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We present a general graph-based projected entangled-pair state (gPEPS) algorithm to approximate ground
states of nearest-neighbor local Hamiltonians on any lattice or graph of infinite size. By introducing the structural
matrix, which codifies the details of tensor networks on any graphs in any dimension d , we are able to produce
a code that can be essentially launched to simulate any lattice. We further introduce an optimized algorithm
to compute simple tensor updates as well as expectation values and correlators with a mean-field-like effective
environments. Though not being variational, this strategy allows to cope with PEPS of very large bond dimension
(e.g., D = 100) and produces remarkably accurate results in the thermodynamic limit in many situations, and
specially when the correlation length is small and the connectivity of the lattice is large. We prove the validity of
our approach by benchmarking the algorithm against known results for several models, i.e., the antiferromagnetic
Heisenberg model on a chain, star and cubic lattices, the hardcore Bose-Hubbard model on square lattice, the
ferromagnetic Heisenberg model in a field on the pyrochlore lattice, as well as the three-state quantum Potts
model in field on the kagome lattice and the spin-1 bilinear-biquadratic Heisenberg model on the triangular
lattice. We further demonstrate the performance of gPEPS by studying the quantum phase transition of the 2d
quantum Ising model in transverse magnetic field on the square lattice, and the phase diagram of the Kitaev-
Heisenberg model on the hyperhoneycomb lattice. Our results are in excellent agreement with previous studies.
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I. INTRODUCTION

In recent years, tensor-network (TN) states and methods
[1–3] have been recognized as powerful tools in different ar-
eas of physics such as quantum information theory, condensed
matter physics and, recently, even quantum gravity. From the
perspective of condensed matter, TN methods are widely used
to understand quantum many-body systems [4,5], both the-
oretically and numerically. In one spatial dimension, matrix
product states (MPS) [6,7] provide an efficient representation
for the ground-state of 1d gapped local Hamiltonians based on
their entanglement structure. MPS is also the variational wave
function generated by the density matrix renormalization
group (DMRG) [8,9] and the time evolution block decima-
tion method (TEBD) [10,11]. Projected entangled-pair states
(PEPS) [12,13] are a generalization of MPS, and provides an
ansatz for the ground-state of quantum many-body systems in
higher dimensions. The infinite-size version of PEPS (iPEPS)
[14,15] has also been put forward for studying the ground-
state properties of 2d systems in the thermodynamic limit,
and has been successfully applied to many different models
[16–23].

Despite its many virtues, a problem with the iPEPS algo-
rithm is that it needs to be mostly re-programmed every time
that one considers a new lattice. Long story short, the idea
of iPEPS is generic, but the details of the implementation
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are lattice-dependent. Because of this, a common strategy
is to map complex 2d lattices to a square lattice of tensors
(e.g., via some coarse-graining), in such a way that one
can recycle the square-lattice code. Dealing with the square
lattice [14,15,24,25] indeed facilitates tensor updates and
effective-environment calculations via, say, boundary MPS
[14], tensor renormalization group (TRG) [26,27], and corner
transfer matrix renormalization group (CTMRG) [15,24,28].
The calculation of such effective environments is however
costly, and in practice is done up to PEPS bond dimension
D ∼ 10–20 in the best-case scenario. Thus, although recent
development in TN techniques have extended the application
of iPEPS to more complicated 2d structures such as triangle
[29,30], honeycomb [21,31], kagome [17,32], star [23] and
cubic [33,34] lattices, many different structures are still left
behind, including important 3d lattices such as pyrochlore,
hyperhoneycomb, and diamond lattices, to name a few.

In this paper, by introducing a new and efficient standard
for storing the connectivity information of a TN correspond-
ing to a given lattice structure i.e., the structure matrix, we
present a generic tensornetwork algorithm for the simulation
of nearest-neighbor local Hamiltonians on any infinite lat-
tice. More specifically, we develop a graph-based projected
entangled-pair state (gPEPS) method for any infinite lattice
structure or graph in any dimension d , assuming translation
invariance. In our implementation, we use a simple update
(SU) algorithm to simulate imaginary-time evolution (ITE)
in order to approximate the ground state (GS) of the system
on lattices with coordination number z, using rank-(z + 1)
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tensors. On top of being generic, our approach can accurately
handle large PEPS bond dimension (such as D = 100) in
the thermodynamic limit. In our approach, expectation values
are estimated using a mean-field-like environment, which
provides a remarkably good approximation in many cases,
specially if the correlation length is small and the coordination
number z is large. As benchmarks, we apply our gPEPS tech-
nique to several 2d and 3d models, i.e., the antiferromagnetic
Heisenberg (AFH) model on a chain, star and cubic lattices,
the hardcore Bose-Hubbard (HBH) model on square lattice,
the spin-1 bilinear-biquadratic (BLBQ) Heisenberg model on
the triangular lattice, the three-state quantum Potts (3SQP)
model in field on the kagome lattice, and the ferromagnetic
Heisenberg model in field (FHF) on the pyrochlore lattice.
We further challenge our technique by studying the quantum
phase transition (QPT) of the transverse-field Ising model
(ITF) on the square lattice and the full phase diagram of the
Kitaev-Heisenberg model on the hyperhoneycomb lattice.

The paper is organized as follows. In Sec. II A, we in-
troduce the concept of structure matrix to store the con-
nectivity information of any TN graph and on top of that,
we develop the gPEPS machinery and an efficient simple-
update algorithm for approximating the ground-stet of local
Hamiltonians. Further discussions regarding the calculation of
expectation values with both simple and full environment, as
well as relation to the Bethe and Husimi trees are provided
in this section. We present our energy benchmark results for
different models in Sec. III and demonstrate the performance
of gPEPS technique for studying the QPT in Sec. IV. Finally,
Sec. V is devoted to conclusion and further discussions on the
advantages and drawbacks of the method.

II. METHOD

In this section, we first review the basic ideas of iPEPS and
how the ground state of local Hamiltonians ar represented and
stored in TN language.

A. gPEPS basics

Consider a generic infinite lattice composed of a period-
ically repeating unit cell in arbitrary dimension d . To each
vertex i of the lattice, we associate a rank-(z + 1) iPEPS
tensor T si

l1,...,lz
, where s is the physical index taking up to p

values for the local basis {|C〉C=1,...,p}, and l1, . . . , lz are virtual
indices taking up to D values. We also associate diagonal
bond matrices λk to edges Ek of the lattice. In 1d with open
boundary conditions, these λ matrices contain the Schmidt
coefficients (singular values) obtained when considering the
bipartiion of one half of the system versus the other half.
In two and higher dimensions, they are an approximation
to the relevant degrees of freedom describing the physical
system for the environment connected by the bond index. By
gluing these tensors along theirs virtual legs, we end up with
a d-dimensional PEPS with the same structure as the original
lattice.

In order to approximate the GS wave function of a quan-
tum lattice model with nearest-neighbor Hamiltonian terms
Hi, j , we apply the imaginary-time evolution operator Ui, j =
exp(−δτHi, j ) on each edge k shared between two neighboring

FIG. 1. (a) The 2d star lattice. The blue region hughlights a six-
site unit cell. (b) The iPEPS TN corresponding to the star lattice unit
cell.

tensors Ti and Tj of the PEPS, and subsequently update the
λk matrix as well as the Ti and Tj tensors. To make this as
general and systematic as possible, we need extra information
about the connections between neighboring tensors in the
TN. More precisely, considering each local iPEPS tensor as
a multidimensional array T (p, D1, . . . , Dz ), we have to know
a priori which dimensions of the Ti, Tj arrays are connected
along the edge Ek of the lattice so that we could update the
tensors along their corresponding shared edges,each time the
imaginary-time evolution operator acts on the lattice. Current
state-of-the-art iPEPS algorithm typically takes care of this
technical issue by mapping the 2d lattices to coarse-grained
square structure. However, extending this strategy to any
structure particularly, the 3d lattices, is not possible. In the
next section, we present a generic method to resolve this
problem.

B. Structure matrix

Here we present an efficient method for storing the con-
nectivity information of a TN corresponding to a given lattice
structure. We illustrate our strategy for the example of the
star lattice in 2d [Fig. 1(a)]. The generalization to other
lattices and dimensions is straightforward (see Appendixes).
Figure 1(b) illustrates the translationally invariant six-site unit
cell TN of an infinite star lattice. Considering this TN as
a graph in which the tensors Ti correspond to graph nodes
and edges Ek (tensor legs) correspond to graph links, the
connectivity information of the star TN is given by the so
called incidence matrix [35]:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

E1 E2 E3 E4 E5 E6 E7 E8 E9

T1 1 1 1 0 0 0 0 0 0
T2 1 0 0 1 1 0 0 0 0
T3 0 1 0 1 0 1 0 0 0
T4 0 0 0 0 0 1 1 1 0
T5 0 0 0 0 1 0 1 0 1
T6 0 0 1 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(1)

The rows (columns) of matrix (1) correspond to tensors
(edges), and the two nonzero entries in each column distin-
guish the two connected tensors along that edge. Although
the incidence matrix already contains important data about
the underlying network, crucial information regarding the
corresponding bond dimensions of connected virtual indices
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is still missing. To fill this gap, we introduce another matrix,
i.e., the structure matrix (SM), which is obtained from the
incidence matrix by replacing its nonzero elements at each
row by the corresponding label of the index in the tensor array:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E1 E2 E3 E4 E5 E6 E7 E8 E9

T1 2 3 4 0 0 0 0 0 0
T2 2 0 0 3 4 0 0 0 0
T3 0 2 0 3 0 4 0 0 0
T4 0 0 0 0 0 2 3 4 0
T5 0 0 0 0 2 0 3 0 4
T6 0 0 2 0 0 0 0 3 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)

This matrix now contains detailed information about the PEPS
for the star lattice of Fig. 1(b) and the connectivity information
of two neighboring tensor along their shared edges are stored
in the columns of the SM. For example, according to the
second column of SM (2), the edge E2 connects the bond
matrix λ2 and the dimensions 3 and 2 of tensors T1 and T3,
respectively. Thanks to this information, the algorithm can
automatically recognize the links and the tensors where two-
body gates are applied, and implement a simple update. This
is done by looping over the columns of the SM and system-
atically updating the iPEPS tensors along their corresponding
edges, which can now be done automatically and regardless
of the underlying lattice.

The choice of unit cell for different lattice structures is
generically both problem and lattice dependent. One should
therefore choose the unit cell in such a way that it is com-
mensurate with the expected ordering and symmetries of
the ground-state wave function. Beside, in some of the TN
optimization process such as ITE, one breaks the single-site
transnational invariance of the lattice due to the two-body
nature of the ITE operator which acts on a unit cell with two-
different local sites [10,11]. However, this intentional braking
of symmetry is usually restored in the thermodynamic limit
[25]. Beside, choice of unit cell will influence the overall com-
putational cost of the algorithm since, unit cells with larger
number of sites and bonds will need more computational time
in order to converge to the ground state. See also Appendix A.
On the other hand, choosing a too small unit cell might come
with the risk of missing some phases which span beyond the
unit cell. One should therefore run the simulations on unit
cells with different sizes and symmetries to make sure the
correct results is achieved.

Let us further remark that the SM formalism that we
just introduced can also be used for simulation of systems
with global symmetries, such as U(1) and SU(2) [36–38].
In this setting, edges in the graph may be directed which
can be easily handled by adding a sign: outgoing (incoming)
links can be distinguished in the SM with positive (negative)
nonzero elements.

Last but not least, the nonzero elements of the SM (2) at
each row start from 2 which is due to the fact that the first di-
mension of tensors Ti in our notation corresponds to the phys-
ical bonds and play no role in the connectivity of the under-
lying TN. One can therefore use other desired convention for
labeling the virtual dimensions or use composite numbers to
encode extra information in each row and column of the SM.

C. Simple update for gPEPS

In our scheme, we approximate the ground state of a
system by means of imaginary-time evolution and the simple
update [39] generalized for arbitrary graphs. This method
is particularly suitable for our needs, since it does not rely
on an effective environment approximation (such as the full
and fast-full updates [25]), and is therefore implemented very
similarly regardless of the lattice.

Let us now review the basics of the simple update. The
ground state of a given Hamiltonian H , can be obtained by
evolving an initial state |�0〉 in imaginary time τ as described
by

|�GS〉 = lim
τ→∞

e−τH |�0〉
||e−τH |�0〉|| . (3)

When the Hamiltonian is a translationally invariant sum of
nearest-neighbour terms, H = ∑

〈i, j〉 Hi, j , one can approxi-
mate the ITE operator for infinitesimal time steps δτ by
applying a Suzuki-Trotter decomposition, i.e.,

e−δτH ≈
∏
〈i, j〉

Ui, j =
∏
〈i, j〉

e−δτHi, j . (4)

The GS of the system is then evaluated by iteratively applying
Ui, j on every shared link of the two neighboring tensors Ti, Tj

and updating the tensors along the corresponding links. In
this scheme, the update changes only the tensors along the
link where a given gate is acting. Therefore one can update
lower-rank subtensors related to them and substantially reduce
the computational cost of the algorithm [25], thus allowing to
achieve larger bond dimension D.

Let us briefly revisit how the SU proceeds for the sub-
tensors, in the context of gPEPS. Given a tensor network
and its corresponding structure matrix, the SU consists of the
following iterative main steps.

(1) Do for all edges Ek , k ∈ [1, NEdge] (columns of SM
matrix).

(a) Find tensors Ti, Tj and their corresponding dimen-
sions connected along edge Ek .

(b) Absorb bond matrices λm to all virtual legs m 	= k
of Ti, Tj tensors.

(c) Group all virtual legs m 	= k to form Pl , Pr MPS
tensors.

(d) QR/LQ decompose Pl , Pr to obtain Q1, R and L, Q2

subtensors, respectively [25].
(e) Contract the ITE gate Ui, j , with R, L and λk to form

� tensor.
(f) Obtain R̃, L̃, λ̃k tensors by applying an SVD to �

and truncating the tensors by keeping the D largest singular
values (similar to 1d infinite TEBD [40,41]).

(g) Glue back the R̃, L̃, subtensors to Q1, Q2, respec-
tively, to form updated tensors P′

l , P′
r .

(h) Reshape back the P′
l , P′

r to the original rank-(z + 1)
tensors T ′

i , T ′
j .

(i) Remove bond matrices λm from virtual legs m 	= k
to obtain the updated tensors T̃i and T̃j .

Figure 2(a) shows all these steps graphically. This process is
then iterated until a convergence criteria is met.
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FIG. 2. (a) Graphical representation of the SU optimization, used in the gPEPS algorithm. (b) One-site and (c) two-site expectation values,
as computed with a mean-field environment, in the gPEPS scheme.

In order to have an efficient and universal algorithm ap-
plicable to any infinite lattice, the following remarks are in
order. (i) In steps (b), (c), (g), and (h) one can locate the
lambda matrices corresponding to each leg of a tensor from
rows of the SM. For example, according to row three of
the SM (2), λ2, λ4, and λ6 are connected to dimensions
(legs) two, three and four of tensor T3, respectively. One can
therefore design clever functions for absorbing (removing)
λ matrices to (from) each tensor legs as well as for group-
ing (ungrouping) the nonupdating tensor legs by using the
information stored in each row of the SM. (ii) In our SU
optimization, we perform the ITE iteration starting from
δτ = 10−1 and gradually decrease it to 10−5 after iterating
4000 times for each δτ . We further check the convergence
of the algorithm in each (or every 100) step by calculating
the energy and comparing it to a tolerance of the order ε =
10−16. (iii) Furthermore, one can increase the stability of
the SU algorithm by applying the gauge-fixing introduced in
Appendix B.

Let us further note that the computational cost of the SU
scales as O(pDz ), and evidently depends on the coordination
number of the underlying lattice. Henceforth, the maximum
achievable bond dimension D is lattice dependent and is
larger for structures with less coordination number, though
structures with large z usually need low D because of
entanglement monogamy. For example, in the case of star
lattice with z = 3, we managed to reach convergence for
D = 100 on a corei7 PC (with four threads) in 16 hours. This
time is quickly decreased on HPC clusters, where also larger
bond dimension could be reached.

D. Expectation values and correlators

Once the tensors approximating a GS are found, they can
be used to estimate expectation values of local operators
such as local order parameters and two-point correlators.
The usual procedure in iPEPS is to evaluate the effective
environment surrounding some local tensors, which can be
done by methods such as TRG, CTMRG, etc. These methods,
however, are not easily adapted to arbitrary lattices in a
systematic way. Because of this, in gPEPS we consider a
simpler approach which is applicable to any graph. In this
approach, we use the bond matrices λ [42] (calculated during
the SU optimization) in the same spirit as in one-dimensional
systems [40,41], i.e., we close the bond indices with the λ

matrices, which is exact in one dimension, and corresponds
to a mean-field approximation of the effective environment
in higher dimensions. A diagrammatic representation of one-
and two-site expectation values in this scheme is shown in
Figs. 2(b) and 2(c). Similar approach has also been used in
Refs. [32,42–48]. Extension to other multisite operators and
correlation functions is straightforward.

Some remarks are in order. First, due to larger bond
dimension D which is handled in the gPEPS algorithm, λ

matrices provide a better approximation to the environment
of local tensors compared to conventional SU algorithms.
Second, this scheme can be applied systematically, regardless
of the underlying lattice. Third, we expect this scheme to
work well in higher dimensions whenever the correlation
length is small and the connectivity is large. And fourth, for
1d graphs, the gPEPS algorithm is exactly equivalent to the
iTEBD algorithm and bond matrices satisfy the canonical
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TABLE I. gPEPS benchmark results for the GS energy per site
of several lattice models. See the main text for simulation details.

Model Lattice gPEPS Previous studies

AFH Chain −0.44304 −0.44315 [8,49]
AFH Star −0.37523 −0.37523 [23]
AFH Cubic −0.89253 −0.904 [47]
HBH Square −0.30258 −0.30232 [50]
FHF Pyrochlore −0.80000 −0.80000
3SQP Kagome −4.00074 —
BLBQ Triangular 2.95252 2.95254 [29]

forms [40,41], whereas in higher dimensions it provides an
approximation to expectation values which, though not being
variational, may be remarkably accurate.

III. ENERGY BENCHMARK RESULTS

We benchmarked the gPEPS algorithm for several quantum
lattice models, namely, the spin-1/2 AFH model on chain, star
and cubic lattices, the HBH model on square lattice, spin-1/2
FHF model on pyrochlore lattice, as well as the 3SQP model
in field on kagome and the spin-1 BLBQ Heisenberg model
on the triangular lattices. Our results for the GS energy per
site of these models are summarized and benchmarked against
previous studies (when it was available) in Table I, where one
can clearly see the excellent agreement between our results
and previous findings. Detailed discussion about each model
is presented in the following.

A. Antiferromagnetic Heisenberg model on 1d chain

As the first example of a lattice model, we calculate the
GS energy of a 1d model, i.e., the spin-1/2 antiferromagnetic
Heisenberg model on a chain. The Hamiltonian of the AFH
model is given by

HAFH = J
∑
〈i j〉

Si · S j, (5)

where the sum runs over the nearest-neighbor sites i, j of the
lattice and Si is the ordinary spin operator at site i. Here we
consider the antiferromagnetic Heisenberg coupling J = 1.
In order to evaluate the GS of the AFH model on a chain,
we consider an infinite chain with a transitionally invariant
two-site unit cell [Fig. 10(a)] and associate a rank-3 tensor to
each vertices of the chain. Figure 10(b) illustrates the labeling
on tensors which, corresponds to graph nodes, in the unit
cell. The corresponding SM of the chain is further given in
Appendix A 1.

Using this SM along with the simple update introduced
in previous section, we evaluated the GS energy per site,
ε0, of the AFH model on chain for different values of bond
dimension D. Figure 3 demonstrates the scaling of energy
versus inverse bond dimension D for the AFH model on 1d
chain up to DMax = 60. As one can see, there is a very good
convergence for energies, particularly fore large Ds (see also
the inset of the figure). The lowest energy we obtained from
gPEPS method is ε0 = −0.44304 which is in excellent agree-
ment with the exact analytical results εexact

0 = 1/4 − ln(2) =

−0.444

−0.4435

−0.443

−0.4425

−0.442

0 0.05 0.1 0.15 0.2

0.4

ε 0

−0.445

−0.44

−0.435

−0.43

1/D
0 0.1 0.2 0.3 0.4 0.5 0.6

gPEPS: AFH-Chain 

FIG. 3. Scaling of the gPEPS ground state energy per site, ε0,
with respect to inverse bond dimension D for the AFH model on 1d
chain up to DMax = 60. The inset shows the zooming for large bond
dimensions.

−0.44314 [49] and previous density matrix renormalization
group (DMRG) result, εDMRG

0 = −0.44315, of Ref. [8].
As we pointed out previously, the gPEPS in 1d is fully

equivalent to the infinite time-evolution block decimation
(iTEBD) method and therefore one should obtain the exact
same energy from a standard iTEBD algorithm.

B. Antiferromagnetic Heisenberg model on 2d star lattice

As the second benchmark, we use the gPEPS method to
calculate the GS energy of the AFH model on the star lattice.
The Hamiltonian of the AFH model on the star lattice reads
[23,51–54]

HAFHS = Je

∑
〈i j〉∈e

Si · S j + Jt

∑
〈i j〉∈t

Si · S j, (6)

where the first sum runs over the nearest-neighbour sites on
the expanding links connecting the triangles of the lattice
and the second sum runs over nearest-neighbour sites on the
triangles. The SM of the star lattice for a six-site unit cell is
already provided in Eq. (2).

Using (2), we calculated the ε0 for the AFH model
on the star lattice for Je = 1, Jt = 0.05 up to DMax = 100.
Figure 4 depict the scaling of GS energy per site for inverse
of different bond dimensions. The very good convergence of
energies, as well as the unprecedented large bond dimension
DMax = 100, definitely confirms the efficiency and power of
the gPEPS technique for simulation of strongly correlated
quantum many-body Hamiltonians.

Let us further note the our gPEPS energy, ε0 = −0.37523,
is in exact agreement with previous iPEPS study of the AFH
model on the star lattice [22].

C. Antiferromagnetic Heisenberg model on 3d cubic lattice

In order to challenge the power of gPEPS technique for
3d lattices, we apply it to the AFH model on the simple
cubic lattice. Figure 14 depicts an eight-site unit cell of the
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0.1 0.15 0.2 0.25.2

ε 0

−0.37525

−0.3752

−0.37515

−0.3751

−0.37505

1/D
0 0.1 0.2 0.3 0.4 0.5 0.6

gPEPS: AFH-Star 
iPEPS+CTMRG: setup A
iPEPS+CTMRG: setup B

FIG. 4. Scaling of the gPEPS ground-state energy per site, ε0,
with respect to inverse bond dimension D for the AFH model on
2d star lattice for Je = 1 and Jt = 0.05 up to DMax = 100. Details of
setups A, B are provided in Ref. [22]. The inset further shows the
zooming for large bond dimensions.

cubic lattice and the corresponding labeling of vertices. The
corresponding SM matrix is further given in Appendix A 5.

Using Hamiltonian (5) and structure matrix (A5), we cal-
culated the GS energy of the AFH model on the simple
cubic lattice for different bond dimensions. Figure 5 shows
the scaling of energy versus inverse bond dimension up to
DMax = 14 on the cubic lattice. The results show a very
good convergence of the gPEPS energies to ε0 = −0.89253
which is in close agreement with the results of Ref. [47] with
ε0 = −0.904. Our findings once again confirms how the idea
of SM can simplify the implementation of TN methods to 3d
lattice models.

D. Hardcore Bose-Hubbard model on 2d square lattice

In this section, we test our gPEPS algorithm for another
lattice model, i.e., the hardcore Bose-Hubbard model on the
square lattice. Figures 11(a) and 11(b) demonstrate the square
lattice and the four-site unit cell that we used for our simula-
tion. Hamiltonian of the HBH model further reads

HHBH = −J
∑
〈i j〉

(a†
i a j + a†

j ai ) − μ
∑

i

n̂i, (7)

where the first hopping term is on the nearest-neighbor ver-
tices of the square lattice and the second sum is an on-site
chemical potential. Here we set J = 1. a and a† are bosonic
annihilation and creation operators. The SM of the square
lattice which is required for the gPEPS simulation is further
provided in Appendix A 2.

Figure 6 demonstrate our findings for the GS energy of
the HBH model for μ = −2 for different bond dimensions
up to DMax = 14. The convergence at large Ds are quite good
and the GS energy per site of the system for D = 14 is
ε0 = −0.30258 which is even lower than previous iPEPS
results of Ref. [50] with εiPEPS

0 = −0.30232.

FIG. 5. Scaling of the gPEPS ground-state energy per site, ε0,
with respect to inverse bond dimension D for the AFH model on 3d
cubic lattice up to DMax = 14. The inset shows the zooming for large
bond dimensions.

E. Spin-1 bilinear-biquadratic Heisenberg model
on 2d triangular lattice

As another example for benchmarking the gPEPS method,
we studied the spin-1 bilinear-biquadratic Heisenberg model
on 2d triangular lattice [Fig. 12(a)]. This model has already
been studied in detail in Ref. [29] with iPEPS method and
the full phase diagram of the system has already been investi-
gated. The iPEPS machinery for triangular lattice is performed
by mapping it to square lattice with both nearest and next-
nearest-neighbor interactions.

Here instead, we study the model by means of gPEPS
technique on an infinite triangular lattice with nine-site unit
cell [see Fig. 12(b)]. In the gPEPS framework, all of the inter-
actions are between nearest-neighbour vertices and simulation
for larger bond dimensions is also possible.

Hamiltonian of the spin-1 BLBQ model according to the
convention of Ref. [29] reads

HBLBQ = cos(θ )
∑
〈i j〉

Si · S j + sin(θ )
∑
〈i j〉

(Si · S j )
2, (8)

where both sums run on nearest neighbours. The first sum,
however, is the bilinear term which is nothing but the standard
Heisenberg model and the second term is the biquadratic term.

In order to benchmark the gPEPS results with previous
studies, we calculate the GS of the system for θ = 1.5865.
This point is very close to θ = π

2 . However, since θ = π
2 is a

phase boundary in the phase diagram of the BLBQ model on
the triangular lattice [29], we chose a slightly different point
to evaluate the GS of the system to show how the gPEPS can
converge to the true GS of the system.

Using Hamiltonian (8) and the SM of the triangular lattice
presented in Appendix A 3, we were able to reproduce the
results of Ref. [29] with very high accuracy. Figure 7 de-
picts the scaling of the gPEPS GS energy per site, ε0, with
respect to inverse bond dimension D for the BLBQ model
for θ = 1.5865. As one can clearly see, the convergence of
the algorithm is quite notable even at small bond dimensions
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FIG. 6. Scaling of the gPEPS ground-state energy per site, ε0,
with respect to inverse bond dimension D for the HBH model on
2d square lattice for μ = −2 up to DMax = 14. The inset shows the
zooming for large bond dimensions.

and our gPEPS energy ε0 = 2.95252 is almost the same as
εiPEPS

0 = 2.95253 of the Ref. [29].

F. Three-state quantum Potts model in field on 2d kagome lattice

Here we present our gPEPS results for the three-state Potts
model in field on the kagome lattice which, to the best of
our knowledge, is the first TN implementation of this model.
Generic Hamiltonian of the q-state Potts model, also known
as vector Potts model, in the presence of field reads [55]

HPotts = −J
∑
〈i j〉

UiU
†
j − �

∑
i

Vi + H.c., (9)

where

U = diag(1, ω, ω2, . . . , ωq−1), ω = e
2π i
q , (10)

and

V =
(

0 Iq−1

1 0

)
, (11)

where Iq−1 is a (q − 1)×(q − 1) identity matrix. By setting
q = 3 in the above relations, Hamiltonian of the 3SQP is
obtained. We then apply Hamiltonian (9) to a kagome lattice
with a twelve-site unit cell (Fig. 13). The corresponding SM
of the kagome unit cell is given in Appendix A 4.

We have calculated the ε0 for the 3SQP model in field on
the kagome lattice with the gPEPS method up to DMax = 30.
The GS energy of the system at this point is exact and for all
bond dimensions D for finite field value � = 0.1 is equal to
ε0 = −4.00074.

G. Ferromagnetic Heisenberg model in magnetic
field on 3d pyrochlore lattice

In order to challenge the gPEPS algorithm with a nontrivial
3d lattice, we applied it to one of the most complicated struc-
tures, i.e., the pyrochlore lattice and studied the FHF model on

FIG. 7. Scaling of the gPEPS ground-state energy per site, ε0,
with respect to inverse bond dimension D for the BLBQ model on 2d
triangular lattice for θ = 1.5865 up to DMax = 14. The inset shows
the zooming for large bond dimensions.

this lattice. We stress that, to the best of our knowledge, this is
the first application of TN methods to the pyrochlore lattice.

Hamiltonian of the FHF model is given by

HFHF = −J
∑
〈i j〉

Si · S j − h
∑

i

Sz, (12)

where the first sum is on nearest-neighbor sites and the
second sum runs over all of the vertices of the lattice. Here
we set J = 1. We apply Hamiltonian (12) to the pyrochlore
lattice [Fig. 15(a)] with an eight-site unit cell [Fig. 15(b)].
The corresponding SM of the pyrochlore lattice is given in
Appendix A 6.

The FHF model on pyrochlore lattice has an exact mean-
field ground state with energy

εexact
0 = 1

Ns

(
−Nsh

2
− NbJ

2

)
, (13)

which is a state with D = 1 and thus no correlations. It is
simply the state with all spins aligned in z direction. In the
above relation, Ns is the number of lattice sites and Nb is the
number of nearest-neighbor bonds of pyrochlore lattice. For a
translationally invariant unit cell of the pyrochlore lattice with
8 sites and 24 bonds, such as the one depicted in Fig. 15(b),
GS energy per site of the system for h = 0.1 is εexact

0 = −0.8.
Our gPEPS results for the GS energy of the FHF model for

h = 0.1 is in exact agreement with the mean-field results and
we obtained ε0 = −0.80000 for different bond dimensions
D up to DMax = 14. Although the ground state is a D = 1
product state, we pushed the simulation to large D to show
the algorithm is stable up to large bond dimensions even
for states with zero entanglement. This once again certifies
that the gPEPS technique is a powerful universal TN method
for simulation of lattice Hamiltonians on the exotic lattice
structures.

195105-7



SAEED S. JAHROMI AND ROMÁN ORÚS PHYSICAL REVIEW B 99, 195105 (2019)

(a) (b)

FIG. 8. (a) The GS energy per site and magnetization mz of the ITF model with respect to field strength h for the gPEPS method (D = 6),
compared with the iPEPS+CTMRG (D = 6, χ = 80) on a 2×2 unit cell. The inset in the energy plot demonstrates the gPEPS relative error
with respect to the iPEPS energies.

IV. QUANTUM PHASE TRANSITION WITH gPEPS

Next, we challenged the gPEPS technique for systematic
study of QPT in quantum lattice models on different struc-
tures. In what follows, we present our results for phase dia-
gram of the ITF model on square lattice which is an standard
benchmark model for any new algorithm and then we inves-
tigate the nontrivial phase diagram of the Kitaev-Heisenberg
model on the hyperhoneycomb lattice which is one of the most
complicated structures for any numerical technique.

A. Quantum Ising model in transverse magnetic
field on 2d square lattice

Using the gPEPS algorithm, we studied the zero-
temperature phase diagram of the ITF model on a square
lattice. In particular, we studied the following Hamiltonian:

HITF = −J
∑
〈i j〉

σ z
i σ z

j − h
∑

i

σ x
i , (14)

where the first sum runs over nearest-neighbor sites and the
second one runs over the vertices of the square lattice. By
measuring the GS energy and magnetization along x and z
directions, we pinpointed the QPT point at hc ≈ 3.04 which
is in perfect agreement with previous studies [15,25,27,50].
Figures 8(a) and 8(b) show the GS energy per site as well as
the magnetization of the ITF model, respectively. The QPT
is best captured by discontinuities in the magnetization and
energy plots.

The gPEPS relative error with respect to the iPEPS en-
ergies in the inset of Fig. 8(a) is of the order 10−16 every-
where except at the vicinity of the transition point which
is increased to 10−3. This is best explained by the fact that
at the critical point, the correlation length diverges and the
mean-field environment does not necessarily provide the best
approximation of the iPEPS environment. Nonetheless, the
gPEPS still captures the QPT with very high accuracy in most

cases. The same order of errors holds between the mean-
field and CTMRG magnetization curves of Fig. 8(b) as well
(not shown in the figure).

B. Kitaev-Heisenberg model on 3d hyperhoneycomb lattice

Spin-orbit entangled Mott insulators in iridates [56,57] can
realize instances of 2d [58,59] and 3d [60,61] arrangements of
tricoordinated lattices with Kitaev interactions. In particular,
it has been shown that the polymorph β-Li2IrO3 realize three-
dimensional arrangements of the spin-orbit tangled moments
which retain the hyperhoneycomb lattice [61]. In this material,
the Ir4+ ions arrange in a hyperhoneycomb structure and the
combined effect of spin-orbit coupling, Coulomb interaction,
and exchange geometry generates Jeff = 1/2 moments subject
to a combination of anisotropic Kitaev and Heisenberg inter-
actions [56,57]. In 2d , it has been shown that the resulting
Kitaev-Heisenberg (KH) model host various phases ranging
from quantum spin-liquid (QSL) to magnetically ordered
phases such as ferromagnetic (FM), antiferomagnetic (AFM),
stripy, and zigzag on the honeycomb lattice [58,59].

Recent studies based on mean-field theory [62] and TN
on Bethe lattice [63] have also predicted similar phases for
the KH model on the hyperhoneycomb lattice. However, a
systematic study of the full phase digram of the model on
the original hyperhoneycomb lattice in the thermodynamic
limit is still missing. Thanks to the gPEPS technique, we were
able to apply, for the first time, the TN method, directly to
a translationally invariant unit cell of the hyperhoneycomb
lattice (see Fig. 16) and map out the phase diagram of the
KH model on the full parameter space. More specifically, we
applied the gPEPS to the following KH Hamiltonian

HKH = 2 cos(θ )
∑

α−link

Sα
i Sα

j + sin(θ )
∑
〈i j〉

Si · S j, (15)
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FIG. 9. (Left) Full phase diagram of the KH model on the hyperhoneycomb lattice. (Right) GS energy per site, ε0, and magnetic order
parameter M for θ = [0, 2π ]. Details of the phase diagram can be found in the main text.

where the first sum is the Kitaev term with (α = x, y, z) and
the second term is the Heisenberg interaction acting on the
nearest-neighbor sites of the hyperhoneycomb lattice.

In order to capture the phase boundaries and characterize
the nature of underlying phases, we calculated the GS energy,
entanglement entropy, magnetization, ground-state fidelity
and two-site spin-spin correlators in the full parameter space
θ = [0, 2π ]. Figure 9(left) demonstrates the phase diagram
of the KH model on the hyperhoneycomb lattice. The phase
diagram is composed of four magnetically ordered phases i.e.,
FM, AFM, zigzag and stripy and two QSL phase at the vicin-
ity of the FM and AFM Kitaev couplings. Orientation of spins
in each magnetic phase has also been shown in the figure. de-
tailed discussion regarding the QSL phase at the pure Kitaev
points can be found in Ref. [64]. Figure 9(right) further show
the GS energy per site as well as the magnetic order parameter,
M =

√
〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2. One can clearly see that M pre-

cisely detect the phase boundaries and distinguishes magnetic
phases from QSL phases with no local order parameter.

We refer the interested reader to Ref. [65] for further details
regarding this model and the phase diagram of KH model on
other 3d tricoordinated lattices [64]. Let us further stress that
our findings are in excellent agreement with previous studies
[62,63]

V. CONCLUSIONS AND DISCUSSION

In this paper, we introduced the concept of structure ma-
trix which encodes the connectivity information of a given
tensor network and developed a generic graph-based projected
entangled-pair state algorithm for local Hamiltonians of quan-
tum lattice models that can be applied to any lattice in any
dimension in the thermodynamic limit. Our approach relies on
the simple update algorithm for imaginary-time evolution and
a mean-field-like approximation to effective environments.
Though not being variational, the scheme produces accurate

results in most situations and is capable of handling large bond
dimensions such as D ∼ 100.

We benchmarked our method with several quantum lat-
tice models on different structures in one, two and three
dimensional lattices. Our method facilitates the applicabil-
ity of iPEPS algorothms to complex lattices in 2d and 3d .
Most importantly, it also opens the possibility to simulate
quantum materials on complex crystallographic structures via
tensornetwork methods. The gPEPS method can further be
extended to deal with fermionic systems and symmetric tensor
networks, as well as finite temperature.

Let us further remark that the gPEPS ground-state tensors
of all infinite 2d systems can additionally be contracted by us-
ing TRG [26,27], boundary MPS [14], or CTMRG [15,24,28]
both directly or rather by grouping several adjacent tensors
into a coarse-grained square lattice of block-sites in order to
obtain variational energies. Unfortunately extension of these
ideas to generic 3d structures is not straightforward. For
example, the CTMRG has only been extended to simple cubic
lattice and other 3d lattices are left behind. A new generic
technique for contracting infinite lattices both in 2d and 3d is
currently under development by our group [66] which can be
used as a supplement to gPEPS method for doing variational
optimization with TN on any infinite graph. With this new
approach we will be able to do full update within the gPEPS
framework.

It is worth noting that extension of TN methods to generic
lattices can alternatively be done by using Husimi lattices [48]
which are obtained from a Bethe lattice in which every vertex
is replaced by a p polygon [67,68]. Nevertheless, one must
note that the physics obtained on the Husimi lattice might be
different from the one on the original lattice. This is mainly
due to the slight differences between a lattice and its Husimi
counterpart. For example, a Husimi lattice might not create
the same closed loop structure as the original lattice. This is
important particularly for those models in which closed loops
of the lattice play key roles in the physics of the system.
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For example, it is already known that the closed loops of
the Kitaev model act as integrals of motion which carries
zero fluxes in the system [69]. This once again shows the
significance of gPEPS in studying generic infinite lattice with
TN methods.

As last remark, let us point out that although gPEPS
technique produces reliable and accurate results for many
quantum lattice models in different dimensions, applications
of the method to frustrated system should be handled with
care. Due to the longer range of correlations which might exist
in the GS of frustrated systems such as some spin-liquid states,
the role of environment around local GS tensors becomes very
important, and the bond matrices λ which are used in gPEPS
method as mean-field environment for calculation of the ex-
pectation values might not provide the best approximation to
the environment. One might therefore obtain higher or unex-
pectedly lower values for the GS energies of the system and
expectation values. For example the gPEPS method fails in
producing accurate results for the AFH model on the kagome
lattice and the best TN results so far, belongs to the projected
entangled-simplex state [70,71]. It is therefore advised that the
gPEPS energies for frustrated system be benchmarked against
other methods to make sure the correct results are obtained.
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FIG. 10. (a) The infinite 1d spin chain with a two-site unit cell
(blue region). (b) Labeling of vertices (graph nodes) in the unit cell.

APPENDIX A: STRUCTURE MATRIX FOR VARIOUS
LATTICE STRUCTURES

In this Appendix, we present structure matrix of various
widely used 2d and 3d lattices. The main strategy to con-
struct the SM corresponding to a given infinite lattice with
translational invariance is to first define a unit cell of the
lattice with desired number of vertices and periodic boundary
condition and then constructing the incidence matrix (IM) of
the unit cell. The SM can then be obtained straightforwardly
from the IM of the lattice. The IM of arbitrary graphs can
be obtained by using efficient graph libraries of MATLAB,
PYTHON, MATHEMATICA, or other desired languages.

1. 1d chain

Equation (A1) corresponds to the SM of an infinite 1d spin
chain with a two-site unit cell (see Fig. 10).

SMchain =
⎛
⎝ E1 E2

T1 2 3
T2 2 3

⎞
⎠. (A1)

2. 2d square lattice

Equation (A2) corresponds to the SM of an infinite 2d square lattice with a four-site unit cell (see Fig. 11).

SMsquare =

⎛
⎜⎜⎜⎜⎜⎜⎝

E1 E2 E3 E4 E5 E6 E7 E8

T1 2 3 4 5 0 0 0 0

T2 2 3 0 0 4 5 0 0

T3 0 0 2 3 0 0 4 5

T4 0 0 0 0 2 3 4 5

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)

3. 2d triangular lattice

Equation (A3) corresponds to the SM of an infinite 2d triangular lattice with a nine-site unit cell (see Fig. 12).

SMtriang=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25 E26 E27

T1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T2 2 0 0 0 0 0 3 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T3 0 2 0 0 0 0 3 0 0 0 0 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0

T4 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 4 5 6 7 0 0 0 0 0 0 0 0

T5 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 5 6 7 0 0 0 0 0

T6 0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 4 0 0 5 0 0 6 7 0 0 0

T7 0 0 0 0 2 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 5 0 6 7 0

T8 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 4 0 5 0 0 0 6 0 7

T9 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 5 0 6 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A3)
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4. 2d kagome lattice

Equation (A4) corresponds to the SM of an infinite 2d kagome lattice with a 12-site unit cell (see Fig. 13).

SMkagome =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24

T1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T2 0 0 0 0 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T3 0 0 0 0 2 0 0 0 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0

T4 2 0 0 0 0 0 0 0 3 0 0 4 5 0 0 0 0 0 0 0 0 0 0 0

T5 0 2 0 0 0 0 0 0 0 0 0 3 0 4 5 0 0 0 0 0 0 0 0 0

T6 0 0 0 0 0 2 0 0 0 3 0 0 0 4 0 5 0 0 0 0 0 0 0 0

T7 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 4 5 0 0 0 0 0 0

T8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 4 5 0 0 0 0

T9 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 5 0 0

T10 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 4 0 5 0

T11 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 4 5

T12 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 3 0 4 0 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A4)

5. 3d cubic lattice

Equation (A5) corresponds to the SM of an 3d cubic lattice with a eight-site unit cell. (See Fig. 14.)

SMcube=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24

T1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T2 2 3 0 0 0 0 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T3 0 0 0 0 0 0 2 3 0 0 4 5 6 7 0 0 0 0 0 0 0 0 0 0

T4 0 0 2 3 0 0 0 0 0 0 4 5 0 0 6 7 0 0 0 0 0 0 0 0

T5 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 4 5 6 7 0 0 0 0

T6 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 4 5 0 0 6 7 0 0

T7 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 4 5 6 7

T8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 4 5 0 0 6 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A5)

6. 3d pyrochlore lattice

Equation (A6) corresponds to the SM of an 3d pyrochlore lattice with a eight-site unit cell. (See Fig. 15.)

SMpyro =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24

T1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T2 0 0 0 0 0 0 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0

T3 0 0 0 0 0 0 2 3 0 0 0 0 4 5 6 7 0 0 0 0 0 0 0 0

T4 0 0 0 0 0 0 0 0 2 3 0 0 4 5 0 0 6 7 0 0 0 0 0 0

T5 2 0 0 0 0 0 0 0 0 0 3 0 0 0 4 0 5 0 6 7 0 0 0 0

T6 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 4 0 5 0 0 6 7 0 0

T7 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 5 0 6 7

T8 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 5 6 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

7. 3d hyperhoneycomb lattice

Equation (A7) corresponds to the SM of an 3d hyperhoneycomb lattice with a four-site unit cell. (See Fig. 16.)

SMhyperhoney =

⎛
⎜⎜⎜⎜⎜⎜⎝

E1 E2 E3 E4 E5 E6

T1 2 3 4 0 0 0

T2 2 0 0 3 4 0

T3 0 0 0 2 3 4

T4 0 2 3 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A7)
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(a) (b)

FIG. 11. (a) The infinite 2d square lattice with a four-site unit
cell (blue region). (b) Labeling of vertices (graph nodes) in the unit
cell.

APPENDIX B: GAUGE-FIXING FOR GPEPS

In this section, we show how to locally fix the gauge
degrees of freedom on the virtual bonds of the gPEPS TN.
This can substantially improve the algorithm by stabilizing
the ITE optimization and results in faster convergence of the
ITE iteration and more accurate estimation of expectation
values and correlators. To this end, we first introduce the
boundary matrices for each link of the TN: consider a virtual
bond of a TN shared between tensor A, B and their corre-
sponding λ matrices, such as the one shown in Fig. 17(a),
the left and right boundary matrices are defined as [see also
Fig. 17(b)]

(ML )i
i′ =

∑
p, j,k,p′, j′,k′

Ap
i, j,kĀp′

i′, j′,k′λ
2
j j′λ

2
kk′ ,

(MR) j
j′ =

∑
p,i,k,p′,i′,k′

Bp
i, j,kB̄p′

i′, j′,k′λ
2
ii′λ

2
kk′ . (B1)

We choose the gauge degrees of freedom such that a
Schmidt form is imposed on all virtual degrees of freedom on
the TN network. this involves choosing the gauge such that (i)
the ML and MR boundary matrices represent an orthonormal
basis, i.e., Mi

i′ = λ2
i δi,i′ , and (ii) the bond matrices λ are diag-

onal, normalized and positive, λi, j = δi, j si with si the Schmidt
coefficients, which are ordered si � si+1. A canonical form for
the tensor network is defined by requiring that every virtual
bond is in Schmidt form [43,72].

We now present a method to fix the gauge degrees of
freedom on any virtual link of a given network. Note that
under change of the gauge all local tensors associated to a link
are altered i.e., A → Ã, B → B̃, and the shared lambda matrix
λ → λ̃. Correspondingly, after applying the gauge-fixing to
all virtual bonds of the TN the iPEPS wave function is altered
as well [see Fig. 18(a)].

In order to identifying the gauge change matrices x and y
(and their inverses) we first calculate the boundary matrices
ML and MR and then diagonalize them such that

ML = uLdLu†
L,

MR = uRdRu†
R, (B2)

see Fig. 17(b), with unitary matrices uL, uR and real diagonal
matrices dL, dR. Notice that, due to the positivity of the
boundary matrices ML and MR, it follows that dL and dR are

FIG. 12. (a) The infinite 2d triangular lattice with a nine-site unit
cell (blue region). (b) Labelling of vertices (graph nodes) in the unit
cell.

FIG. 13. (a) The infinite 2d kagome lattice with a 12-site unit
cell (blue region). (b) Labeling of vertices (graph nodes) in the unit
cell.

FIG. 14. The infinite 3d cubic lattice with a eight-site unit cell.
The numbers at vertices label the graph nodes in the unit cell.

FIG. 15. (a) The infinite 3d pyrochlore lattice composed of up
and down tetrahedrons. (b) The eight-site unit cell of the pyrochlore
lattice. The numbers represent the labeling of vertices (graph nodes)
in the unit cell.
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FIG. 16. (a) The infinite 3d hyperhoneycomb lattice. (b) The four-site unit cell of the hyperhoneycomb lattice. The numbers represent the
labeling of vertices (graph nodes) in the unit cell.

non-negative, thus possess real roots
√

dL and
√

dR. We now
use these to transform the bond matrix λ,

λ′ ≡
√

dLu†
Lλ uR

√
dR, (B3)

and take the singular value decomposition to obtain

λ′ = wLλ̃w
†
R (B4)

for unitary wL, wR and positive diagonal λ̃. The gauge change
matrices x and y are now defined as

x ≡ w
†
L

√
dLu†

L,

y ≡ uR
√

dRwR. (B5)

This process is further depicted in Figs. 17(c) and 17(d). One
should note that ML = x†x and MR = yy†. Under this choice
of gauge the new bond matrix is simply the λ̃ from Eq. (B4)
or equivalently

λ̃ = xλy, (B6)

FIG. 17. (a) Local state |ψ〉 composed of tensors A, B and their relevant λ matrices as effective mean-field environment. (b) Boundary
matrices ML and MR and their eigendecompositions. (c) Definition of modified bond matrix λ′, which is then decomposed via the SVD.
(d) Definition of the gauge change matrices x and y that transform the initial state |ψ〉 to its gauge related state |ψ̃〉.
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(a) (b)

FIG. 18. (a) Gauge related initial and final states. (b) A change
of gauge, which leaves the state |ψ〉 invariant, is enacted on the index
between A and B via matrices x and y together with their inverses.

which is positive and diagonal by construction. Furthermore
the new left and right tensors read

Ã = Ax−1,

B̃ = y−1B, (B7)

see also Fig. 18(b). Once the gauge is fixed on all virtual
legs of the A, B tensors the Schmidt form or orthonormality
are satisfied when the eigenvalues in dL, dR are uniformly
distributed, i.e., all the diagonal elements are equals to 1 and
Mi

i′ − λ2
i δi,i′ = 0 for both left and right boundary matrices.

In Ref. [43]. this process of gauge-fixing is alternatively
dubbed as superorthogonality and is also equivalent as doing
high-order SVD on local tensors. In order to bring all of
the tensors in a TN into a superorthogonal form, one can
iteratively do the above process or rather incorporate it into the
simple-update optimization and fix the gauge on all tensors
before every step of ITE. We refer the interested reader for
detailed discussion on this subject to Refs. [43,72].
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