
PHYSICAL REVIEW B 99, 184508 (2019)

Increased performance of Matsubara space calculations: A case study within Eliashberg theory
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We present a method to considerably improve the numerical performance for solving Eliashberg-type coupled
equations on the imaginary axis. Instead of the standard practice of introducing a hard numerical cutoff for
treating the infinite summations involved, our scheme allows for the efficient calculation of such sums extended
formally up to infinity. The method is first benchmarked with isotropic Migdal-Eliashberg theory calculations and
subsequently applied to the solution of the full-bandwidth, multiband, and anisotropic equations focusing on the
FeSe/SrTiO3 interface as a case study. Compared to the standard procedure, we reach similarly well converged
results with less than one fifth of the number of frequencies for the anisotropic case, while for the isotropic set
of equations we spare approximately ninety percent of the complexity. Since our proposed approximations are
very general, our numerical scheme opens the possibility of studying the superconducting properties of a wide
range of materials at ultralow temperatures.
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I. INTRODUCTION

The most successful theory for explaining superconductiv-
ity in real materials is arguably Eliashberg theory [1], which
generalizes the Bardeen-Cooper-Schrieffer (BCS) description
of superconductors [2] by explicitly taking into account the
retarded nature of the electron-boson interaction that mediates
the Cooper pairing [3–5]. The self-consistent solution of the
Eliashberg equations, supplemented with ab initio calculated
input for the electrons and the involved bosons, has evolved
into a powerful method for the materials specific modeling
of superconductors on the quantitative level [6–10]. Yet,
calculations of such fidelity remain to a large extent com-
putationally expensive since they typically involve coupled
integral equations over momentum and frequency. Due to
the concomitant computational complexity of the involved
principal value integrals, the Eliashberg equations are rarely
solved directly in the real-frequency domain. Instead, they are
commonly treated on the imaginary (Matsubara) frequency
axis and, if needed, the real-frequency dependence can be
retrieved via a numerical analytic continuation [11,12].

Solving the self-consistent problem numerically is excep-
tionally hard in general, because there is a need of perform-
ing Matsubara sums over ideally infinitely many bosonic or
fermionic frequencies. Although most often the physically
interesting region is relatively small and centered around the
zeroth frequency, the results can still heavily rely on the
number of Matsubara frequencies involved in the calculations.
The generally accepted procedure to address this challenge
is to introduce a symmetric frequency interval via a hard
numerical cutoff M, and neglect all contributions outside of
this interval [3,4]. The boundaries ±M are symmetrically
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shifted until the results (e.g., the gap function) do not change
significantly anymore; such convergence study makes the
use of a large number of Matsubara frequencies a necessity.
Apart from the risk of obtaining results that are not well
converged due to a lack of numerical resources, the equations
in Matsubara space provide another difficulty; the frequencies
scale with temperature, which requires an even larger number
of frequencies to account for the physically relevant energy
window in low-temperature systems. This can potentially
become a bottleneck for the efficiency of calculations where
full momentum dependence needs to be retained, depending
also on the specifics of a given material. Typically, such
a situation may be encountered, e.g., in fully anisotropic
Eliashberg simulations with ab initio input [9], or when the
electron energy dispersions throughout the full bandwidth are
explicitly included in the calculation [13,14]. Therefore, as
the need for more realistic Eliashberg calculations grows, im-
proving the associated computational performance becomes a
necessity.

It is worth mentioning that the problem of efficiently
treating infinite Matsubara sums is not peculiar to Eliash-
berg theory type of calculations but occurs rather often in
numerical solutions of Dyson-like self-consistent equations
that involve convolutions between propagators. For example,
calculations within the fluctuation-exchange (FLEX) approx-
imation require the knowledge of susceptibilities that can be
numerically calculated as convolutions between two Green’s
functions. For that particular case, it has been proposed that
high frequency corrections can be obtained by improving the
analytical properties of the propagator in the imaginary time
domain via the so-called τ scheme [15–17].

Here we present a scheme to considerably reduce the
amount of Matsubara frequencies needed in Eliashberg calcu-
lations with Lorentzian-shaped interaction kernel. Our deriva-
tions are based on the assumption that the system can be
approximated as noninteracting for sufficiently large energies
that would correspond to regions of Matsubara space not
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accessible due to computational limitations. Our method al-
lows for incorporating such infinite tail contributions as cor-
rections to the usually employed hard cutoff scheme without
performing any operation in the imaginary time domain. We
shall refer to our method as the AT scheme (analytic tail). In
Sec. II A, we introduce the main idea of the AT scheme using
for simplicity the isotropic Eliashberg theory. We briefly dis-
cuss possible implicit accuracy improvements of the method
on calculating several thermodynamic quantities in the next
Sec. II B. We subsequently proceed with a more complex set
of equations in Sec. II C, namely, the full-bandwidth, multi-
band, and anisotropic Eliashberg equations. For the latter,
we choose input parameters that describe superconductivity
in the FeSe monolayer on SrTiO3 (STO) substrate, since
within this choice the solution to the respective Eliashberg
equations is well understood; see Refs. [13,14] for details
and discussions about various properties of this system in
the normal and superconducting state. Another reason for
choosing FeSe/STO as a case study is that for this system
the application of an anisotropic Eliashberg theory that is
not restricted to the Fermi level is necessary in order to
explain the experimentally observed replica bands [18]. The
new method is benchmarked with calculating the spectral
function, which is related to angular resolved photoemission
spectroscopy (ARPES) experiments. Details on how to embed
our AT scheme in the self-consistent analytic continuation
procedure are provided in Appendix A, and in Appendix B,
we also show the calculated gap on the Fermi surface of the
electronic tight-binding model employed for our calculations.
In Sec. III, we test our proposed method, focusing on the con-
vergence behavior with the number of Matsubara frequencies
used.

For the anisotropic, full-bandwidth, and multiband Eliash-
berg theory we report obtaining well converged results with
only one fifth of the number of Matsubara frequencies,
compared to the commonly used practice. In the isotropic
case, which can easily be generalized to the Fermi surface
restricted anisotropic theory [3], we spare as many as 9/10
of the frequencies without any decrease in the accuracy of the
results. Such a large increase in performance opens up new
possibilities for studying low-temperature properties within
Eliashberg theory and make calculations for very low Tc

accessible.

II. METHODOLOGY

A. Isotropic Eliashberg theory

As a toy model to introduce our new method we employ
the isotropic Eliashberg equations,

Zm = 1 + πT

ωm

∑
m′

Vm−m′ωm′√
ω2

m′ + �2
m′

, (1)

�m = πT

Zm

∑
m′

[Vm−m′ − μ∗]�m′√
ω2

m′ + �2
m′

. (2)

Here, Zm is the mass renormalization function and �m the gap
function. For a system at temperature T , ωm = πT (2m + 1)
are the fermionic Matsubara frequencies, m ∈ Z. Throughout
this work, sums of the form

∑
m are over an infinite number

of Matsubara frequencies, unless noted otherwise. In the
simplified case of an Einstein-like phonon mode �, we can
use a Lorentzian shaped electron-phonon interaction

Vm−m′ = λ�2

�2 + (ωm − ωm′ )2
(3)

to calculate the mass renormalization function Zm and the gap
function �m. In Eq. (3), λ describes the electron-phonon cou-
pling strength. The renormalized Coulomb interaction enters
in Eq. (2) via the Anderson-Morel pseudopotential μ∗(ωc),
which comes with a cutoff ωc. In what follows, we assume
for simplicity μ∗ = 0, but we have carefully checked that
for μ∗ �= 0 the qualitative results do not change. Due to the
functional form of the kernel given in Eq. (3), the solutions
for Zm and �m similarly acquire a characteristic Lorentzian
shape. In the limit of an infinitely large Matsubara frequency,
the mass renormalization therefore approaches unity, while
the gap function vanishes: limm→±∞Zm = 1, �mm→±∞ = 0.
Based on this observation we make the assumption

∃M 	 1 ∈ N : Z|m|>M = 1, �|m|>M = 0 (4)

for the infinite tails of the Lorentzian functions, which corre-
sponds to the limit of the system being in the noninteracting
state outside the interval [−M,M]. As a comparison, the
usual practice of introducing the hard cutoff corresponds
to the same assumption, but the infinite tails are neglected
altogether.

Assuming Eq. (4) to hold, we can split the summations in
Eqs. (1) and (2) into an interacting and two noninteracting
parts. The first noninteracting part is finite for |m′| � M
and the second one for m′ ∈ Z. In the following, we label
these three terms with (I ), (NM), and (N ), respectively. After
rewriting the summation over the noninteracting expressions
via

∑
|m′ |>M = ∑

m′ −∑
|m′|�M we arrive at an approximated

set of Eliashberg equations, labeled by superscript (A):

Z (A)
m = 1 + Z (I )

m − Z (NM )
m + Z (N )

m , (5)

�(A)
m = �(I )

m . (6)

Except from the term Z (N )
m in Eq. (5), the expressions are easily

identified as

Z (I )
m = πT

ωm

∑
|m′|�M

Vm−m′ωm′√
ω2

m′ + �2
m′

, (7)

�(I )
m = πT

Zm

∑
|m′|�M

[Vm−m′ − μ∗]�m′√
ω2

m′ + �2
m′

, (8)

Z (NM )
m = π

ωm

∑
|m′|�M

Vm−m′
ωm′

|ωm′ | . (9)

The infinite summation occurring in the calculation of Z (N )
m

must be treated with special care due to the appearance of
a sign function, ωm/|ωm|. By using the bosonic frequencies
qm = ωm − πT = 2πT m and the complex Digamma function
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ψ (0), we obtain the result as

Z (N )
m = λ�

2ωm

[
4πT �

q2
m + �2

+ π coth

(
�

2T

)
(10)

− iψ (0)

(
qm − i�

2πT

)
+ iψ (0)

(
qm + i�

2πT

)]
,

which together with Eqs. (7)–(9) concludes the calculation of
Z (A)

m and �(A)
m . As a consistency check for our derivation we

note, that the mass renormalization of Eq. (5) in the limit of
the nonsuperconducting state reduces to Z (A)

m → 1 + λ. The
equations presented in this section can straightforwardly be

generalized to the anisotropic Eliashberg theory, restricted to
momenta around the Fermi level [3,6–8].

B. Thermodynamic properties

The gap function �m and the mass renormalization Zm as
calculated in the previous Sec. II A can be used to obtain the
difference between the normal and superconducting state free
energy FN − FS , which reflects the fact that the superconduct-
ing phase is energetically favorable for temperatures T < Tc.
The expression for the free energy difference �F , normalized
by the electronic density of states at the Fermi level, reads [4]

�F (T ) = πT
∑

m

[
|ωm|(Z (AN )

m + 1
) − 2Z (AS )

m

√
ω2

m + �2
m + ω2

m

(
Z (AS )

m − 1
) + Z (AS )

m �2
m√

ω2
m + �2

m

]
, (11)

with Z (AN )
m and Z (AS )

m calculated from Eq. (5) for the nonsuper-
conducting and superconducting case, respectively. We find
the corresponding entropy difference as

�S = ∂ (�F )

∂T
, (12)

from which we can easily determine the specific heat jump,
which is directly observable in experiment and therefore
particularly interesting.

−�C

T
= − 1

T

∂ (�S)

∂T
= − 1

T

∂2(�F )

∂T 2
. (13)

It is directly evident from Eq. (11) that our proposed
AT scheme is not applicable for the particular Matsubara
sum, since the tails due to the nonsuperconducting state
vanish identically within the approximation made in Eq. (4).
However, due to the fact that within our method, we keep
the infinite sum over m′ in the convolution of Eq. (1), the
mass renormalization term entering Eq. (11) includes such
an infinite sum correction. Therefore Eq. (11) inherits an
implicit correction term which can be made explicit if we
rewrite Eq. (11) in a form �F = �F (0) + �F (c), where the
superscripts (0), (c) denote the usual �F calculated with a
hard cutoff scheme and the correction term generated within
our AT scheme, respectively. The correction term adopts the
form

�F (c)(T ) = πT
∑

m

(
Z (N )

m − Z (NM )
m

)|ωm|

×
[

1 −
√

1 +
(

�m

ωm

)2]
. (14)

C. Anisotropic, full-bandwidth, and
multiband Eliashberg theory

The AT scheme can be straightforwardly extended to cases
where less approximate Eliashberg theory equations need
to be solved. As a more complex example we treat the
full-bandwidth and anisotropic theory describing the FeSe

monolayer on STO substrate. From the detailed analysis in
Ref. [13], we consider the equations

Zk,m = 1 + T

ωm

∑
k′,n

∑
m′

Vq,m−m′
ωm′Zk′,m′


n,k′,m′
, (15)

χk,m = −T
∑
k′,n

∑
m′

Vq,m−m′
βn,k′ + χk′,m′


n,k′,m′
, (16)

φk,m = T
∑
k′,n

∑
m′

Vq,m−m′
φk′,m′


n,k′,m′
, (17)


n,k,m = [ωmZk,m]2 + φ2
k,m + [βn,k + χk,m]2, (18)

as a given starting point, where q = k − k′. The additional
function χk,m represents the chemical potential renormaliza-
tion and increases the number of coupled equations by one.
For brevity we define βn,k = ξn,k − μ, with ξn,k the momen-
tum dependent bare energy dispersion and n the energy band
index. The global chemical potential, μ, is self-consistently
determined so that the converged solutions to Eqs. (15)–(17)
satisfy the conservation law for the number of electrons by
keeping the electron filling

n1 = 1 + 2T

L

∑
k′,n

∑
m′

βn,k′ + χk′,m′


n,k′,m′
(19)

constant.
The gap function considered in Sec. II A is connected to

φk,m via �k,m = φk,m/Zk,m. For the kernel, we use again a
Lorentzian shape, compare Eq. (3), while now the scattering
λq is chosen as a momentum dependent small-q coupling
[19,20]. Accordingly, our noninteracting state approximation
Eq. (4) is generalized to

∃M 	 1 ∈ N : Zk,|m|>M = 1 ,

χk,|m|>M = φk,|m|>M = 0 ∀k . (20)

For keeping the expressions more compact, we denote the bare
state limit of 
n,k,m in Eq. (18) by �n,k,m = ω2

m + β2
n,k. The

derivation followed in Sec. II A directly leads to the equations,

Z (I )
k,m = T

ωm

∑
k′,n

∑
|m′|�M

Vq,m−m′
ωm′Zk′,m′


n,k′,m′
, (21)
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χ
(I )
k,m = T

∑
k′,n

∑
|m′|�M

Vq,m−m′
βn,k′ + χk′,m′


n,k′,m′
, (22)

φ
(I )
k,m = T

∑
k′,n

∑
|m′|�M

Vq,m−m′
φk′,m′


n,k′,m′
, (23)

Z (NM )
k,m = T

ωm

∑
k′,n

∑
|m′|�M

Vq,m−m′
ωm′

�n,k′,m′
, (24)

χ
(NM )
k,m = T

∑
k′,n

∑
|m′|�M

Vq,m−m′
βn,k′

�n,k′,m′
, (25)

that represent the interacting and noninteracting state contri-
butions inside the numerical boundaries [−M,M]. There-
fore the mass renormalization within our method can be found
as Z (A)

k,m = 1 + Z (I )
k,m − Z (NM )

k,m + Z (N )
k,m, and similarly χ

(A)
k,m =

−χ
(I )
k,m + χ

(NM )
k,m − χ

(N )
k,m for the chemical potential renormal-

ization, and φ
(A)
k,m = φ

(I )
k,m for the gap function. The expressions

involving infinite summations can be written in a closed form
by applying the Residue theorem [21],

Z (N )
k,m =

∑
k′,n

λq�
2

2

( 1
�

coth
(

�
2T

)(
�n,k′,m + �2

)
(
ω2

m + �2 − β2
n,k′

)2 + 4ω2
mβ2

n,k′

−
2βn,k′ tanh

(
βn,k′
2T

)
(
ω2

m + �2 − β2
n,k′

)2 + 4ω2
mβ2

n,k′

)
, (26)

χ
(N )
k,m =

∑
k′,n

λq�
2

2

( βn,k′
�

coth
(

�
2T

)(
�n,k′,m − �2

)
(
ω2

m + �2 − β2
n,k′

)2 + 4ω2
mβ2

n,k′

+
tanh

(
βn,k′
2T

)(
ω2

m + �2 − β2
n,k′

)
(
ω2

m + �2 − β2
n,k′

)2 + 4ω2
mβ2

n,k′

)
. (27)

From recent investigations performed on this material it is ev-
ident that a reliable analytic continuation from the Matsubara
to the real-frequency axis is necessary to predict and explain
outcomes of spectroscopy experiments [13,14]. Therefore we
show in Appendix A how our method can be applied to a
self-consistent continuation procedure for obtaining the real-
frequency results Z (A)

k,ω
, χ

(A)
k,ω

and φ
(A)
k,ω

. The derivations do,
however, not differ much from what we discuss in this section.
The method introduced here for the isotropic and anisotropic
Eliashberg theory has been included in the Uppsala supercon-
ductivity (UppSC) code [8,10,13,22].

III. RESULTS

A. Isotropic Eliashberg theory

We start by presenting numerical results within the
isotropic theory of Sec. II A. A phonon mode of � = 100 K
is chosen in all simulations of Eqs. (1) and (2). In Fig. 1, the
convergence behavior with respect to the cutoff variable M
of the solution to the nonmodified equations is compared with
the respective solution to the expressions (5) and (6) for Z (A)

m
and �(A)

m .
In panel Fig. 1(a), we show the logarithmic averaged

deviation of the mass renormalization from a reference value
Zref, that is calculated for the very large frequency cut-
off M = 400 000. The deviation (i.e., error) is defined as

−9
−6
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0
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−9
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0.15
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−9
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0.4 0.6 0.8 1

log10(2M)

εZ

log10(2M)

εΔ

T/Tc

Δmax (meV)

T/Tc

εΔmax

(a) (c)

(b)

FIG. 1. Convergence study with the number of Matsubara fre-
quencies used for the self-consistent solution of isotropic Eliashberg
equations. Purple colored lines correspond to solutions of the Eqs. (1)
and (2), red colored curves to our method for Z (A)

m and �(A)
m . Dashed:

λ = 0.3, T = 0.1 K. Dot-dashed: λ = 0.5, T = 10 K. [(a) and (b)]
Double logarithmic plot of the average errors εZ and ε�, as defined
in the main text, for the mass renormalization and the gap function,
respectively. The reference results, calculated for M = 400 000, are
considered in an energy window of 200 Matsubara frequencies,
centered around the zero. Solid lines correspond to λ = 0.5 and T =
0.01 K. (c) Maximum gap as a function of temperature, normalized
with respect to Tc. The inset shows the logarithmic deviation of �max,
calculated with M = 200, with respect to the cyan solid reference
curve obtained for 4 000 frequencies.

εZ = log10 (〈|Zref − Zm|〉|m|�100) within a window of 200 Mat-
subara frequencies centered around zero. Figure 1(b) shows
the corresponding results for the gap function, where we have
defined the error ε� similarly to εZ . The purple colored lines
(full, dashed and dashed-dotted) represent the results from
Eqs. (1) and (2) where a hard cutoff has been applied, while
with red lines are shown the results after applying our AT
scheme, Eqs. (5) and (6). The dot-dashed lines are found by
using the coupling λ = 0.5 at a temperature T = 10 K > Tc.
Since for these parameters of our toy model, the system is not
superconducting, �m = �(A)

m = 0 and ε� is infinitesimal. In
Fig. 1, the latter value coincides with our chosen numerical
resolution of 10−10. Note that the error for the mass renormal-
ization remains finite in the case of the hard cutoff scheme
while it vanishes for our AT scheme. The solid lines in these
panels are calculated for λ = 0.5 and T = 0.01 K < Tc. In
such a low-T simulation, it is much more difficult to achieve
convergence. It is clearly revealed, that our method reaches
the same accuracy with about one order of magnitude less
Matsubara frequencies. Equivalently, for a fixed value of the
cutoff M, we report an error about three orders of magnitude
smaller.

The dashed results in each panel of Fig. 1 were ob-
tained with a coupling of λ = 0.5; for panels (a) and (b),
we used T = 0.1 K and again find a remarkable increase
in performance. To estimate this behavior for an observable
quantity, we calculated the maximum gap value as a function
of temperature. Panel (c) shows results for the same coupling
strength, λ = 0.5, and within a chosen cutoff M = 100 for
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0.4 0.6 0.8 1 0.4 0.6 0.8 1

−2
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εF

T/Tc

εS

T/Tc

εC

T/Tc

ΔF (arb.u.) ΔS (arb.u.) ΔC (arb.u.)(a) (b) (c)

FIG. 2. Thermodynamic properties obtained from the solution of
the isotropic Eliashberg equations for a coupling strength λ = 0.3.
Beneath each panel we show the logarithmic error with respect to the
reference curve. The color code and the number of Matsubara fre-
quencies is chosen precisely as in Fig. 1(c). (a) Free energy difference
Eq. (11) between normal and superconducting state. (b) Difference
in entropy, Eq. (12). (c) Specific heat difference [Eq. (13)] that shows
the characteristic jump at Tc.

which our method yields an error of ε� = 10−6. The cyan
reference curve �ref

max is obtained from Eqs. (1) and (2) for
4000 Matsubara frequencies. As revealed by the logarith-
mic error ε�max = log10(|�ref

max − �max|) in the inset, we can
reliably reproduce the reference curve at least up to μeV
precision, while the noncorrected calculations are more than
one order of magnitude less accurate. The low-temperature
results we obtain are significantly better than the noncorrected
calculations, which even become unphysical at small T , since
a BCS behavior is to be expected for such a moderate interac-
tion strength.

B. Thermodynamic properties

As described in Sec. II B, we can use the results for the
mass renormalization and the gap function to calculate the
temperature dependent free energy of the system, making
also other thermodynamic quantities accessible; the calculated
free energy, entropy and specific heat differences are shown
in Fig. 2. Using the same coupling λ = 0.3 and equivalent
number of Matsubara frequencies as in Fig. 1, the panels (a),
(b), and (c) correspond to the solution of Eqs. (11), (12), and
(13), respectively. In addition we show for each panel the
logarithmic error εF = log10 (|�Fref − �F |) as a function of
temperature, with similar definitions for the entropy and the
specific heat jump. The solid reference curves (cyan color)
are found by solving Eqs. (1) and (2) for ten times more
frequencies than for the dashed results.

A close inspection of Fig. 2 reveals a smaller gain due
to our proposed method, comparing with the solution of the
Eliashberg equations themselves. As discussed earlier, this
ineffectiveness can be explained by the way the free energy
difference is calculated. In Eq. (11), we need to evaluate a
sum over Matsubara frequencies for which the infinite tails
cannot be taken into account analytically. Another source of
numerical inaccuracies is the precision up to which Zm and �m

are converged. As shown previously (see, e.g., Fig. 1), our AT
scheme is superior to the calculation, in which the tails are

neglected. Any accuracy improvements thus propagate into
the solution of the thermodynamic properties and approxi-
mately double the precision of the latter calculations. This
mechanism is particularly effective in the low temperature
regime.

C. Anisotropic, full-bandwidth, and
multiband Eliashberg theory

Let us now turn to a more complex application, namely,
the full-bandwidth, multiband, and anisotropic Eliashberg
theory for the FeSe monolayer on STO. For the physical
understanding and the derivation of the equations used we
refer to previous work on this material [13,14]. Here we put
the focus on the convergence behavior with respect to the
number of frequencies used in both, the corrected and non-
corrected set of Eliashberg equations. Considering the system
at temperature T = 10 K we start from the very low number
of 100 Matsubara frequencies, and subsequently increase the
cutoff M, up till 12 000 frequencies. As a comparison, it
has been shown that a choice M = 1 500 is already sufficient
to reliably reproduce experimental results for this specific
system [13,14]. The functions corresponding to the largest
number of Matsubara frequencies again serve as reference
values for calculating the errors and are labeled Zref, χref, and
φref [similarly Z (A)

ref , χ
(A)
ref , and φ

(A)
ref ].

In Fig. 3(a), we show the result for the spectral function
at the high-symmetry M point of the reduced Brillouin zone,
which reveals well documented and material-characteristic
features, that are experimentally accessible via ARPES
[18,23,24]. The two cyan solid reference curves are identi-
cal, though shifted relative to each other, and are calculated
by self-consistent analytic continuation of Eqs. (15)–(17)
(see Appendices A and B). The purple dotted lines correspond
to neglecting the infinite Matsubara tails, while the red dashed
curves represent our proposed method; both are obtained for
100 frequencies. Due to smearing effects and the strict conver-
gence criteria we impose in the self-consistency loop of the
analytic continuation procedure both results are remarkably
accurate. We note, however, that a visible difference with
respect to the reference lines is only present for the noncor-
rected way of solving the equations. For a more quantitative
error measure we show in the inset the logarithmic deviation
integrated over frequency, εA = log10 (

∫ |A − Aref|dω) as a
function of the frequency cutoff M using the same color
code. The reference value is denoted by Aref and similarly for
A(A). We report a gain of at least a factor five for the number
of Matsubara frequencies needed to reach a given precision.
Correspondingly, for a given cutoff M our method produces
an error two orders of magnitude smaller. Figure 3(b) shows
the convergence study with respect to the analytically con-
tinued Zk,ω, χk,ω, and φk,ω, as defined in Appendix A. By
using the same cutoff for the reference solutions Zref, χref and
φref as for the spectral function, we define the errors as εZ =
log10 (〈|Zref − Zk,ω|〉k,ω ), εχ = log10 (〈|χref − χk,ω|〉k,ω ) and
εφ = log10 (〈|φref − φk,ω|〉k,ω ), and similar for our corrected
results (A). For these quantities we observe, that the savings
in performance are even larger, and up to a factor of eight
in the number of frequencies. For completeness, we added
a comparison of our method with the reference values for
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FIG. 3. Convergence study of the full-bandwidth, multiband,
and anisotropic Eliashberg equations for the FeSe/STO system at
T = 10 K. (a) Computed ARPES spectrum at the M point of the
first Brillouin zone; the solid and cyan curves correspond to the
analytically continued results for Zk,m, φk,m, and χk,m for 12 000
Matsubara frequencies (both lines are similar, but shifted relative
to each other for visibility purpose). Purple and dotted (red and
dashed) curves: results for 100 Matsubara frequencies taking (not
taking) into account the infinite tail correction. The inset shows
the corresponding logarithmic error with respect to the reference
line. (b) Logarithmic average error of the real-frequency dependent
functions as defined in the main text, using the same color code.
Dashed: analytically continued solutions for Z (A)

k,m , χ
(A)
k,m , and φ

(A)
k,m

compared to the reference solutions obtained from Eqs. (15)–(17).

the noncorrected procedure, shown by the dashed red curves,
from which we can draw the same conclusions as already
mentioned above.

IV. CONCLUDING REMARKS

In this work, we have proposed a method (the AT scheme)
for taking into account analytically the infinite tails of Matsub-
ara frequency dependent functions when performing Matsub-
ara frequency sums in self-consistent Eliashberg calculations
with Lorentzian shaped kernel. The application of our AT

scheme was demonstrated to lead to a considerable increase
in computational performance. Benchmarking our method
within the isotropic Eliashberg theory reveals that the con-
vergence with respect to the number of frequencies is faster
and smoother compared to using a hard cutoff scheme. For the
isotropic case, we spare 90% and for the anisotropic equations
80% in the number of Matsubara frequencies needed to reach
convergence with high numerical accuracy. The calculation
of thermodynamic quantities involves a second infinite sum-
mation, that cannot directly be treated within the formalism
we introduce. This leads to a smaller gain in numerical
savings, though we still outperform the direct implementation
by a factor of two. We note that the increase in efficiency
due to our here-presented corrections does not change with
system characteristics, like the phonon frequency or coupling
strength.

The τ scheme provides a very efficient way of calculating
Matsubara frequency sums for arbitrary-shaped interaction
kernels (as recently demonstrated in Ref. [17]). However,
the application of this approach has thus far been limited
to calculations that involve off-diagonal self-energies (e.g.,
superconducting) in the linearized regime. Whether the τ

scheme can be implemented below T = Tc is an open prob-
lem. On the other hand, our proposed AT scheme is applicable
regardless the temperature and it, in fact, may as well become
a necessity for T → 0, since then the required number of
Matsubara frequencies is very large. Perhaps the trade-off for
the otherwise wide applicability of our AT scheme is the fact
that it requires interactions with Lorentzian-shaped kernels
which is, nevertheless, a quite common physical situation.
Whether this assumption can be relaxed to arbitrary-shaped
kernels, e.g. by means of suitable interpolation/extrapolation
procedures, is an interesting question for future investigation.

Our results are representative for coupled sets of equations
within the Migdal-Eliashberg formalism, regardless of the de-
gree to which these are simplified. Other physical situations,
e.g., including an external magnetic field [8], can easily be
considered, since the structure of the describing equations
does not change. Further we stress, that our formalism works
for even- and odd-frequency pairing channels, and that there
is no restriction on the superconductivity mediating mech-
anism. The procedure we discuss here has numerous appli-
cations in explaining experimentally observed phenomena in
superconductors at low temperature. The recent discoveries
of transition temperatures as low as Tc = 1.5 K in bilayer
graphene [25], Tc = 1.8 K in the chalcogenide Nb2PdS5 [26]
or Tc = 0.38 K in PdTe2 [27] are only a few examples for the
wide applicability of our method.
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APPENDIX A: ANALYTIC CONTINUATION

For obtaining real-frequency dependent results from the
functions found in Sec. II C, we follow a self-consistent
algorithm, that is formally exact [12]. Since we want to focus
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on the implications of assumption (20) on the corresponding
equations, we refer to Refs. [13,14] for further details about
the implementation and derivation. We start by writing the
equations given in Ref. [13] in a form suitable for our purpose:

Zk,ω = Z (L)
k,ω

+ 1

2ω

∫ ∞

−∞
dz′ ∑

k′,n

α̃F (k, k′, z′)

×
[

tanh

(
ω − z′

2T

)
+ coth

(
z′

2T

)]
Zk′,ω−z′ (ω − z′)


n,k′,ω−z′
,

(A1)

χk,ω = χ
(L)
k,ω − 1

2

∫ ∞

−∞
dz′ ∑

k′,n

α̃F (k, k′, z′)

×
[

tanh

(
ω − z′

2T

)
+ coth

(
z′

2T

)]
βn,k′ + χk′,ω−z′


n,k′,ω−z′
,

(A2)

φk,ω = φ
(L)
k,ω

+ 1

2

∫ ∞

−∞
dz′ ∑

k′,n

α̃F (k, k′, z′) (A3)

×
[

tanh

(
ω − z′

2T

)
+ coth

(
z′

2T

)]
φk′,ω−z′


n,k′,ω−z′
.

Given in this way, only the first term on each right-hand
side of Eqs. (A1)–(A3) depends on the results in Matsubara
space, therefore we focus on these expressions. By using the
Lorentzian-shaped electron-phonon interaction Vq(ω − ωm′ )
as introduced in the main text, we identify

Z (L)
k,ω = 1 + T

ω

∑
k′,n

∑
m′

Vq(ω − ωm′ )Zk′,m′ iωm′


n,k′,m′
, (A4)

χ
(L)
k,ω

= −T
∑
k′,n

∑
m′

Vq(ω − ωm′ )(βn,k′ + χk′,m′ )


n,k′,m′
, (A5)

φ
(L)
k,ω

= T
∑
k′,n

∑
m′

Vq(ω − ωm′ )φk′,m′


n,k′,m′
. (A6)

After employing assumption (20) and rewriting the summa-
tions appropriately, we find a set of modified equations

Z (L,A)
k,ω = 1 + Z (L,I )

k,ω − Z (L,NM )
k,ω + Z (L,N )

k,ω , (A7)

χ
(L,A)
k,ω = −χ

(L,I )
k,ω + χ

(L,NM )
k,ω − χ

(L,N )
k,ω , (A8)

φ
(L,A)
k,ω = φ

(L,I )
k,ω , (A9)

the constituents of which are similarly defined as in Sec. II C.
The interacting and noninteracting state terms confined to the
Matsubara frequency interval [−M,M] are easily found as

Z (L,I )
k,ω

= T

ω

∑
k′,n

∑
|m′|�M

Vq(ω − ωm′ )Zk′,m′ iωm′


n,k′,m′
, (A10)

χ
(L,I )
k,ω

= T
∑
k′,n

∑
|m′|�M

Vq(ω − ωm′ )(βn,k′ + χk′,m′ )


n,k′,m′
, (A11)

φ
(L,I )
k,ω = T

∑
k′,n

∑
|m′|�M

Vq(ω − ωm′ )φk′,m′


n,k′,m′
, (A12)

FIG. 4. Self-consistently obtained superconducting gap of mono-
layer FeSe/STO projected on the electronic Fermi surface pockets.
The gap is determined at T = 10 K and using a coupling as described
in the main text. The size of the band and momentum dependent gap
is depicted by the color code.

Z (L,NM )
k,ω

= T

ω

∑
k′,n

∑
|m′|�M

Vq(ω − ωm′ )iωm′

�n,k′,m′
, (A13)

χ
(L,NM )
k,ω

= T
∑
k′,n

∑
|m′|�M

Vq(ω − ωm′ )βn,k′

�n,k′,m′
, (A14)

while the expressions involving infinite summations require
more effort to calculate. It is easy to check that the poles of the
summands are never given by an integer number, which makes
the Residue theorem for infinite summations again applicable
[21]. For sake of brevity, we define ω+ = ω + � and ω− =
ω − �, which leads to the terms

Z (L,N )
k,ω =

∑
k′,n

λq�
2

4ω

[
tanh

(
ω−
2T

)
ω− + βn,k′

ω−/�

ω− − βn,k′

+
tanh

(
βnk′
2T

)
ω− + βn,k′

1

ω+ + βn,k′
−

tanh
(

βn,k′
2T

)
ω− − βn,k′

× 1

ω+ − βn,k′
− tanh

(
ω+
2T

)
ω+ + βn,k′

ω+/�

ω+ − βn,k′

]
, (A15)

χ
(L,N )
k,ω =

∑
k′,n

λq�
2

4

[
tanh

(
ω−
2T

)
ω− + βn,k′

βn,k′/�

ω− − βn,k′

−
tanh

(
βn,k′
2T

)
ω+ + βn,k′

1

ω− + βn,k′
−

tanh
(

βn,k′
2T

)
ω+ − βn,k′

× 1

ω− − βn,k′
− tanh

(
ω+
2T

)
ω+ + βn,k′

βn,k′/�

ω+ − βn,k′

]
, (A16)

that conclude the calculation of Eqs. (A7) and (A8), and
therefore determine the results found by the self-consistent
Eqs. (A1)–(A3).
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APPENDIX B: COMPUTATIONAL DETAILS

The isotropic Eliashberg Eqs. (1) and (2) are solved it-
eratively with a convergence criterion of a maximal error
10−10 between two successive iterations. The highest num-
ber of iterations is chosen as 15 000. Within our numerical
algorithm, all convolutions are performed via the fast Fourier
transform technique. The free energy difference is obtained
by the Matsubara frequency dependent solutions for Zm and
�m using Eq. (11). From this we calculate Eqs. (12) and (13),
the results of which are given in Fig. 2, without numerical
smoothing or fitting.

For the anisotropic case discussed in Fig. 3, we used a
128 × 128 − k grid and a total of 5 000 real frequencies.
As explained in more detail in Refs. [13,14] we employ

a bare ten-band energy dispersion originally obtained from
density functional theory calculations. For the specific choice
of the constants appearing within this description (global
chemical potential, averaged phonon frequency, etc.) we used
parameter ranges, that have been proven to give results well
in agreement with experiment [13]. As example of the com-
puted superconducting quantities, we show in Fig. 4 the
zero-frequency superconducting gap as obtained from our
self-consistent Eliashberg calculation, projected on the Fermi
surface of the tight-binding model. Our results for the size
of the gap compare well to the experimentally measured
gap size [23]. For both, the Matsubara space calculation
and the analytic continuation, we used a minimal error of
10−10 for convergence and a maximal number of 10 000
iterations.
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