
calized wave functions in the square lattice. Here, we will
show that appropriate linear combinations of such localized
diagonal line states with positive (negative) slope correspond
to the degenerate eigenstates along the BZ boundary satisfy-
ing kx + ky = π (kx − ky = π ). From the localized diagonal
line states in Eq. (5), using the Fourier transformation c†

σ (r) =
1√
4N2

∑
k e−ik·rc†

k,σ
we find

|	〉αA,σ (φ) = 1√
N

N∑
m=1

ei2mφ |	〉α�α=2m,σ

= 1√
N

N∑
m=1

1√
2N

∑
r∈�α=2m

× 1

2N

∑
k

ei2mφ (−1)rx e−ik·rc†
k,σ

|0〉, (G1)

where r = (rx, rx + 2m − 1) [r = (rx,−rx + 2m − 1)] for
α = p (α = n) with rx = 1, 2, ..., 2N . For a diagonal line with
positive slope, we obtain

|	〉p
A,σ (φ) =

√
2

(2N )2

∑
k

N∑
m=1

2N∑
rx=1

× ei2mφ (−1)rx e−ik·(rx,rx+2m−1)c†
k,σ

|0〉,

=
√

2

(2N )2

∑
k

N∑
m=1

2N∑
rx=1

× ei[rx (π−kx−ky )+2m(φ−ky )+ky]c†
k,σ

|0〉, (G2)

which, in the thermodynamic limit, becomes

|	〉p
A,σ (φ) = 1√

2

∑
k

δ0,π−kx−kyδ0,φ−ky e
iky c†

k,σ
|0〉,

= 1√
2

eiφc†
(kx=π−φ,ky=φ),σ |0〉. (G3)

In this way, we obtain the Bloch state |	〉p
A,σ (φ) which is

defined along the BZ boundary satisfying kx + ky = π . The
same property holds for |	〉ατ,σ (φ) by changing sublattice τ ,
pseudospin σ , and slope α indices with the wave number φ

defined along the BZ boundary satisfying kx + ky = π (kx −
ky = π ) when it comes to positive (negative) slope. Finally,
the explicit form of the critical rotational angle from the
condition t2 = 2t3 is given by

θc = 1

2
tan−1

√
5Vddδ − 8Vddδ′ + 4Vddπ − 16Vddπ ′ + 3Vddσ√

2
√−2Vddδ + 5Vddδ′ − 4Vddπ + 4Vddπ ′ + 3Vddσ ′

. (G4)

APPENDIX H: AFM DOMAIN WALL IN-GAP STATES

In this section, we analyze the in-gap states localized in the antiferromagnetic domain wall of the Sr2IrO4 system.

The Full Hamiltonian

The tight-binding (TB) Hamiltonian of a single-layer strontium iridate is given by

H (k) = (ε2(k, θ ) + ε3(k, θ ))σ0τ0 + ε1(k, θ )σ0τx + ε1d (k, θ )σzτy, (H1)

where

ε2(k, θ ) = 4t2(θ ) cos kx cos ky

ε3(k, θ ) = 2t3(θ )(cos 2kx + cos 2ky)

ε1(k, θ ) = 2t1(θ )(cos kx + cos ky)

ε1d (k, θ ) = 2t1d (θ )(cos kx + cos ky).

Or, rewriting the above equation in matrix form, we have

H (kx, ky)

= (4t2 cos kx cos ky + 2t3(cos 2kx + cos 2ky))σ0τ0

+

⎛
⎜⎝

0 2(t1 − it1d )(cos kx + cos ky) 0 0
2(t1 + it1d )(cos kx + cos ky) 0 0 0

0 0 0 2(t1 + it1d )(cos kx + cos ky)
0 0 2(t1 − it1d )(cos kx + cos ky) 0

⎞
⎟⎠.

(H2)
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When we introduce a magnetic ordering into the system, the Hamiltonian becomes

H (kx, ky)

= (4t2 cos kx cos ky + 2t3(cos 2kx + cos 2ky))σ0τ0

+

⎛
⎜⎜⎝

0 2(t1 − it1d )(cos kx + cos ky) mA
x − imA

y 0
2(t1 + it1d )(cos kx + cos ky) 0 0 mB

x − imB
y

mA
x + imA

y 0 0 2(t1 + it1d )(cos kx + cos ky)
0 mB

x + imB
y 2(t1 − it1d )(cos kx + cos ky) 0

⎞
⎟⎟⎠.

(H3)

For the sake of convenience in later calculations, we choose a new set of coordinates (KX , KY ) = 1√
2
(kx + ky, ky − kx ). Then the

Hamiltonian reads

H (KX , KY ) = (2t2(cos
√

2KX + cos
√

2KY ) + 4t3 cos
√

2KX cos
√

2KY )σ0τ0

+

⎛
⎜⎜⎜⎝

0 4(t1 − it1d ) cos KX√
2

cos KY√
2

mA
x − imA

y 0

4(t1 + it1d ) cos KX√
2

cos KY√
2

0 0 mB
x − imB

y

mA
x + imA

y 0 0 4(t1 + it1d ) cos KX√
2

cos KY√
2

0 mB
x + imB

y 4(t1 − it1d ) cos KX√
2

cos KY√
2

0

⎞
⎟⎟⎟⎠. (H4)

The low energy effective Hamiltonian

We already know that the band structure of the Hamiltonian (2) has a fourfold degenerate nodal line, close to the Fermi energy,
along the Brillouin zone (BZ) boundary. Since we are interested in the low energy physics near the Fermi level, we expand the
Hamiltonian around a certain point on the BZ boundary (KX0, KY 0). As we set (KX0, KY 0) = (0, π/

√
2),

H (δKX , δKY ) + 4t3σ0τ0

=

⎛
⎜⎜⎜⎝

0 −2
√

2(t1 − it1d )δKY mA
x − imA

y 0
−2

√
2(t1 + it1d )δKY 0 0 mB

x − imB
y

mA
x + imA

y 0 0 −2
√

2(t1 + it1d )δKY

0 mB
x + imB

y −2
√

2(t1 − it1d )δKY 0

⎞
⎟⎟⎟⎠ + O(δK2). (H5)

The 4t3σ0τ0 term does nothing but just give a constant shift to the band structure, so we neglect it from now on. Then, up to the
first order of δKi’s, the effective Hamiltonian is written as

H (δKY ) =

⎛
⎜⎜⎜⎝

0 −2
√

2(t1 − it1d )δKY mA
x − imA

y 0
−2

√
2(t1 + it1d )δKY 0 0 mB

x − imB
y

mA
x + imA

y 0 0 −2
√

2(t1 + it1d )δKY

0 mB
x + imB

y −2
√

2(t1 − it1d )δKY 0

⎞
⎟⎟⎟⎠. (H6)

A single domain

To consider a single domain with the net ferromagnetic
moment in the +Y direction, we put

mA
x = m cos α, mA

y = m sin α

(H7)
mB

x = −m sin α, mB
y = −m cos α,

where m and α are positive real constants which denote the
magnitude of the magnetic ordering and the angle between
the �mA and x axis, respectively. The Hamiltonian with such a
configuration has several local symmetries: G, C, and M.

G = 1√
2

(σx − σy)τx

C = 1√
2

(σx + σy)τy (H8)

M = σzτz

H (δKY ) commutes with G and anticommutes with C and M.
Using the following similarity transformation U that diago-
nalizes G [UGU † = diag(−1,−1, 1, 1)],

U =

⎛
⎜⎜⎜⎜⎝

− 1−i
2 0 0 1√

2

0 − 1−i
2

1√
2

0
1−i

2 0 0 1√
2

0 1−i
2

1√
2

0

⎞
⎟⎟⎟⎟⎠, (H9)

we can block diagonalize H (δKY ) into

H ′(δKY ) = UH (δKY )U †

=
(

Hu(δKY ) 0
0 Hl (δKY )

)
,

(H10)
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where

Hu(δKY ) =
(

0 −t̃δKY − m̃
−t̃∗δKY − m̃∗ 0

)
,

Hl (δKY ) =
(

0 −t̃δKY + m̃
−t̃∗δKY + m̃∗ 0

)
. (H11)

Here, t̃ and m̃ are defined as t̃ = 2
√

2(t3 − it4) and m̃ =
me−i(α+ π

4 ).
Eigenvalues of each blocks are given by

Eu(δKY ) = ±|t̃δKY + m̃|,
El (δKY ) = ±|t̃δKY − m̃|. (H12)

When δKY goes to zero, the eigenvalues become ±m. Thus,
we confirm that a gap with size 2m opens at the point
(KX0, KY 0) = (0, π/

√
2) in the case of the single magnetic

domain.

A domain wall along the [110] direction

Now we think about a system with a domain wall that sepa-
rates two domains with different net ferromagnetic moments:
one in the +Y direction, and the other in the −Y direction.
We can get the Hamiltonian of such a system by modifying
the magnetic ordering used in the previous section. In this
section, we investigate three different types of domain wall
models: smooth, Néel, and Bloch domain wall.

a. Smooth wall

First, we consider the simplest model, in which the mag-
nitude of the magnetic moments changes, but their directions
stay still. In such a smooth wall, the magnitude of the magnetic
moments is smoothly scaled down to zero in the transition
region. Multiplying tanh(βY ) to Eq. (H7), we have the smooth
wall configuration with the domain wall lying in the Y = 0
plane.

mA
x = m cos α tanh(βY ),

mA
y = m sin α tanh(βY ),

mB
x = −m sin α tanh(βY ),

mB
y = −m cos α tanh(βY ). (H13)

The role of tanh(βY ) here is to invert the magnetic moments
as Y changes its sign, where |β| determines the stiffness of the
domain wall profile.

Under the similar transformation introduced in the previ-
ous section of the single domain wall (Appendix H 3), M
transforms into M ′ = σ0τz. As H anticommutes with M, H ′
anticommutes with M ′. Thus, both of the 2 × 2 block Hamil-
tonians anticommute with τz. Because Hu and Hl anticommute
with τz, if these block Hamiltonians have zero energy eigen-
states, the zero eigenstates should also be eigenstates of τz,
so they are of the form ( f (Y )

0 ) or ( 0
g(Y )). In the presence of

the domain wall, the periodicity of the system along the Y
direction is broken, and thus KY is no more a good quantum
number. Therefore, we replace δKY by (−i∂Y ) to solve the
Hamiltonian equation. Then we have

Hu,scale(∂Y ) =
(

0 it̃∂Y − m̃ tanh(βY )
it̃∗∂Y − m̃∗ tanh(βY ) 0

)
,

Hl,scale(∂Y ) =
(

0 it̃∂Y + m̃ tanh(βY )
it̃∗∂Y + m̃∗ tanh(βY ) 0

)
.

(H14)

For the upper block, (it̃∗∂Y − m̃∗ tanh(βY )) fu(Y ) = 0
gives a solution fu(Y ) ∼ cosh(βY )−im̃∗/β t̃∗

, while
(it̃∂Y − m̃ tanh(βY ))gu(Y ) = 0 gives a solution gu(Y ) ∼
cosh(βY )−im̃/β t̃ . On the other hand, for the lower
block, (it̃∗∂Y + m̃∗ tanh(βY )) fl (Y ) = 0 gives a solution
fl (Y ) ∼ cosh(βY )im̃∗/β t̃∗

, and (it̃∂Y + m̃ tanh(βY ))gl (Y ) = 0
gives a solution gl (Y ) ∼ cosh(βY )im̃/β t̃ . Substituting m̃/t̃ to
c, we can simply write the solutions in the following form

fu(Y ) ∼ cosh(βY )−ic∗/β,

gu(Y ) ∼ cosh(βY )−ic/β,

fl (Y ) ∼ cosh(βY )ic∗/β,

gl (Y ) ∼ cosh(βY )ic/β . (H15)

In general, only two of these solutions are physically allowed,
since we must discard solutions whose norms diverge as Y →
±∞. Which solutions survive depends on the signs of m, α,

FIG. 12. Dispersion of domain wall states of the smooth wall (a) with and (b) without zero magnetic moment atoms at the domain wall
position.
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FIG. 13. Dispersion of domain wall states of the Néel wall.

and β (and on the magnitude of α as well).

c = m̃

t̃
= me−i(α+ π

4 )

t3 − it4

= me−i(α+ π
4 )∣∣t̃ ∣∣e−iφ

= m∣∣t̃ ∣∣e−i(α+ π
4 −φ), (H16)

where φ = tan−1(t4/t3), | fu(Y )|2 = f ∗
u (Y ) fu(Y ) becomes

| fu(Y )|2 ∼ cosh(βY )
−i m

β|t̃| (ei(α+ π
4 −φ)−e−i(α+ π

4 −φ) )

∼ cosh(βY )
2m
β|t̃| sin(α+ π

4 −φ)
. (H17)

Repeating the same calculation for the other solutions, we are
left with

| fu(Y )|2 ∼ cosh(βY )
2m
β|t̃| sin(α+ π

4 −φ)
,

|gu(Y )|2 ∼ cosh(βY )
− 2m

β|t̃| sin(α+ π
4 −φ)

,

| fl (Y )|2 ∼ cosh(βY )
− 2m

β|t̃| sin(α+ π
4 −φ)

,

|gl (Y )|2 ∼ cosh(βY )
2m
β|t̃| sin(α+ π

4 −φ)
. (H18)

FIG. 14. Dispersion of domain wall states of the Bloch wall.

Equation (H18) states that if 2m
β|t̃ | < 0, the two valid solutions

would be fu and gl , while if 2m
β|t̃ | < 0 the valid solutions

would be gu and fl . For example, when m and β are given
to be positive, and (φ − α) < π/4, | fu(Y )|2 and |gl (Y )|2 have
positive exponents, they are unphysical. Meanwhile, |gu(Y )|2
and | fl (Y )|2 have negative exponents, therefore gu and fl are
the final solutions that we have been seeking.

However, numerical calculation for a finite size system
does not always give the zero energy eigenstates. Only when
the system has atoms located exactly on the domain wall thus
there is a line of atoms with zero magnetic moment on the
Y = 0 plane, i.e., nDW = 0, the doubly degenerate zero mode
appears, and otherwise, the domain wall states are gapped
(See Fig. 12). It is similar to a situation that happens in the
case of the Su-Schrieffer-Heeger (SSH) model; a domain wall
in the SSH model exhibits zero modes if there is an atomic
site right on the domain wall but does not if a bond is located
on the domain wall instead of an atomic site.

b. Néel wall

When magnetic moments rotate around an axis parallel to
a domain wall plane in the transition region, it is called a
Néel wall. The domain wall configuration for the Néel wall
is defined by

�mA = m(cos α tanh(βY ) + sin α sech(βY ),− cos α sech(βY ) + sin α tanh(βY ), 0),

�mB = −m(sin α tanh(βY ) + cos α sech(βY ),− sin α sech(βY ) + cos α tanh(βY ), 0). (H19)

Then the transformed effective Hamiltonian becomes

H ′
Neel(δKY ) =

⎛
⎜⎝

0 −t̃δKY − m̃ tanh(βY ) 0 −im̃ sech(βY )
−t̃∗δKY − m̃∗ tanh(βY ) 0 −im̃∗ sech(βY ) 0

0 im̃ sech(βY ) 0 −t̃δKY + m̃ tanh(βY )
im̃∗ sech(βY ) 0 −t̃∗δKY + m̃∗ tanh(βY ) 0

⎞
⎟⎠.

(H20)

Unlike Hu,scale and Hl,scale which were totally decoupled, it is obvious that Hu,Neel and Hl,Neel are coupled to each other. It
means that the two domain wall states are mixed and a gap opens (See Fig. 13).
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c. Bloch wall

When magnetic moments rotate around an axis perpendicular to the domain wall plane in the transition region, it is called a
Bloch wall. The domain wall configuration for the Bloch wall is defined by

�mA = m(cos α tanh(βY ), sin α tanh(βY ), sech(βY )),

�mB = −m(sin α tanh(βY ), cos α tanh(βY ), sech(βY )). (H21)

Then the transformed effective Hamiltonian becomes

H ′
Bloch(δKY ) =

⎛
⎜⎝

m sech(βY ) −t̃δKY − m̃ tanh(βY ) 0 0
−t̃∗δKY − m̃∗ tanh(βY ) −m sech(βY ) 0 0

0 0 m sech(βY ) −t̃δKY + m̃ tanh(βY )
0 0 −t̃∗δKY + m̃∗ tanh(βY ) −m sech(βY )

⎞
⎟⎠.

(H22)

This time, H ′
u/l,Bloch no more anticommutes with τz, so the zero modes do not exist (See Fig. 14).
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