
PHYSICAL REVIEW B 99, 184507 (2019)

Switch effect and 0-π transition in Ising superconductor Josephson junctions
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We theoretically study the Josephson current in Ising superconductor–half-metal–Ising superconductor
junctions. By solving the Bogoliubov–de Gennes equations, the Josephson currents contributed by the discrete
Andreev levels and the continuous spectrum are obtained. For very short junctions, because the direct tunneling
of the Cooper pair dominates the Josephson current, the current-phase difference relation is independent of
the magnetization direction, which is the same as the conventional superconductor-ferromagnet-superconductor
junctions. On the other hand, when the length of the half-metal is similar to or greater than the superconducting
coherence length, the spin-triplet Josephson effect occurs and dominates the Josephson current. In this case,
the current-phase difference relations show the strong magnetoanisotropic behaviors with the period π . When
the magnetization direction points to the ±z directions, the current is zero regardless of the phase difference.
However, the current has a large value when the magnetization direction is parallel to the junction plane, which
leads to a perfect switch effect of the Josephson current. Furthermore, we find that the long junctions can host
both the 0 state and π state, and the 0-π transitions can be achieved with the change of the magnetization
direction. The physical origins of the switch effect and 0-π transitions are interpreted from the perspectives
of the spin-triplet Andreev reflection, the Ising pairing order parameter and the Ginzburg-Landau type of free
energy. In addition, the influences of the chemical potential, the magnetization magnitude, and the strength of
the Ising spin-orbit coupling on the switch effect and 0-π transitions are also investigated. Furthermore, the
two-dimensional Josephson junctions are also investigated and we show that the spin-triplet Josephson effect
can exist always. These results provide a convenient way to control the Josephson critical current and to adjust
the junctions between the 0 state and π state by only rotating one magnetization.
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I. INTRODUCTION

Monolayer transition-metal dichalcogenides have been
subjected to continuously growing interest due to their po-
tential applications in valleytronics [1,2] and optoelectronics
[3,4]. New physics is expected in the monolayer materials
with the inversion symmetry breaking and the strong Ising
spin-orbit coupling (ISOC) [5,6]. Recently, the superconduc-
tivity with the Ising pairing in atomically thin crystals such
as MoS2 and NbSe2 has been reported successively [7–11].
The in-plane upper critical field of the Ising superconductor
(ISC) far exceeds the Pauli paramagnetic limit because of the
presence of ISOC [12]. The superconducting phase diagrams
and the topological properties [13–16] of ISC are also theoret-
ically studied in monolayer transition-metal dichalcogenides.
It is predicted that the topologically nontrivial phase can
support the chiral Majorana edge states [13].

Researches on the Ising superconductivity open a new
route for the superconducting spintronics. For the conven-
tional ferromagnet-superconductor junctions, the conductance
does not depend on the direction of magnetization. When the
ferromagnet becomes a half-metal (HM), the subgap conduc-
tance will vanish since the Andreev reflection process is fully
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suppressed [17–19]. However, this is not the case of the HM-
ISC junctions [20,21]. When the direction of magnetization
in HM is parallel to the plane of the HM-ISC junctions, the
equal-spin Cooper pair can be formed and the spin-triplet
Andreev reflection can occur [21], which will lead to the
finite subgap conductance. Recently, the magnetoanisotropic
spin-triplet Andreev reflection in the ferromagnet-ISC junc-
tions is systematically studied by Lv et al. [21] using the
nonequilibrium Green’s function method. A strong magne-
toanisotropy with π period is found, which is different from
the conventional magnetoanisotropic system with 2π period
[22–25]. Even so, the study on the ISC Josephson junctions is
still blank.

Magnetic Josephson junctions are another class of spin-
tronic setup for investigating the interplay between ferro-
magnetism and superconductivity [26,27]. It possesses prac-
tical applications in classical and quantum circuits. The
junctions can host the so-called π state with the negative
critical current [28–30], which is believed to be helpful in
designing the noise-immune superconducting qubits [31]. The
tunable 0-π junction is the essential component for infor-
mation storage in the superconducting computer [32]. The
formation of the π state in conventional superconductor-
ferromagnet-superconductor junctions is determined by the
specific thickness of the interlayer [33–35]. Accordingly, the
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control of the 0-π transition can only be realized through
changing the size of the ferromagnet. Another alternative
structure is the junctions with the ferromagnetic multilayer
and the 0-π transition is tuned by changing the relative
orientation of magnetizations [36–38]. However, the manip-
ulations of the thickness and the relative orientation are all
inconvenient in the circuits. Achieving the easily controllable
0-π transition in the simple Josephson structures remains an
urgent problem to be solved in condensed matter physics.

In this paper we study the Josephson current in the ISC-
HM-ISC junctions which are concise sandwich structures. By
solving the Bogoliubov–de Gennes (BdG) equations [39,40]
for ISCs and HM and applying suitable boundary conditions,
the Andreev levels and the Josephson current are obtained for
both the double-band and the single-band junctions. When the
length of HM, denoted by L, is far less than the superconduct-
ing coherence length ξ0, the direct tunneling of the Cooper
pair dominates the Josephson current. The current-phase dif-
ference relation is weakly dependent on the direction of the
magnetization in the HM region. On the other hand, when
the length L is similar to or greater than ξ0, the spin-triplet
Josephson effect dominates the current. Then the Josephson
current exhibits a strong magnetoanisotropy with a period π .
The current is zero when the magnetization direction of HM
points to the ±z directions. However, it has a large value when
the magnetization direction is parallel to the junction plane,
which leads to a perfect switch effect of the Josephson current.

Furthermore, the long ISC-HM-ISC junctions can host
both the 0 state and π state, and the 0-π transitions can
be achieved with the change of the magnetization direction.
That is to say, the switch effect and the 0-π transitions
can be conveniently realized by rotating one magnetization
in ISC-HM-ISC junctions with a definite length L of HM.
From the detailed dependencies, the 0-π transitions can be
classified into two kinds which are the slow one and the
sudden one. In addition, the effects of the chemical potential,
the magnitude of magnetization, and the strength of ISOC
on the spin-triplet Josephson current and the 0-π transitions
are also investigated. The physical origins of the spin-triplet
current and the 0-π transitions are clarified by introducing
the spin-triplet Andreev reflection mechanism, transforming
the superconducting order parameters, and constructing the
Ginzburg-Landau type of free energy.

The organization of this paper is as follows. We will start in
Sec. II by demonstrating the Hamiltonian of the ISC-HM-ISC
junctions and deriving the expressions of the discrete and
continuous Josephson currents by using the BdG equations.
In Sec. III we present the numerical results and discuss the
spin-triplet Josephson current, the 0-π transitions, and the
switch effect. Section IV provides the physical interpretations
on the physical origin of our main results. Section V discusses
the two-dimensional properties of the Ising superconductor
junctions. Section VI concludes this paper. Some tedious
derivation processes for the continuous Josephson current are
relegated to the Appendix.

II. MODEL AND FORMALISM

We consider the ISC-HM-ISC Josephson junctions as
shown in Fig. 1(a), which are formed in a transition-

FIG. 1. (a) Schematic illustration of the ISC-HM-ISC junction.
The junction is in the xy plane. The interface is located at x = 0 and
x = L. The direction of magnetization M is depicted by the polar
angle θm and the azimuthal angle ϕm. (b) The energy bands near
K and −K valleys for the normal phase of ISC. The black solid
lines and dashed lines indicate the Fermi energy for the double-band
case and the single-band case, respectively. The red and blue arrows
represent two electrons with the opposite spin and opposite wave
vector from different valleys, which combine to form a Cooper pair.
(c) The energy bands for ferromagnet. Here the Fermi energy (black
solid lines) is across the energy band with spin antiparallel to M only.

metal dichalcogenide monolayer. The left and right ISCs
are semi-infinite while the length of the center HM is as-
sumed as L. The magnetization M in HM is specified by
the polar angle θm and the azimuthal angle ϕm, i.e., M =
M(sin θm cos ϕm, sin θm sin ϕm, cos θm). Its direction can be
tuned continuously by a weak external field.

Due to the presence of two kinds of valleys (K and −K)
in the Brillouin zone, the single-particle Hamiltonians for the
normal phase of ISC are [20]

Ĥ±(k) = h̄2k2

2m
− μ + εβσ̂z. (1)

Here k is the wave vector of electrons relative to the valleys
±K, μ is the chemical potential, ε = ± is the valley index for
±K, β is the strength of ISOC, and σ̂z is the Pauli matrix in the
spin space. In this section we consider the one-dimensional
Josephson junctions, in which the wave vector k only has one
component. The two-dimensional Josephson junctions will be
studied in Sec. V. The energy bands of the ISC’s normal phase
are schematically shown in Fig. 1(b). Here the spin subbands
are split due to the ISOC. At the K valley, the spin-up band has
higher energy than the spin-down one, but it is the opposite
for the −K valley [41,42]. However, the ISC’s normal phase
still obeys the time-reversal symmetry and the spin-rotation
symmetry about the z axis. In Eq. (1) we have neglected the
intervalley scattering induced by impurity. Since the valleys
K and −K are located at the corners of the Brillouin zone and
are well separated, the intervalley scattering is very weak.

The BdG Hamiltonians for the superconducting region
(x < 0 or x > L) can be written as [20]

ȞS
BdG±(k) =

(
Ĥ±(k) 	̂(k)

−	̂∗(−k) −Ĥ∗
∓(−k)

)
, (2)
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in which 	̂(k) = 	eiφ1(2) iσy is the superconducting order
parameter for the left (right) ISC with 	 the superconducting
gap magnitude. The phase difference φ of the left and right
ISCs is defined as φ = φ1 − φ2. For clarity, we will use μs and
βs to denote the chemical potential and the strength of ISOC
in ISC. The Cooper pairs are formed by electrons with the
opposite spin and opposite wave vector from different valleys,
as shown in Fig. 1(b). For μs > βs, ISC is a double-band
superconductor and for μs < βs, it is a single-band one [see
Fig. 1(b)].

The BdG Hamiltonians for the ferromagnetic region
(0 < x < L) are

ȞF
BdG±(k) =

(
Ĥ±(k) + σ̂ · M 0

0 −Ĥ∗
∓(−k) − σ̂∗ · M

)
. (3)

We use μ f and β f to denote the chemical potential and the
strength of ISOC in this region. In our model, β f is assumed to
be negligible and will be set to zero. Figure 1(c) schematically
shows the energy bands of the ferromagnetic region. Here the
spin subbands are split due to the magnetization M. The band
with spin parallel to M has higher energy than the antiparallel
band at both K and −K valleys. In the ferromagnetic region,
the time-reversal symmetry is broken. If M > μ f , the Fermi
energy is only across one subband as shown in Fig. 1(c) and
this region becomes HM.

The total Josephson current can be divided into two parts,
the discrete current contributed by the discrete Andreev lev-
els when the energy |E | < 	, and the continuum current
contributed by the continuous spectrum when |E | > 	. Be-
low we first derive the discrete current by solving the An-
dreev levels. The wave functions of quasiparticles in each
region can be obtained through solving the BdG equations,
Ȟ (−i∂/∂x)BdG±ψ± = E±ψ± with the substitution of −i∂/∂x
for k in ȞBdG±(k). The solution ψ+ for ISCs is

ψ+(x < 0) = c11ξe1e−ik1x + c12ξe2e−ik2x

+ d11ξh1eik1x + d12ξh2eik2x (4)

and

ψ+(x > L) = g11ηe1eik1x + g12ηe2eik2x

+ h11ηh1e−ik1x + h12ηh2e−ik2x, (5)

with the four-component vectors ξe1 =
(ueiφ1/2, 0, 0, ve−iφ1/2)T , ξe2 = (0, ueiφ1/2,−ve−iφ1/2, 0)T ,
ξh1 = (veiφ1/2, 0, 0, ue−iφ1/2)T , and ξh2 =
(0,−veiφ1/2, ue−iφ1/2, 0)T . One can obtain the vectors
ηe1(2) and ηh1(2) by substituting φ2 for φ1 in ξe1(2)

and ξh1(2), respectively. The coherent factors u and v

are u = √
(E + �)/2E and v = √

(E − �)/2E with
� = √

E2 − 	2. The wave vectors are expressed
as k1(2) =

√
2m[μs − (+)βs]/h̄2 under the Andreev

approximation [17]. The solution ψ− can be found by
interchanging the two wave vectors k1 and k2 in ψ+. In ψ−,
we will use c21(22) and d21(22) to denote the coefficients in
front of ξe1(2) and ξh1(2) and will use g21(22) and h21(22) in front
of ηe1(2) and ηh1(2), respectively.

The solution ψ+ for the HM region (0 < x < L) is

ψ+(x) = f11χe1eiqe1x + f12χe1e−iqe1x + f13χe2eiqe2x

+ f14χe2e−iqe2x + f15χh1eiqh1x + f16χh1e−iqh1x

+ f17χh2eiqh2x + f18χh2e−iqh2x, (6)

where the four-component vectors are given by χe1 =
(α1, α2, 0, 0)T , χe2 = (−α∗

2 , α1, 0, 0)T , χh1 = (0, 0, α1, α
∗
2 )T ,

and χh2 = (0, 0,−α2, α1)T with α1 = cos(θm/2) and α2 =
sin(θm/2)eiφm . The wave vectors are expressed as qe(h)1 =√

2m(μ f − M )/h̄2 + (−)E/[2
√

h̄2(μ f − M )/2m] and
qe(h)2 =

√
2m(μ f + M )/h̄2 + (−)E/[2

√
h̄2(μ f + M )/2m].

The solution ψ− possesses the same form of ψ+ except that
the coefficients f11, f12,..., f18 are replaced by f21, f22,..., f28.

The boundary conditions at the ISC-HM interfaces are

ψ±(x = 0−) = ψ±(x = 0+), (7)

ψ
′
±(x = 0−) = ψ

′
±(x = 0+), (8)

ψ±(x = L−) = ψ±(x = L+), (9)

ψ
′
±(x = L−) = ψ

′
±(x = L+). (10)

Eliminating the coefficients c11, c12, d11, d12, g11, g12, h11, and
h12 (c21, c22, d21, d22, g21, g22, h21, and h22), one will get the
homogeneous linear equations of f11, f12,..., f18 ( f21, f22,...,
f28). Their coefficients construct a 8 × 8 matrix defined as �1

(�2). The Andreev levels E± in the HM region are determined
by [43]

Det[�1(E+)] = 0 (11)

and

Det[�2(E−)] = 0. (12)

The symbol Det[· · · ] represents the determinant of a matrix.
The Josephson current contributed by the discrete Andreev

levels is written as [44,45]

Id = e

h̄

∑
n

[
dE+

n

dφ
f (E+

n ) + dE−
n

dφ
f (E−

n )

]
. (13)

Here f (E±
n ) are the Fermi distribution functions. The energies

E+
n and E−

n denote two sets of discrete Andreev levels solved
from Eqs. (11) and (12), respectively. The sum ensures the
contributions from all Andreev levels are included.

Second, the Josephson current contributed by the continu-
ous spectrum can be written as

Ic = e

2h

(∫ −	

−∞
+

∫ ∞

	

)[∑
λ=±

(Jλ
e1 + Jλ

e2 + Jλ
h1 + Jλ

h2)

]
, (14)

with

Jλ
e1(2) =

∑
l=1,2

[(
Cλ

e1(2)l − Dλ
e1(2)l

) − (
C̃λ

e1(2)l − D̃λ
e1(2)l

)]
, (15)

Jλ
h1(2) =

∑
l=1,2

[(
Cλ

h1(2)l − Dλ
h1(2)l

) − (
C̃λ

h1(2)l − D̃λ
h1(2)l

)]
, (16)
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where Cλ
e1(2)l and Dλ

e1(2)l describe the probabilities of transi-
tions as electronlike and holelike quasiparticles, respectively,
in the right ISC when an electronlike quasiparticle charac-
terized by ξe1(2) is injected from the left ISC, and C̃λ

e1(2)l

and D̃λ
e1(2)l describe the probabilities of transitions in the left

ISC when the electronlike quasiparticle is injected from the
right ISC. Cλ

h1(2)l , Dλ
h1(2)l , C̃λ

h1(2)l , and D̃λ
h1(2)l describe the

similar processes when a holelike quasiparticle is injected.
The definition and derivation of these probabilities can be
found in the Appendix.

The total Josephson current is expressed as

I = Id + Ic, (17)

which is a function of the phase difference φ, the chemical
potentials μs and μ f , the ISOC strength βs, the magnitude
and direction of the magnetization M, and the length L of the
HM region.

In this paper we focus our attentions on the ISC-HM-ISC
Josephson junctions with μ f < M (i.e., the central region is
HM with the complete spin polarization). The temperature
is taken as zero. Since f (E±

n ) will become step functions
at the zero temperature, the Andreev levels with E±

n > 0 do
not contribute to the Josephson current I . In the following
calculations we also take a specific energy μ0 = 100	 as the
unit of other energies such as μs, βs, μ f , and M. The wave

vector defined by μ0 is kF =
√

2mμ0/h̄2. The reciprocal of
kF is the unit of the length L. The superconducting coherence
length is defined as ξ0 = h̄vFs/π	 with vFs the Fermi velocity
in ISCs. Since ISCs obey the spin-rotation symmetry about the
z axis, the Josephson current of the ISC-HM-ISC junctions
will not depend on the azimuthal angle ϕm.

III. RESULTS AND DISCUSSIONS

A. Double-band junctions

First of all, we study the double-band junctions with μs >

βs.
Figures 2(a)–2(d) show the Andreev levels E+

n with the
different polar angle θm of magnetization. The HM length is
kF L = 100 which is about the coherence length ξ0 of ISCs.
Here we do not show the Andreev levels E−

n for simplicity

FIG. 2. (a)–(d) The discrete Andreev levels E+
n for θm = 0, 0.1π ,

0.2π , and 0.5π , respectively. (e) The discrete Josephson current
Id and (f) the continuum Josephson current Ic versus the phase
difference φ for the different θm. The related parameters are kF L =
100, μs = 1.3, βs = 1.1, μ f = 1.0, and M = 1.2.

since the equality E−
n = −E+

n always holds. For θm = 0, all
Andreev levels E+

n are flat and they are independent of the
superconducting phase difference φ [see Fig. 2(a)]. In fact,
the magnetization M in this situation is in the +z direction
and there only exist electrons with their spin pointing to the
−z direction in the HM region. However, it needs spin-up (the
+z direction) and spin-down (the −z direction) electrons to
form Cooper pairs. Therefore, there is a lack of the effective
coupling between the states in HM and Cooper pairs in
ISCs. At present, ISCs only play the parts of the confinement
potentials which cause the flat Andreev levels. As the
polar angle θm rises from 0, the Andreev levels gradually
move down and start to depend on the phase difference φ

[see Figs. 2(b)–2(d)] due to the appearance of the spin-up
electrons in HM. When θm rises to 0.5π , the Andreev levels
E+

n distribute symmetrically about E = 0. In particular, the
Andreev levels are significantly dependent on φ at θm = 0.5π

[see Fig. 2(d)].
From these discrete Andreev levels in Figs. 2(a)–2(d) and

by using Eq. (13), the discrete Josephson current Id can be
obtained as shown in Fig. 2(e). We also show the contin-
uum Josephson current Ic in Fig. 2(f). As the polar angle
θm = 0, both the discrete current and the continuum current
are zero regardless of the phase difference φ. In this case,
there only exist the spin-down electrons in the HM region
[see Fig. 1(c)]. The absence of spin-up electrons will forbid
the occurrence of the Andreev reflection [46], which results in
the Josephson current being zero (Id = Ic = 0). When θm de-
viates from zero, the nonzero currents, including the discrete
one and the continuum one, begin to appear, which are the
spin-triplet Josephson currents associated with the spin-triplet
Andreev reflection. The physical description of the spin-triplet
Josephson currents is given in Sec. IV A.

Now we discuss the discrete and continuum Josephson cur-
rents in detail. Both Id and Ic are strongly magnetoanisotropic
and the current-phase difference relations depend on the
polar angle θm. This is different from the conventional
superconductor-ferromagnet-superconductor junctions where
the current-phase difference relations are independent of θm.
As the polar angle θm rises from 0 to 0.5π , the amplitude
of the continuum current Ic is increased and the curves keep
the sinusoidal form [see Fig. 2(f)]. Here Ic is negative when
0 < φ < π . However, the discrete current Id experiences a
complicated evolution as shown in Fig. 2(e). The critical
discrete current for θm = 0.1π is negative while that for
θm = 0.5π is positive. With the increase of θm, the amplitude
of Id also increases. The amplitude reaches its biggest value at
θm = 0.5π . In addition, for θm = 0.2π , there are two jumps of
current near φ = 0.5π and 1.5π . These behaviors of Id can be
understood from the Andreev levels E+

n in Figs. 2(a)–2(d). For
θm = 0.1π , there is only one Andreev level below the Fermi
energy EF = 0 [see Fig. 2(b)], which level is concave and
leads to the negative critical value. For θm = 0.2π , the second
lowest Andreev level crosses with EF = 0 [see Fig. 2(c)],
which induces the jumps of Id . Furthermore, for θm = 0.5π ,
the second lowest level is below EF and it is convex, which
will provide the main contribution to Id and bring about the
positive critical current.

Next we focus on the total Josephson current I . Figure 3
shows the total current I as a function of the phase difference
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FIG. 3. The total current I as a function of the phase difference φ

with θm = 0, 0.1π , 0.2π , 0.3π , 0.4π , and 0.5π for (a) kF L = 0.01,
(b) kF L = 5, (c) kF L = 100, and (d) kF L = 300. Other parameters
have the same values as those in Fig. 2.

φ for different values of the HM’s length L. First, as usual,
the discrete current Id is much larger than the continuum
current Ic [Figs. 2(e) and 2(f)]. Consequently, the discrete
current Id dominates the shapes of the total current [see
Figs. 2(a) and 3(c)]. Second, the total current strongly relies
on the length L of HM. For L ∼ 0 as shown in Fig. 3(a),
the current remains unchanged when the magnetization is
rotated. This is because ISCs are directly coupled with each
other. The current-phase difference relation reduces to that
of ISC-ISC junctions, and I can almost reach the biggest
value 2e	/h̄. In this case, the Josephson current I originates
from the direct tunneling of the Cooper pair. As the length L
increases, the current I gradually decreases. When kF L = 5
(L � ξ0 is still satisfied), the direct tunneling of the Cooper
pair becomes weak but the current is still finite even for
θm = 0 [see Fig. 3(b)]. Meanwhile, the θm dependence of
the current starts to emerge, which means the occurrence of
the spin-triplet Josephson effect. When L ∼ ξ0 as shown in
Fig. 3(c), the strongly magnetoanisotropic Josephson current
is exhibited. The current I for θm = 0 is zero regardless of
the phase difference φ, because the direct tunneling of the
Cooper pair disappears. But the spin-triplet Josephson effect
by the multiple Andreev reflection occurs, which leads to a
large current at θm = 0.5π . The current possesses the “on-off”
property when one rotates the magnetization from θm 	= 0 to
zero. This switch effect is an important result of the ISC-HM-
ISC junctions. Another important effect of our junctions is
the 0-π transition. The negative critical current for θm = 0.1π

indicates the formation of the π state with the current-phase
difference relation ∼sin(φ + π ). Different from the 0 state,
the minimum of the free energy is now achieved at φ = π not
φ = 0 [28]. The two important effects manifest themselves
more clearly when L > ξ0 as shown in Fig. 3(d).

The detailed θm dependence of the total current I at
φ = 0.5π can be found in Fig. 4. The current displays pe-
riodic variations with a period of π . This is distinct from
the conventional superconductor-ferromagnet-superconductor
junctions, where the Josephson current is independent of the

FIG. 4. The total current I with φ = 0.5π as a function of the
polar angle θm for kF L = 0.01, 5, 10, 100, and 300. The currents
for kF L = 0.01 (the black solid line) and kF L = 5 (the red dashed
line) have been taken as 1/100 and 1/10 of their real values. Other
parameters have the same values as those in Fig. 2.

direction of the magnetization M. Within one period, the
current is symmetric about θm = 90◦ or θm = 270◦ which
indicates I (θm) = I (π − θm). In order to explain this sym-
metry, we introduce the rotation operation around the x axis
with the rotating angle 180◦. The operation is defined as the
unitary matrix Mx = diag(mx, m∗

x ) with mx = iσx. Under this
transformation, the Hamiltonians ȞF

BdG± with θm are changed
to ȞF

BdG∓ with π − θm. In other words, the direction of M in
HM is rotated from θm to π − θm. Simultaneously, the Hamil-
tonians ȞS

BdG± are changed to ȞS
BdG∓. If we denote the current

associated with ȞBdG± by I±, then I±(θm) = I∓(π − θm) is
satisfied. The total current I , as the sum of I+ and I−, meets
the invariance I (θm) = I (π − θm). In addition, since the spin-
triplet effect depends only on the magnetization component
in the xy plane not the component along the z direction, we
also obtain I (θm) = I (π − θm). Moreover, considering that
ISCs have the spin-rotation symmetry about the z axis and
the spherical coordinates (θm + π, ϕm) and (π − θm, ϕm + π )
are equative, we have I (θm + π ) = I (π − θm). By combin-
ing I (θm) = I (π − θm) and I (θm + π ) = I (π − θm), it brings
about the π -periodicity Josephson current straightforwardly.

From Fig. 4 the following conclusions can also be drawn.
The current I for kF L = 0.01 does not rely on the polar angle
θm, because the direct tunneling of the Cooper pair dominates
the current. When L � ξ0 (e.g., kF L = 5), the current is
always greater than zero and approximates the shape of a
square wave, which implies that the ISC-HM-ISC junctions
locate the 0 state regardless of θm. With the increase of L, the
current strongly depends on the polar angle θm because of the
emergence of the magnetoanisotropic spin-triplet Josephson
effect. Furthermore, the π state can be formed even for a short
junction (see the curve for kF L = 10). Now, the ISC-HM-ISC
junctions can host the 0 state or π state by tuning the direction
of the magnetization M. For the greater values of kF L, the
π state is either more pronounced (kF L = 100) or formed in
a wider angle range of θm (kF L = 300). When the current
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FIG. 5. The total current I as a function of the phase difference
φ with θm = 0, 0.1π , 0.2π , 0.3π , 0.4π , and 0.5π for (a) kF L =
0.01, (b) kF L = 5, (c) kF L = 100, and (d) kF L = 300. The related
parameters are μs = 1.0, βs = 1.1, μ f = 1.0, and M = 1.2.

reaches its negative maximum, a sudden transition from the π

state to the 0 state will happen. Actually, the sudden transition
is always accompanied with the formation of the π state. The
physical explanation of the sudden transition between the 0
state and the π state will be given in Sec. IV B.

B. Single-band junctions

Now we turn to the single-band case with μs < βs. Figure 5
shows the current-phase difference relations for μs = 1.0 and
βs = 1.1. For L ∼ 0 in Fig. 5(a), the current is irrespective of
the polar angle θm due to the direct tunneling of the Cooper
pair. It can almost reach the biggest value e	/h̄, half of
the value for the double-band junctions [see Fig. 3(a)]. For
L � ξ0 in Fig. 5(b), the current at θm = 0 is not equal to zero
and it also depends on θm. In this case, the direct tunneling of
the Cooper pair and the spin-triplet Josephson current coexist.
These results are analogous to those for the double-band case.
However, the 0-π transition in the single-band junctions can
occur for shorter length L than that of the double-band case.
For the single-band junctions with kF L = 5, the 0-π transition
has appeared [see Fig. 5(b)]. Actually, there are two types of
0-π transitions as θm is increased from 0 to 0.5π . One takes
place slowly near θm = 45◦ and the other occurs suddenly
near θm = 67◦, which have been shown clearly in Fig. 6. For
L ∼ ξ0 in Fig. 5(c), the current is zero at θm = 0. Now, the
spin-triplet Josephson current dominates the total current. The
switch effect and the 0-π transition can occur when one raises
θm from zero. For L > ξ0 in Fig. 5(d), the switch effect and
the 0-π transition still exist and new current-phase difference
relations like a triangular wave can be obtained.

Figure 6 shows the θm dependence of the total current at
φ = 0.5π for the single-band junctions. The current exhibits
the π -periodicity I (θm) = I (π + θm) and the relation I (θm) =
I (π − θm), which are the same as those for the double-band
case. The current for the HM’s length L ∼ 0 is a nonzero
constant due to the direct tunneling of the Cooper pair. For
L � ξ0 with kF L = 5, the spin-triplet Josephson current be-

FIG. 6. The total current I with φ = 0.5π as a function of the
polar angle θm for kF L = 0.01, 5, 10, 100, and 300. The current for
kF L = 0.01 (the black solid line) has been taken as 1/20 of its real
value. Other parameters have the same values as those in Fig. 5.

gins to appear, which leads to the result that the current is
magnetoanisotropic (i.e., the current depends on θm), but the
current I at θm = 0 is still a nonzero positive value by the
tunneling of the Cooper pair. As θm increases from 0 to 0.5π ,
the positive I gradually decreases and changes into a negative
value, then I suddenly jumps to a large positive value. As a
result, there are two types of 0-π transitions, the slow one and
the sudden one. For larger values of L, the direct tunneling
of the Cooper pair is very weak. Thus, I is zero at θm = 0
and the slow 0-π transition disappears. However, the current I
is large at θm = 0.5π due to the spin-triplet Josephson effect.
By tuning the direction of the magnetization, the Josephson
critical current can easily be regulated, and the switch effect
is activated. Moreover, for the single-band junctions, the in-
creased length of HM is not always beneficial to the formation
of the π state.

Next, we will take kF L = 5 as an example to discuss
the two types of 0-π transitions from the angle of An-
dreev levels. We first consider the sudden 0-π transition.
The discrete Andreev levels E+

n and E−
n as functions of

the polar angle θm for kF L = 5 and φ = 0.5π are drawn in
Fig. 7(a). There are four intersections between the levels and
EF = 0. The positions of the intersections give the values of
θm for the sudden transitions in Fig. 6. In order to clear up
how the transitions happen, we take the first intersection point
and mark it by A. On the left of point A, the level E−

2 < 0
and contributes to the Josephson current according to Eq. (13),
while on the right of point A, E−

2 > 0 and the level E+
1 < 0

contributes to the current. The derivatives of E−
2 and E+

1 with
respect to φ are negative and positive, respectively [see Fig.
7(b)], so the current suddenly changes its sign when θm passes
point A, which brings about the occurrence of a sudden 0-π
transition. Furthermore, in Sec. IV B we give the physical
explanation of the sudden 0-π transition from the spin-triplet
Cooper pairs.

Then we consider the slow 0-π transition. From Fig. 6 the
slow transition arises at θm = θ c

m (θ c
m ≈ 45.758◦). Figure 7(c)
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FIG. 7. (a) The Andreev levels E+
n (the blue dashed curves) and E−

n (the red dotted curves) as functions of θm for kF L = 5 and φ = 0.5π .
The black solid line represents EF = 0. The symbol A denotes the intersection point between the Andreev levels and EF = 0. (b) The enlarged
figure in the vicinity of the point A in (a) with φ = 0.5π and 0.501π . (c) The Andreev levels versus the phase difference φ for θm = 45.7◦ < θ c

m,
45.758◦ = θ c

m, and 45.8◦ > θ c
m. Other parameters have the same values as those in Fig. 6.

shows the Andreev level-phase difference relations for θm <

θ c
m, θm = θ c

m, and θm > θ c
m. These three curves, respectively,

are concave, flat, and convex, and their slopes at φ = 0.5π

are positive, zero, and negative. As a result, it gives rise to a
slow evolution of the junctions from the 0 state to the π state
as θm increases from less than θ c

m to greater than θ c
m. Due to

the periodicity and the relation I (θm) = I (π − θm), the other
three points for the slow 0-π transition in Fig. 6 can also be
obtained.

C. Effects of system parameters on the spin-triplet
Josephson current

Let us investigate the effect of the chemical potential μs

on the spin-triplet Josephson current. Figure 8 shows the
total current I versus the polar angle θm for the different μs.
Here the HM’s length L is taken as kF L = 300, where the
direct tunneling of the Cooper pair disappears. The current I
exhibits a strong magnetoanisotropy for both the double-band
junctions (μs > βs) and single-band junctions (μs < βs) due
to the spin-triplet Josephson effect. The current is always zero
at θm = 0 and it has the large value at θm = 0.5π . As a result,
the switch effect can be achieved for all μs. Furthermore, both

FIG. 8. The total current I with φ = 0.5π as a function of θm

for various values of μs. The parameters are kF L = 300, βs = 1.1,
μ f = 1.0, and M = 1.2.

the 0 state and π state can appear, and the transition between
them is always sudden regardless of the μs. With the increase
of μs, the angle range realizing the π state becomes larger.
Because of the presence of the sudden 0-π transition, one can
conveniently adjust between the 0 state and π state by tuning
the polar angle θm.

Finally, we study the effects of the magnetization magni-
tude M and ISOC strength βs on the Josephson current (see
Fig. 9). The current I exhibits a strong magnetoanisotropy
for all M and βs, where I = 0 at θm = 0 and I is large at
θm = 0.5π because of the spin-triplet Josephson effect. Thus
the switch effect always holds. On the other hand, the sudden
0-π transition is gradually weakened as the magnetization
magnitude M increases. When M is much larger than μ f ,
the π state disappears and there is no 0-π transition both
for the double-band junctions [see Fig. 9(a)] and single-band
junctions [see Fig. 9(c)]. In contrast, the π state can survive
regardless of the ISOC strength βs, and the sudden 0-π
transition can be present both for the double-band junctions
[Fig. 9(b)] and single-band junctions [Fig. 9(d)]. In addition,
there exist current dips around θm = 90◦ and θm = 270◦ for

FIG. 9. The total current I with φ = 0.5π as a function of θm

for (a) μs = 1.3, βs = 1.1 and various values of M, (b) μs = 1.3,
M = 1.2 and various values of βs, (c) μs = 1.0, βs = 1.1 and various
values of M, and (d) μs = 1.0, M = 1.2 and various values of βs.
Other parameters are kF L = 300 and μ f = 1.0.
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the single-band junctions [see Figs. 8, 9(c), and 9(d)]. The
dips express the deviation of the current-phase difference
relation from the sinusoidal form which has been seen in
Fig. 5(d). For θm ∼ 0.5π and L > ξ0, the current no longer
obtains its maximum value at φ = 0.5π but at φ > 0.5π .
The dip magnitude is almost independent of μs as plotted
in Fig. 8. When M is raised or βs is reduced, the dips will
gradually fade away as given in Figs. 9(c) and 9(d). However,
for the double-band junctions, there is no current dip and the
current is always the largest at θm = 0.5π [see Figs. 8 and
9]. It is consistent with the current-phase difference relations
presented in Fig. 3(d).

IV. PHYSICAL INTERPRETATIONS

A. Switch effect

Now we explain the origin of the switch effect. In other
words, we clarify how the spin-triplet Josephson current
comes into being when θm 	= 0. When θm deviates from zero,
the magnetization in HM is no longer collinear to the spin-
quantization axis (the +z direction) of ISCs [see Fig. 1(c)].
The spin wave function of electrons in HM can be written as
the superposition of spin-up and spin-down relative to the z
axis. As a result, the spin-triplet Andreev reflection becomes
possible [21]. Taking θm = 0.5π as an example, the spin of
the electrons in HM all points to the −x direction. The −x
spin state can split up into the spin-up (the +z direction)
and spin-down (the −z direction) states. Considering that a
spin-up electron in the HM region moves forward and reaches
the right HM-ISC interface, the spin-triplet Andreev reflection
occurs, where the spin-up electron is reflected back as a spin-
down hole in HM and a Cooper pair is injected into the right
ISC. Then, when the spin-down hole reaches the left ISC-HM
interface, the Andreev reflection occurs again with a spin-up
electron reflected back and a Cooper pair annihilated in the
left ISC. The above process repeats again and again, and the
Josephson current flows through the ISC-HM-ISC junction.

In addition, the aforementioned process can also be re-
garded as that a Cooper pair is injected from the left ISC,
splits into two electrons with their spin pointing to the −x
direction in the central HM region, and combines into the
Cooper pair in the right ISC again, which brings the Josephson
current. Note that the spin of the two electrons in HM is in
the −x direction, i.e., they are in a spin-triplet state with the
total spin S = 1 and Sx = −1. Hence, this is a spin-triplet
Josephson effect. Since the Cooper pair in the ISCs has the
spin-triplet component, the spin-triplet Andreev reflection can
occur in the HM-ISC interface and the spin-triplet Josephson
current can flow through the ISC-HM-ISC junctions. This is
essentially different from the conventional superconductor-
HM-superconductor junctions where the Andreev reflection
cannot occur and the Josephson current disappears.

B. 0-π transitions

Next, we explain the origin of the 0-π transitions. Due to
the presence of the ISOC, the Pauli matrices σ̂x and σ̂y are
not commutative with the ISC’s Hamiltonians in Eqs. (1) and
(2). Thus, the total spin S is not a good quantum number and
the wave function of Cooper pairs in ISC has both the spin-

singlet and spin-triplet components. Following Ref. [20], the
spin-triplet pairing correlation can be obtained, which is

	dz(k, E )σ̂ziσ̂y = 	dz(k, E )

(
0 1
1 0

)
, (18)

where dz(k, E ) = 2εβξk/[(	2 + ξ 2
k − E2)2 + 2β2(	2 −

ξ 2
k − E2) + β4] with ξk = h̄2k2

2m − μ. Here ε = ± is the valley
index for ±K. The parameters 	, β, μ, and k are the same
as those in the Hamiltonians (1) and (2). In Eq. (18), the
spin-quantization axis is at the z direction. If we chose the
direction of the magnetization in HM as the quantization axis,
the spin-triplet paring correlation changes to the following
form:

dz(k)

(− sin θm cos θm

cos θm sin θm

)
. (19)

This order parameter possesses the same structure as that for
the spin-triplet superconductor without ISOC.

The wave function in the spin-triplet superconductor is
described by the d vector [47]. We consider the spin-
triplet superconductor–ferromagnet–spin-triplet superconduc-
tor junctions with d ‖ ẑ, i.e., d = d̃z(k)ẑ with the orbital part
d̃z(k). The order parameter in the superconductors is(

0 d̃z(k)
d̃z(k) 0

)
. (20)

The form of the order parameter also depends on the choice
of the spin-quantization axis. If we chose the direction of
the magnetization in ferromagnet as the quantization axis as
we have done for ISC, the order parameter will bear the same
form as that in Eq. (19) for ISC except for the different factors
dz(k) and d̃z(k).

The crucial term in the current-phase difference relations,
which is responsible for the formation of 0-π transitions in the
spin-triplet Josephson junctions, is as follows [48,49]:

I ∝ − cos 2θm sin φ. (21)

For 0 � θm < π/4, I ∝ − sin φ corresponds to the π state,
while for π/4 < θm � π/2, I ∝ sin φ corresponds to the 0
state. The sign change of I at θm = π/4 leads to the 0-π
transition. Taking the influences of other structure parameters
into account, the transition angle will acquire a deviation from
π/4 [49]. Note, although the d vectors in Refs. [48,49] is
taken along the x axis, the above analyses with d ‖ ẑ are also
consistent.

The 0-π transition at π/4 also applies to the ISC-HM-
ISC Josephson junctions due to the wave function of Cooper
pairs in ISC having the spin-triplet components. Because the
influences of the chemical potentials, the ISOC strength, the
magnetization magnitude, and the length of HM, the 0-π
transition angle deviates from π/4 as shown in Figs. 4, 6, 8,
and 9, but it is always around π/4.

In addition, the current-phase difference relation in
Eq. (21) can also be derived through constructing the
Ginzburg-Landau type of free energy for the ISC-HM-ISC
Josephson junctions. Generally, for the magnetic Josephson
junctions with the spin-triplet paring characterized by d vec-
tors, the free energy can always be constructed with the
magnetization M and the d vectors. The selection rules for
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the lowest order current in the spin-triplet Josephson junctions
have been well explained using the constructed free energy
[50,51]. The constructed terms cannot only demonstrate the
characteristics of the current-phase difference relation but
also directly express the interplay of ferromagnetism and
superconductivity.

Now, we turn to the ISC-HM-ISC Josephson junctions.
Assuming the spin-quantization axis along the magnetization
M, the d vector for the left (right) ISC is

d l (r) = dz(k)(sin θm, 0, cos θm)eφ1(2) , (22)

according to the order parameter in Eq. (19). We postulate that
the following two terms will contribute to the free energy,

[(d l · M)(M · d∗
r ) + H.c.] (23)

and

[(d l × M) · (M × d∗
r ) + H.c.]. (24)

The symbol “∗” denotes the conjugation operation which
guarantees the U (1) gauge invariance of the free energy.
Substituting d l (r) and M = (0, 0, M ) into Eqs. (23) and (24),
we get the free energy F ∝ (cos2 θm − sin2 θm) cos φ. The
Josephson current, as the derivative of the free energy with
respect to φ, is proportional to − cos 2θm sin φ which is just
the term in Eq. (21). The term is consistent with the relation
I (θm) = I (π − θm) and the periodicity I (θm) = I (π + θm).

V. TWO-DIMENSIONAL ISC-HM-ISC JUNCTIONS

A. Formalism

In the previous sections the one-dimensional ISC-HM-ISC
junctions are studied only. In this section, we discuss the
properties of the two-dimensional ISC-HM-ISC junctions. In
this situation, the size along the y direction of the left ISC,
center HM region, and right ISC are finite [see Fig. 1(a)]. Then
the Hamiltonian Ĥ± in Eq. (1) changes into

Ĥ±(k) = h̄2k2

2m
− μ + εβσ̂z. (25)

Compared with the one-component wave vector k in Eq. (1),
here the wave vector has two components with k = (kx, ky).
The BdG Hamiltonians of the ISCs and HM regions for
the two-dimensional ISC-HM-ISC junctions are the same as
Eqs. (2) and (3), and only the Ĥ±(k) in them needs to be
replaced by Ĥ±(k) in Eq. (25). We consider the periodic
boundary condition at the y direction and the wave vector ky is
a good quantum number which is conserved in the scattering
process.

For a given ky, the wave functions in ISCs and
HM can be derived by solving the BdG equations
Ȟ (−i∂/∂x, ky)BdG±ψ± = E±ψ± with the substitution
of −i∂/∂x for kx in ȞBdG±(kx, ky). The obtained wave
functions have the same form as those in Eqs. (4)–(6).
However, the wave vectors need to be rewritten as k1(2) =√

2m[μs − (+)βs]/h̄2 − k2
y , qe(h)1 =

√
2m(μ f −M )/h̄2−k2

y +
(−)E/[2

√
h̄2(μ f − M − h̄2k2

y /2m)/2m], and qe(h)2 =√
2m(μ f +M )/h̄2−k2

y +(−)E/[2
√

h̄2(μ f +M−h̄2k2
y /2m)/2m].

The ky-dependent coefficients in the wave functions and the
ky-dependent Andreev levels E± in HM can be determined

by the conditions Eqs. (7)–(10) and Eqs. (11) and (12),
respectively.

For the given ky, the contribution to the Josephson current
along the x axis is expressed as I (ky) = [Id (ky) + Ic(ky)] cos θ

with the incident angle θ = sin−1(ky/
√

μs + βs) which is the
angle between the wave vector k = (k2, ky) and the x axis.
Next, we will use the dimensionless ky normalized by the
wave vector kF defined in Sec. II. There exists a critical
wave vector kyc = √

μs + βs. Only these wave vectors ky with
ky < kyc contribute to the Josephson current. When ky > kyc,
I (ky) is zero. If we assume the junction size along the y
direction is W , the normalized wave vector ky can be written as
ky = 2πn/(kFW ) with n an integer number under the periodic
boundary condition [52]. The two-dimensional current I will
be the sum of I (ky) over ky.

B. Results and discussions

First, we consider the properties of narrow junctions with
the small value of W . If the width W is smaller than a
critical width Wc (kFWc = 2π/kyc), only the wave vector
ky = 0 contributes to the Josephson current. This is just the
one-dimensional case that we have discussed in the previous
sections. In this case, the spin-triplet Josephson effect occurs.
The Josephson current strongly depends on the magnetization
angle θm in the HM with the magnetoanisotropic period being
π , which leads to the perfect switch effect and 0-π transitions.
In Ref. [20], the junction parameters are taken as μs = 4.0	

and βs ≈ 2.7	. By using these parameters, the critical width
Wc is about ξ0 with ξ0 being the superconducting coherence
length.

Second, we consider the properties of wider junctions
with the width W > Wc and the contribution of the wave
vector ky 	= 0 to the Josephson current. Figure 10 show the
ky dependencies of the Josephson current I (ky) as a function
of the polar angle θm of the magnetization in HM. Here the
junction parameters are chosen as μs = 1.0 and βs = 1.1,
which are the same as those in Figs. 5 and 6. In Fig. 10, both

FIG. 10. The Josephson current I (ky ) with different ky as a
function of θm for (a) kF L = 5, (b) kF L = 10, (c) kF L = 20, and
(d) kF L = 100. Other parameters are μs = 1.0, βs = 1.1, μ f = 1.0,
and M = 1.2.
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FIG. 11. The Josephson current for the two-dimensional junc-
tions along the x axis as a function of θm for kF L = 5, 10, 20, and
100. Other parameters have the same values as those in Fig. 10.

the short and the long junctions are considered. It is the most
obvious feature that the spin-triplet Josephson effect still takes
effect for all values of ky, leading to that the Josephson current
strongly depends on the polar angle θm. In other words, the
Josephson current still exhibits a strong magnetoanisotropy
and the magnetoanisotropic period is π . The current is very
small at θm = 0 and generally acquires a large value at
θm = 0.5π . For the short junctions with kF L = 5, the Joseph-
son current at θm = 0 has a small nonzero value due to the
direct tunneling of Cooper pairs [see Fig. 10(a)]. For the
longer junctions, the current is vanishing at θm = 0 [see Figs.
10(b)–10(d)]. But at θm = 0.5π the current generally has a
large value regardless of the length L and wave vector ky. So
the switch effect persists for all junctions. On the other hand,
the 0-π transition can keep for some wave vectors ky 	= 0,
e.g., see the curves with ky = 0.28 in Figs. 10(a), 10(c), and
10(d) and the curves with ky = 0.56 and 1.40 in Fig. 10(b), but
for others, the 0-π transition is weak with the small negative
current or vanishing.

Third, we consider the junctions with large enough W .
In this situation, the wave vector ky tends to be continu-
ous. The sum over ky will turn into the integral over ky.
The Josephson current in the two-dimensional ISC-HM-ISC
junctions after integral of the normalized ky is given by
I = kFW

2π

∫
I (ky)dky. Figure 11 shows the Josephson current

versus the polar angle θm for the two-dimensional junctions
at the superconducting phase difference φ = π/2. The spin-
triplet Josephson effect still survives for both the short and
the long junctions. The magnetoanisotropy and its period are
not affected by the dimensionality. For kF L = 5, the small
nonzero value of the Josephson current at θm = 0 originates
from the direct tunneling of Cooper pairs. For the longer
junctions, the spin-triplet effect dominates the Josephson cur-
rent. The Josephson current is zero at θm = 0 and has the
maximum value at θm = 0.5π . So the switch effect can well
persist for the two-dimensional Josephson junctions. On the
other hand, the 0-π transition no longer exists under such
circumstance.

VI. SUMMARY

In conclusion, we systematically study the Josephson effect
in the sandwich structure consisting of Ising superconductors
and half-metal. By using the Bogoliubov–de Gennes equa-
tions, the discrete Josephson current is calculated through
solving the Andreev levels and the continuous Josephson
current is expressed as the composition of transition proba-
bilities. For different values of the length L of half-metal, the
total Josephson current shows different characteristics. When
the length is very short, the direct tunneling of the Cooper
pair dominates the Josephson current which is independent
of the direction of the magnetization. However, for the long
junctions, the spin-triplet Josephson current dominates, which
exhibits a strong magnetoanisotropy with the period π . The
spin-triplet Josephson current completely disappears as the
magnetization direction points to the ±z directions, but it has
the large value as the magnetization direction is parallel to
the junction plane. Thus the junctions can work as a switch
of the Josephson current. Furthermore, with the change of
the magnetization direction, the junctions can host both the
0 state and π state. At a special magnetization direction,
a sudden 0-π transition occurs. This provides a convenient
experimental way to regulate the 0 state and π state by tuning
the magnetization direction. In addition, the influences of the
chemical potential, the strength of magnetization, and the
Ising spin-orbit coupling are also investigated, which help to
specify suitable parameters for the experimental realization
of the π state in a simple structure. The mechanism for the
spin-triplet Andreev reflection, the exotic order parameter in
Ising superconductors, and the Ginzburg-Landau type of free
energy are explored, which are responsible for the formations
of the switch effect and the 0-π transitions. At last, we
show that the spin-triplet Josephson effect can well survive
in the two-dimensional junctions and the Josephson current is
strongly magnetoanisotropic with a period π always.
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APPENDIX

Consider that an electronlike quasiparticle characterized
by ξe1 is injected from the left ISC. Following the BdG
equation ȞBdG+(−i∇r)ψ+ = E+ψ+, the wave function ψ+ in
the superconducting region is represented as

ψ+(x < 0) = ξe1eik1x + a+
e11ξh1eik1x + a+

e12ξh2eik2x

+ b+
e11ξe1e−ik1x + b+

e12ξe2e−ik2x (A1)

and

ψ+(x > L) = c+
e11ξe1eik1x + c+

e12ξe2eik2x

+ d+
e11ξh1e−ik1x + d+

e12ξh2e−ik2x. (A2)
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The wave function in the ferromagnetic region is

ψ+(0 < x < L) = f +
11χe1eiqe1x + f +

12χe1e−iqe1x

+ f +
13χe2eiqe2x + f +

14χe2e−iqe2x

+ f +
15χh1eiqh1x + f +

16χh1e−iqh1x

+ f +
17χh2eiqh2x + f +

18χh2e−iqh2x. (A3)

Here a+
e11 and a+

e12 are the Andreev reflection coefficients, b+
e11

and b+
e12 are the normal reflection coefficients, c+

e11 and c+
e12

are the transition coefficients for electronlike quasiparticles,
and d+

e11 and d+
e12 are the transition coefficients for holelike

quasiparticles. The subscript e in the coefficients denotes the
injection of an electronlike quasiparticle. The superscript +
denotes that the scattering process is described by the wave
function ψ+ solved from the equation ȞBdG+(−i∇r)ψ+ =
E+ψ+.

Applying the boundary conditions Eqs. (7)–(10), the an-
alytic expressions of these coefficients can be derived. The
probabilities for the reflection and transition processes can be
defined as

A+
e11 =|a+

e11|2, A+
e12 = Re

[
k2

k1

]
|a+

e12|2, (A4)

B+
e11 =|b+

e11|2, B+
e12 = Re

[
k2

k1

]
|b+

e12|2, (A5)

C+
e11 =|c+

e11|2, C+
e12 = Re

[
k2

k1

]
|c+

e12|2, (A6)

D+
e11 =|d+

e11|2, D+
e12 = Re

[
k2

k1

]
|d+

e12|2. (A7)

The defined quantities above satisfy the conservation of prob-
ability, ∑

l=1,2

(A+
e1l + B+

e1l + C+
e1l + D+

e1l ) = 1. (A8)

When an electronlike quasiparticle characterized by ξe1 is
injected from the right ISC, we can derive the coefficients and
define the probabilities in a similar way. They are

Ã+
e11 = |ã+

e11|2, Ã+
e12 = Re

[
k2

k1

]
|ã+

e12|2, (A9)

B̃+
e11 = |b̃+

e11|2, B̃+
e12 = Re

[
k2

k1

]
|b̃+

e12|2, (A10)

C̃+
e11 = |c̃+

e11|2, C̃+
e12 = Re

[
k2

k1

]
|c̃+

e12|2, (A11)

D̃+
e11 = |d̃+

e11|2, D̃+
e12 = Re

[
k2

k1

]
|d̃+

e12|2. (A12)

Actually, the quantities in Eqs. (A9)–(A12) can easily be
found from Eqs. (A4)–(A7) by the transformation φ → −φ.

C+
e11, C+

e12, D+
e11, D+

e12, C̃+
e11, C̃+

e12, D̃+
e11, and D̃+

e12 in
Eqs. (A6), (A7), (A11), and (A12) are just the quantities
appearing in Eq. (15) in the main text. The other 24 probability
coefficients in J+

e2, J+
h1, and J+

h2 can be solved by considering
the following six processes described by ψ+: an electronlike
(a holelike) quasiparticle characterized by ξe2 (ξh1 or ξh2)
is injected from the left and the right ISC. Applying the
same method to the eight processes described by ψ−, the 32
probability coefficients in J−

e1, J−
e2, J−

h1, and J−
h2 will be obtained

in a similar way.
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