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Noise-tolerant signature of ZN topological order in quantum many-body states
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Topologically ordered states are fundamentally important in theoretical physics, which are also suggested as
promising candidates to build fault-tolerant quantum devices. However, it is still elusive how topological orders
can be affected or detected under noises. In this work, we find a quantity, termed as the ring degeneracy D,
which is robust under pure noise to detect both trivial and intrinsic topological orders. The ring degeneracy
is defined as the degeneracy of the solutions of the self-consistent equations that encode the contraction of
the corresponding tensor network (TN). For the ZN orders, we find that the ring degeneracy satisfies a simple
relation D = (N + 1)/2 + d , with d = 0 for odd N and d = 1/2 for even N . Simulations on several nontrivial
states (two-dimensional Ising model, ZN topological states, and resonating valence bond states) show that the
ring degeneracy can tolerate noises up to a strength associated to the gap of the TN boundary theory.
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I. INTRODUCTION

Topological states [1–4] are exotic states of matter that
cannot be described by conventional order parameters, such
as those within the Landau-Ginzburg paradigm. These kinds
of states have been considered as promising candidates to
realize fault-tolerant quantum devices, e.g., quantum com-
puters [5–7] and quantum memories [5,8]. Taking the Kitaev
honeycomb model as an example [5], the degenerate ground
state provides a subspace that can store the information like
the qubits. Since the degenerate states are connected by non-
local operations that wind the whole system, that is, they are
protected by a large gap, local perturbations will not be able
to induce any errors to the stored information as long as the
perturbations are smaller than the energy gap [5,9,10].

Several methods and signatures have been proposed to
detect the topological orders. The most widely applied ones
are: (i) the topological entanglement entropy (TEE) [11,12],
(ii) the topological Renyi entropy [13], (iii) the topologi-
cal ground-state degeneracy [14,15], and other methods like
ribbon operators [16]. For the symmetry protected topolog-
ical (SPT) states [17], the fixed-point tensors from tensor-
entanglement-filtering renormalization [17] are used to char-
acterize the symmetry breaking and SPT phase transitions.

However, due to highly computational complexity, the in-
vestigations on realistic higher-dimensional quantum models
are still rare, particularly for those systems that do not admit
known analytical solutions. For a 1D quantum system, the
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bipartite entanglement spectrum can be used to characterize
a topological phase [11,12,18–21], which has been applied to
detect the Haldane phase [17,22–25]. But, for two- and higher-
dimensional systems, the applications are sparse [26–28],
essentially due to the impressive complexity in calculating
the entanglement in higher dimensions. Such difficulty also
hinders the applications of TEE and topological Renyi entropy
for detecting the topological orders in higher dimensions.

Moreover, it remains elusive how the noises affect the topo-
logical states, which is an important issue to the utilization of
topological systems to develop novel quantum technologies
[5–8]. Chen et al. showed that the topological Renyi entropy
is stable only against the Z2 symmetry preserving variations
on the tensors of topological TN states [29]. Therefore, it is
hard to use topological Renyi entropy to detect the topological
orders of the states that are obtained by numerical simulations,
where there always exist the numeric noises/errors in the
calculations. Besides, it is still interesting to study the states
in the symmetry breaking vicinity of a topological state; they
may still inherit certain topological properties even when the
topological Renyi entropy vanishes.

In this work, we propose a quantity named the ring degen-
eracy (RD, denoted by D) that robustly detects the symmetries
and the topological properties even under a noise that breaks
the symmetries of the tensors. RD is defined as the degeneracy
of the ring tensor, which is the fixed-point solution of the
self-consistent eigenvalue equations constructed from a TN
representation of the quantum system [Fig. 1(a)] [30]. We
show that the symmetry of topological states could lead to
a degeneracy of the ring tensors. For the 2D statistical Ising
model, we show that RD detects the spontaneous symmetry
breaking, i.e., with D = 2 for the low-temperature symmetry
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FIG. 1. (a) A graphic representation of PEPS. (b) From tensor
P to inner product tensor T. (c) Self-consistent eigenvalue equations
of TRD. (d) and (e) Two degenerate ring tensors in TRD and the
orthogonality of them.

breaking phase and D = 1 for the high-temperature disor-
dered phase. For the spin-1 Heisenberg chain in a magnetic
field, we have D = 2 in the Haldane phase for h < 0.41 and
D = 2 in the polarized phase for h > 0.41 [31]. For those
with ZN intrinsic topological orders, including the resonating
valence bond state on the kagomé lattice with Z2 topological
order [32–35] and the ZN string-net states [12,27,28,36], we
have D = (N + 1)/2 + d with d = 0 for odd N and d = 1/2
for even N . RD is a robust quantity even under pure noises.
We demonstrate how the noise affects the stability of RD and
show that the RD can be reached robustly up to a noise of
the same order of magnitude as the gap of the TN boundary
theory.

II. RING TENSOR OF INFINITE TWO-DIMENSIONAL
TENSOR NETWORK

An infinite TN state (TNS) (also called the projected
entangled pair state) [37,38] in a 2D system with translation
invariance can be written as [Fig. 1(a)]

|ψ〉 =
∑
s1s2···

∑
α1α2···

Ps1,α1α2α3α4 Ps2,α4α5α6α7 · · · |s1, s2 · · · 〉. (1)

The Latin letters {si} represent the physical indexes that
correspond to the physical Hilbert space of the quantum state,
and the Greek letters {α j} represent the geometrical indexes
that will be contracted. The inner product between the state
and its conjugate 〈ψ |ψ〉 gives a 2D TN, where all physical
and geometrical indexes will be contracted. Such a TN is
formed by infinite copies of inner product tensor Tη1η2η3η4 =∑

s Ps,α1α2α3α4 P∗
s,α′

1α
′
2α

′
3α

′
4

with ηn = (αn, α
′
n) [Fig. 1(b)]; it is in

fact the zero-temperature partition function of the system and
conveys many physical properties of the TNS, such as the
correlation length and criticality (e.g., Ref. [39]).

Tensor ring decomposition (TRD) [30,37] is an efficient
way to compute the TN contraction. Unlike the methods based
on the tensor renormalization group (see, e.g., Refs. [40–45]),
TRD “encodes” the TN contraction problem to a set of local
self-consistent eigenvalue equations. With the spatial inver-
sion symmetries, the solution of TRD contains two tensors
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FIG. 2. The illustration of the global symmetry of a TNS and its
inner product TN [see Eqs. (6) and (7)].

dubbed as A and B. The eigenvalue equations [see the first
two subfigures of Fig. 1(c)] that A and B satisfy are∑

v1v2η1η2η4

Tη1η2η3η4 B̃η2v1v
′
1
B̃∗

η4v2v
′
2
Aη1v1v2 = λAAη3v

′
1v

′
2
, (2)

∑
v1v1′η1η2η3

Tη1η2η3η4 Aη1v1v2 Aη3v
′
1v

′
2
Bη2v1v

′
1
= λBBη4v2v

′
2
, (3)

with λA and λB the eigenvalues. The third subfigure is the QR
decomposition Bηvv′ = ∑

v′′ B̃ηv′v′′Rv′′v , which ensures that A
and B converge to the nontrivial fixed points [30]. This defines
in fact a recursive dynamics: After randomly initializing A and
B, the fixed point can be reached by recursively solving the
above equations.

Note that there is a redundant gauge freedom on the shared
bonds between A and B. In order to remove it, we define the
ring tensor R from A and B [Fig. 1(d)] as

Rη1η2η3η4 =
∑

v1v2v
′
1v

′
2

Aη1v1v2 A∗
η3v

′
1v

′
2
Bη2v1v

′
1
B∗

η4v2v
′
2
. (4)

In the tensor ring decomposition, A represents the “ground
state” MPS of the TN at the horizontal direction; B is
the time MPS at the vertical direction [37,46,47]. Both are
also known as the boundary states of the TN [39,48–50].
Meanwhile, the ring tensor R is actually an approximation
of the environment of one tensor T , i.e., the tensor after
contracting all the TN without T . Thus, the contraction Z =∑

η1η2η3η4
Tη1η2η3η4 Rη1η2η3η4 gives approximately the whole TN

contraction, and it is maximized at the fixed point.

III. RING DEGENERACY AND GLOBAL SYMMETRY

One may expect there is only one ring tensor for a TN
since it represents the contraction of TN. However, when the
local tensor T of TN has a symmetry, the symmetry may
induce a degeneracy on ring tensors. The ring degeneracy D is
then defined by the number of ring tensors that give the same
partition function Z (R) := Tr(RT ). It can be checked by the
fidelity F of two ring tensors R and R′ [Fig. 1(e)] as

F (R, R′) =
∣∣∣∣∣

∑
η1η2η3η4

Rη1η2η3η4 R′∗
η1η2η3η4

∣∣∣∣∣
/√

|R||R′|. (5)

Suppose an injective TNS |ψ〉 satisfies a global symmetry
G, which requires the tensor P to satisfy the following condi-
tion [51] (Fig. 2)∑

s′
V [g]

ss′ Ps′,α1α2α3α4

=
∑

α′
1α

′
2α

′
3α

′
4

U [g]
α1α

′
1
(U [g] )−1

α3α
′
3
W [g]

α2α
′
2
(W [g] )−1

α4α
′
4
Ps,α′

1α
′
2α

′
3α

′
4
. (6)
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Here g is a group element of G and V [g] is a representation
of g; U and W are the projective representation of the group
respected to g [51–53]. In this case, the tensor T in the inner
product TN 〈ψ |ψ〉 possesses the corresponding symmetry
T = G(T ) (Fig. 2) that reads

G(T ) ≡
∑

η′
1η

′
2η

′
3η

′
4

Ū [g]
η1η

′
1
(Ū [g] )−1

η3η
′
3
W̄ [g]

η2η
′
2
(W̄ [g] )−1

η4η
′
4
Tη′

1η
′
2η

′
3η

′
4

(7)

with Ū [g] = U [g] ⊗ U [g]∗ and W̄ [g] = W [g] ⊗ W [g]∗. For tensor
T ′ = G(T ), we can always define a ring tensor R′ = G−1(R)
even when T �= G(T ). However, when T satisfies the symme-
try condition as T = G(T ), R′ is also a ring tensor of T . Thus,
the ring degeneracy emerges when F [R,G(R)] �= 1.

IV. RING DEGENERACY AND SYMMETRY BREAKING
IN ISING MODEL

We first apply our method to the 2D statistical Ising model
on the square lattice, where the TN satisfies the Z2 symmetry.
This model was investigated by Gu et al. [17] as the very first
example that inspired the (trivial) symmetry-protected topo-
logical orders. The interaction of this model is described by
H = ∑

〈i, j〉 ηiη j , where ηi represents the Ising spin on the ith
site, and the summation runs over all nearest-neighbor pairs
of spins. The partition function Z = Tr(e−βH ) can be written
as TN, where we have Tη1η2η3η4 = e−β(η1η2+η2η3+η3η4+η4η1 ). This
Hamiltonian is invariant under a global Z2 transformation,
hence the tensor T is also invariant under Z2 transformation.
When the temperature T is higher than the critical temperature
Tc = 2

ln(
√

2+1)
≈ 2.26919, the system is in a disordered state;

when T < Tc, there exist two degenerate ordered states where
one can be transformed into another by applying Z2 spin flip
transformation on it, and the system reaches either of it by
spontaneously breaking the symmetry.

Figure 3 shows the results at different temperatures (with
bond dimension cutoff χ = 40). For T > Tc, D = 1. This
is because R = G(R) and there is only one fixed point rep-
resenting the high-temperature disordered phase even when
the TN satisfies the symmetry. For T < Tc, the symmetry of
the ring tensor is broken and we obtain D = 2, i.e., the two
ring tensors give the same Z and are orthogonal to each other
with F (R, R′) � 0. In the symmetry breaking phase, one ring
tensor can be transformed into another by performing a Z2

transformation on it, reflecting two degenerate ground states
as the boundary states of the TN.

V. RING DEGENERACY IN ZN TOPOLOGICAL SYSTEMS

The ground state of the spin-1 Heisenberg chain is in
the well-known Haldane phase with nontrivial topological
orders [24,25]. The Haldane gap is �H � 0.4105J [31]. The
Hamiltonian (in a magnetic field) reads H = J

∑
〈i, j〉(SiS j ) +

h
∑

i Sz
i . By Trotter-Suzuki decomposition, the imaginary-

time evolution of this model can be represented by a 2D
TN as tensor product density operator (TPDO) [37,54–59]
(see for instance Ref. [41]). With trotter step τ = 0.01 and
bond dimension cutoff χ = 100, the result shows that ring
degeneracy precisely matches the phase diagram, where we

FIG. 3. The fidelity, relative error of energy, and ring degeneracy
in the 2D statistical Ising model. For the temperature T > Tc (with Tc

the critical temperature), there is only one fixed point. When T � Tc,
the overlap rapidly vanishes O(10−5), indicating the existence of two
degenerate fixed points that are orthogonal to each other. The relative
errors of the free energy (compared with the analytical solution) are
also shown, which is about O(10−9) at the critical temperature and
soon decays to O(10−15) away from Tc.

have D = 2 for h < hc (Haldane phase) and D = 1 for h > hc

with hc = 0.4126J ≈ �H .
The nearest-neighbor resonating valence bond (NNRVB)

state on the kagomé lattice is a quantum spin liquid state with
intrinsic Z2 topological order [32–35]. Its TN representation
is formed by the infinite copies of tensors P and B [see in
Fig. 4(a)], whose nonzero elements are [38,60]

P0,0000 = P1,2111 = P1,1211 = P1,1121 = P1,1112 = 1

B00 = B12 = 1, B21 = −1. (8)

FIG. 4. (a) Graphic representation of TNS representation of
NNRVB state on the kagomé lattice. (b) An intuitive picture explain-
ing the relation between the ring degeneracy and ZN orders, by taking
Z2, Z3, Z4, and Z5 as examples. The black line represents the real
space and the blue dash circle represents the complex space. The blue
dots represent the fixed-point solutions (ring tensors) in the complex
space, and the red dots show the projections in the real space by
combining two conjugate solutions.
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We calculated the TRD of the TN 〈ψ |ψ〉 with χ = 40 and
obtained D = 2. The fidelity between the two degenerate ring
tensors is F ∼ 10−9.

The ZN string-net states [12,27,28,36] possess intrinsic ZN

topological orders [10,29]. On a square lattice, the TNS of a
ZN string-net state can be defined by the tensor as

Tαβγ δ =
{

1, (α + β + γ + δ) mod N = 0

0, otherwise
. (9)

We applied our method on these states with χ = 40 and find
that the ring degeneracy D satisfies

D =
{

(N + 2)/2, N is even

(N + 1)/2, N is odd
. (10)

To better understand the even-odd pattern in Eq. (10), we
give an intuitive picture [Fig. 4(b)] and explain it by the repre-
sentation theory of the ZN group. For the ZN group, the group
elements can be represented as {I, g, g2, · · · , gN−1}. From the
representation theory, all irreducible representations of ZN

are one dimensional and can be denoted by gk = exp(ikθ )
with Nθ = 0(mod 2π ). Hence for N > 2, the nontrivial rep-
resentation of the ZN group should be complex. However,
when applying TRD in the complex space, we meet with a
convergence problem. Our results show that there exist several
fixed points, where the fidelity between each two can be any
values between 0 and 1. The reason might be that the fixed
points “drift” due to the gauge degrees brought by a complex
phase factor. Thus, we restrain ourselves in the real space, and
the fidelity takes only 0 or 1. In this case, the gauge degrees
of freedom are fixed due to the uniqueness of the dominant
eigenvectors of the two eigenvalue problems.

In the even cases, there always exist two real transfor-
mation operators: identity g0 = I and inversion gN/2 = −I,
which give two real ring tensors noted as R and GN/2(R). By
projecting on the real space, a real solution can be defined
by the superposition of a complex ring tensor Gk (R) and its
conjugate G−k (R). In this way, (N − 2) complex tensors will
give us (N − 2)/2 projected ring tensors. In total, there will
be (N − 2)/2 + 2 = (N + 2)/2 real fixed points. When N is
odd, there is only one real operator as the identity I, and
N − 1 complex transformations will give (N − 1)/2 projected
ring tensors. Thus the degeneracy of the ring tensors will be
(N − 1)/2 + 1 = (N + 1)/2 in total.

Though this even-odd pattern of D makes the Z2N state
and Z2N+1 state share the same D, we can still identify these
two cases by examining the partition function Z (R). For the
ZN case, the real ring tensor Rreal (red dots in Fig. 4) gives
the partition function Z (Rreal ) = N ; for the projected ring
tensor Rproj (red circles) we have Z (Rproj ) = N/2. Thus, Z2N

and Z2N+1 states can be distinguished as the following: by
checking all D ring tensors and the partition function Z (R)
given by them. If we can find two ring tensors that can gave
Z (R) = 2N it is a Z2N state, else if there is only one ring tensor
that gave Z (R) = 2N + 1, then it is a Z2N+1 state.

VI. ROBUSTNESS UNDER PURE NOISES

To investigate the effect of noises, we add a perturbation
term εTp to the TN, i.e., T̃ = T0 + εTp, with Tp a tensor that all

FIG. 5. (a) The probability P of finding two degenerate fixed
points for the 2D Ising model at the temperature T = 1 with different
randomness strength. We take the bond dimension χ = 10 ∼ 40 and
break the translation invariance by selecting the unit cells of sizes
1 × 1, 2 × 2, and 3 × 3. (b) The probability P for the TPDO of
spin-1 Haldane chain, here χ = 100 and we choose three different
trotter steps as τ = 0.01, 0.005, and 0 and shows there is a uniform
probability under the normalized perturbation parameter as ε/τ . In
the inset of (b) we give an intuitive picture of the robustness of RD.
For ε = 0 there exist two degenerate fixed points. When a small ε

is turned on, it will break the degeneracy, but two fixed points still
survive until the ε is sufficiently large. (c) The probability P for
the Kagomé NNRVB and ZN (N = 2, 3, 4, 5) string-net states with
χ = 20 ∼ 40.

components are chosen randomly with a Gaussian distribution
with centered 0 and standard deviation 1, and ε a constant
to control the strength of the noise. This perturbation term
would break the symmetry of local tensors in TNS. Our results
show that even though the random term breaks the symmetry
of TNS, the fixed points of the TRD (if they exist) remain
robust. This robustness can be understood by an intuitive
picture shown in the inset of Fig. 5(b). Taking the Z2 case as
an example, the two degenerate ring tensors R1 and R2 give the
same partition function Z (R1) = Z (R2). After adding a small
noise, the two fixed points of Eq. (3) still survive, even though
the partition function is perturbed [Z (R1) �= Z (R2) up to the
strength of the noise]. Hence, the RD is robust under noise
as long as the fixed points are still stable contractors of the
recursive process in the TRD.

In the following, we randomly choose about 50 pairs of
A and B as the initial guesses to compute the fixed points.
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Different initial guesses may be within the attraction domain
of different fixed points. We then check the ring tensors by
calculating the fidelity between each two of the fixed points
and obtain the ring degeneracy as the number of orthogonal
ring tensors. To characterize the stability, we define the prob-
ability as P = ND=2/Ntot , where Ntot is the total number of
different random terms Tp we added to T0, and ND=2 is the
number of those terms with which the expected fixed points
are successfully found.

The results of the 2D Ising model [Fig. 5(a)] show that the
two fixed points remain stable (with P � 1) for ε < 0.1. For
ε > 0.1, the probability P drops rapidly and finally decays to
zero where the fixed points are totally destroyed by the noise.
Note that TRD applies to the TN that is translation invariance.
The TN is formed by the copies of T̃ = T0 + εTp, meaning the
random terms for different tensors are the same. To weaken
such a translation invariance, we increase the unit cell, so
that the random terms are transitionally invariant for L × L
tensor clusters. Inside the cluster, the random terms added to
different tensors are independent of each other. Our results
show that the stability persists for L = 1, 2, and 3.

For the spin-1 Haldane chain, we use ε/τ to properly
define the strength of the noise, considering the perturbation is
added directly to the evolution operator e−τ Ĥ . Taking different
Trotter steps τ = 0.01, 0.005, and 0, a significant drop occurs
universally around ε/τ ≈ 0.4, which is consistent with the
Haldane gap [Fig. 5(b)]. As we know the boundary state of
this TN (i.e., the ground state) is in the Haldane phase. The
consistency between the Haldane gap and the noise tolerance
suggests that the gap of the boundary protects the RD degen-
eracy from the noise.

For the nearest-neighbor RVB state on the kagomé lattice,
we try more than 2000 different Tp as the noise and calculate
the probability P(D = 2) with χ = 20, 30, 40 [Fig. 5(c)]. By
increasing the randomness strength ε from 10−7 to 10, P(D =
2) is still almost 1 when ε = 1. It decays to about 0 after
ε � 10. The probability of finding two fixed points on the Z2

string-net state starts to decay at ε = 0.1 from P(D = 2) � 1
to P(D = 2) � 0.05 at ε = 1.2. For the ZN string-net states
for N = 3, 4, 5, 6, the robustness of the ring degeneracy in
shown in Fig. 5(c). The bond dimension is fixed as χ = 40.
From the probability P, the ring degeneracy remains robust
for different N up to a random strength of O(10−1).

VII. CONCLUSIONS

We propose a noise-tolerant detection for the ZN topolog-
ical orders of quantum many-body states by utilizing the TN
representation. This quantity, dubbed as the ring degeneracy,
is defined by the degeneracy of the fixed-point solutions of the
self-consistent equations that encode the TN contraction. The
RD and the symmetry of the ring tensor R reveal nontrivial

properties of the system described by the TN. For the 2D Ising
model, RD indicates the two degenerate states in the low-
temperature ordered phase. These states are reflected by the
degenerate ground states in the boundary theory of TN. For ZN

topological systems, the RD detects the specific topological
orders by the symmetry in accordance to the topological order.
It is interesting to notice that, when the TN is an inner product
of a 2D quantum state, RD can detect the topological order
of the state, and when the TN is the partition function of
a classical system, RD is detecting the symmetry breaking
phase. It suggests a connection between 2D quantum states
and the partition function of 2D classical systems.

Different from the existing quantities such as entanglement
spectrum, RD is defined as the number of stable contractors of
the self-consistent eigenvalue equations; our data shows it can
survive under pure noises up to a certain strength. In the spin-1
Haldane chain model, the strength is consistent to the Haldane
gap, which suggests the strength of robustness is comparable
to the gap of the boundary theory. When the noise breaks the
symmetry of TNS, topological ground state degeneracy will
be lifted, and topological Renyi entropy will not be observed.
However, those lifted states are still the stable fixed points of
the given recursive process. Such a property could be used
to investigate the states in the nonsymmetrical vicinity of
topologically ordered states; it provides a robust detection
for the topological properties even when symmetry is slightly
broken. Our work provides a simple and robust detection for
the topological orders and reveals the stability of many-body
topology from the perspective of recursive dynamics.
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