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Single-orbital realization of high-temperature s± superconductivity in the square-octagon lattice
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We propose possible high-temperature superconductivity (SC) with singlet s±-wave pairing symmetry in the
single-orbital Hubbard model on the square-octagon lattice with only nearest-neighbor hopping terms. Three
different approaches are engaged to treat with the interacting model for different coupling strengths, which yield
consistent results for the s± pairing symmetry. We propose octagraphene, i.e., a monolayer of carbon atoms
arranged into this lattice, as a possible material realization of this model. Our variational Monte Carlo study for
the material with realistic coupling strength yields a pairing strength comparable with the cuprates, implying a
similar superconducting critical temperature between the two families. This study also applies to other materials
with similar lattice structure.
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I. INTRODUCTION

The search for superconductivity (SC) with high critical
temperature Tc has been the dream of the condensed-matter
community for decades. It is generally believed that the right
route to seek for high-Tc SC (HTCS) is to acquire strong
spin fluctuations via proximity to antiferromagnetic-ordered
phases, with the cuprates and the iron-based superconductors
as two well-known examples [1]. Along this route, a new
research area was generated recently: graphene-based SC.
Among the early attempts in this area, the most famous idea
might be to generate d + id HTCS [2–4] in the monolayer
graphene in proximity to the spin-density-wave (SDW) or-
dered state [3,5] at the quarter doping. However, such high
doping concentration is hardly accessible by experiment.
The newly discovered SC in the magic-angle-twisted bilayer
graphene [6] in close proximity to the “correlated insulator”
phase [7] opened a new era in this area. It is proposed that
the “correlated insulator” in this material is a SDW insu-
lator [8,9], and the SC is driven by SDW spin fluctuations
[8–11]. However, due to the greatly reduced Fermi energy
(≈10 meV) in this material, the Tc ≈ 1.7 K might be not far
from its upper limit. Here we propose another graphene-based
material, i.e., octagraphene [12], which has a square-octagon
lattice structure with each site accommodating one single 2pz

orbital. This system has large Fermi energy and we predict
that slightly doping this material will induce HTCS, driven by
SDW spin-fluctuations.

The octagraphene is a two-dimensional (2D) material
formed by a monolayer of carbon atoms arranged into a
square-octagon lattice as shown in Fig. 1(a). This lattice is
C4v symmetric and each unit cell contains four sites forming a
square enclosed by the dotted lines shown in Fig. 1(a). First-
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principles calculations indicate that such a planar structure is
kinetically stable at low temperature [12,13] and that its en-
ergy is a local minimum [12], which suggests that the material
can potentially be synthesized in laboratories. Actually, this
lattice structure has attracted a lot of research interest recently
because it not only is hosted by quite a few real materials
[14–17] but also has various intriguing phases on this lattice
that have been revealed by theoretical calculations [18–35].
Here we notice another remarkable property of this 2D lattice:
its band structure can have perfect Fermi-surface (FS) nesting
in a wide parameter regime at half filling, which easily leads
to antiferromagnetic SDW order. When the system is slightly
doped, the SDW order will be suppressed and the remnant
SDW fluctuation will mediate HTCS.

In this paper, we study a possible pairing state in the single-
orbital Hubbard model on the square-octagon lattice with
only nearest-neighbor hopping terms. To treat this Hubbard-
model with different limits of the coupling strength, we adopt
three distinct approaches, i.e., the random-phase approxima-
tion (RPA), the slave-boson mean field (SBMF), and the
variational Monte Carlo (VMC), which are suitable for the
weak, the strong, and the intermediate coupling strengths,
respectively. All the three approaches consistently identify
the single s±-wave pairing as the leading pairing symmetry.
We propose octagraphene as a possible material realization of
the model. Our VMC calculation adopting realistic interaction
strength yields a pairing gap amplitude of about 50 meV,
which is comparable with the cuprates, implying a comparable
Tc between the two families. Our study also applies to other
materials with similar lattice structure.

II. MATERIAL, MODEL, AND APPROACHES

From density-functional theory (DFT) calculations [12],
each carbon atom in the octagraphene is σ bonded with
its three surrounding atoms via sp2 hybridization. The low-
energy degree of freedom near the Fermi level is dominantly
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FIG. 1. (a) Sketch of the square-octagon lattice and illustration
of the intrasquare nearest-neighbor hopping t1 and the intersquare
nearest-neighbor hopping t2. The dotted square denotes the unit cell.
(b) Band structure of the TB model (1) along the high symmetric
lines in the first Brillouin zone. Panels (c) and (d) show the FSs of
the undoped and 10% electron-doped cases, respectively. The site
contributions on the FS sheets are shown by color: the red (green)
represents that the weights contributed by the sublattices 1 and 3
(2 and 4) are dominant. The TB parameters are t1 = 1, t2 = 1.2
throughout the work.

contributed by the 2pz orbitals, which form π bonds similar
to the graphene. With each carbon atom contributing one
electron in one 2pz orbital, the resulting band structure can
be well captured by the following single-orbital TB model:

HTB = −t1
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) − t2
∑

[i, j],σ

(c†
iσ c jσ + H.c.).

(1)

Here c†
iσ (ciσ ) creates (annihilates) an electron with spin σ

at site i. The terms with coefficients t1 (≈2.5 eV) and t2
(≈2.9 eV) describe the intrasquare nearest-neighbor (NN) and
intersquare NN hoppings, respectively, as shown in Fig. 1(a).
In the following, we set t1 as the energy unit and t2/t1 = 1.2.

The band structure of this TB model along the high sym-
metric lines in the first Brillouin zone is presented in Fig. 1(b).
For the half-filling case, the band ε2(k) and ε3(k) cross the
Fermi level to form a hole pocket (α) centering around the
� point, and an electron pocket (β) centering around the M
point, as shown in Fig. 1(c). The red (green) color indicates
that site 1 and 3 (2 and 4) dominate the weights of bands.
Remarkably, the two pockets are identical, connected by the
perfect nesting vector Q = (π, π ). Such perfect FS nesting
is robust at half filling in the parameter regime 0 < | t2

t1
| � 2,

where the FS exists. However, upon doping, the perfect FS
nesting is broken, leaving a remnant nesting at a nesting vector
shifted from Q, as shown in Fig. 1(d).

Due to the screening effect in the doped compound, the
strong Coulomb repulsions between the 2pz electrons in the
graphene-based material can be approximated as the Hubbard
interaction [36]. Therefore, we obtain the following well-
known (repulsive) Hubbard-model:

H = HTB + Hint = HTB + U
∑

i

n̂i↑n̂i↓. (2)

Although there is a rough estimate of U ≈ 10 eV for the
graphene-based material, an accurate value of U is hard to
obtain [36]. Therefore, in the following, we first engage three
different approaches, i.e., the RPA, the SBMF, and the VMC,
to treat with the model with different limits of U and check the
U dependence of the pairing symmetry. As we shall see, they
yield consistent results. Then, we fix U = 10 eV and adopt
the VMC approach suitable for this U to estimate the Tc.

III. THEORETICAL SOLUTIONS AND NUMERICAL
RESULTS

A. Results for the random-phase approximation

We adopt the standard multi-orbital RPA approach [37–47]
to treat the weak-coupling limit of the model (2). Strictly
speaking, this is an “intra-unit-cell multisite model” without
orbital degrees of freedom, which is easier because of the ab-
sence of an inter-orbital Coulomb interaction and Hund’s cou-
pling. This approach handles the interactions at the RPA level,
from which we determine the properties of the magnetism
and SC for interactions above or below the critical interaction
strength Uc, respectively. Generally, the RPA approach only
works well for weak-coupling systems.

Let us define the following bare susceptibility for U = 0:

χ
(0)l1l2
l3l4

(q, iωn) ≡ 1

N

∫ β

0
dτeiωnτ

∑
k1k2

〈
Tτ c†

l1
(k1, τ )

× cl2 (k1 + q, τ )c†
l3

(k2 + q, 0)cl4 (k2, 0)
〉
0.

(3)

Here li (i = 1, . . . , 4) denotes the sublattice indices. The
largest eigenvalue χ (q) of the static susceptibility matrix
χ

(0)
lm (q) ≡ χ (0)l,l

m.m (q, iω = 0) for each q represents the eigen-
susceptibility in the strongest channel, while the correspond-
ing eigenvector ξ (q) provides information on the fluctua-
tion pattern within the unit cell. The information about the
distribution of χ (q) over the Brillouin zone, as well as the
fluctuation pattern for the peak momentum, is shown in Fig. 2
for different dopings.

Figure 2(a) illustrates the distribution of χ (q) over the
Brillouin zone for the undoped case, which sharply peaks
at Q = (π, π ), reflecting the perfect FS nesting at that
wave vector, as shown in Fig. 1(c). On the other hand, the
eigenvector ξ (Q) = ( 1

2 ,− 1
2 , 1

2 ,− 1
2 ) reflects the intra-unit-cell

fluctuation pattern, which is shown in Fig. 2(d) together with
the inter-unit-cell pattern for this momentum, which suggests
a Néel pattern. With the development of doping, the peak in
the distribution of χ (q) splits each into four and deviates from
Q = (π, π ) to Qx = (π ± δ, π ± δ), as shown in Fig. 2(b)
for x = 10% electron doping as an example. The relation
between δ and x shown in Fig. 2(c) suggests a linear relation,
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FIG. 2. Panels (a) and (b) show the q dependence of the eigen-
susceptibilities χ (q) in the first Brillouin zone, corresponding to
the undoped and 10% electron-doped compounds, respectively. The
temperature is set as T = 0.001. (c) The incommensurability δ as
a function of doping x. (d) The AFM-ordered spin pattern in the
octagraphene.

revealing incommensurate inter-unit-cell fluctuation pattern,
just
like the Yamada relation in the cuprates [48]. In the meantime,
the eigenvectors ξ (Qx ) nearly remain unchanged, and thus
the intra-unit-cell fluctuation pattern is still approximately
described by Fig. 2(d).

For U > 0, we obtain the following renormalized spin (s)
and charge (c) susceptibilities at the RPA level,

χ (s/c)(q, iωn) = [I ∓ χ (0)(q, iωn)(U )]−1χ (0)(q, iωn). (4)

Here χ (s/c)(q, iωn), χ (0)(q, iωn), and (U ) are used as 42 × 42

matrices and I is the unit matrix. In our model, U l1l2
l3l4

=
Uδl1=l2=l3=l4 . For U > 0, the spin fluctuation dominates the
charge fluctuation, thus the fluctuation pattern illustrate in
Fig. 2(d) actually describes the spin fluctuation. Note that
the RPA approach only works for U < Uc, with the critical
interaction strength Uc determined by det[I − χ (0)(q, 0)U ] =
0. For U > Uc the spin susceptibility diverges, which suggests
that long range SDW order with the pattern shown in Fig. 2(d)
emerges. The doping dependence of Uc is shown in Fig. 3(a),
where one finds Uc = 0 for x = 0 due to the perfect FS
nesting, which means that arbitrarily weak repulsive inter-
action will cause SDW order. For x > 0, we have Uc > 0.
In such cases, the SDW order maintains for some doping
regime where Uc < U , but with the wave vector shifting to
incommensurate values Qx = (π ± δ, π ± δ).

When the doping concentration x further increases so
that U < Uc, the long-ranged SDW order is killed. In such
parameter regime, the remnant SDW fluctuation will mediate
an effective pairing potential V αβ (k, k′) [41,43] between the
Cooper pairs. Then we can solve the following linearized gap

FIG. 3. (a) Uc/t1 as a function of the electron doping density x.
The largest pairing eigenvalues λ in four different pairing symmetry
channels as a function of (b) U/t1 and (c) x. (d) The k-dependent
superconducting order parameter �α (k) projected onto the FS for
the leading s±-wave pairing. The doping density for panels (b) and
(d) is x = 10%. The interaction parameter adopted is U = 1.8t1.

equation to determine the leading pairing symmetry:

− 1

(2π )2

∑
β

∮
FS

dk′
‖
V αβ (k, k′)

v
β
F (k′)

�β (k′) = λ�α (k). (5)

Here v
β
F (k) is the Fermi velocity and k′

‖ denotes the compo-
nent along the FS. The pairing eigenvalue λ is related to Tc

through Tc ≈ WDe−1/λ with the “Debye frequency” WD for the
spin fluctuations to be about an order of magnitude lower than
the bandwidth, and the pairing symmetry is determined by the
eigenfunction �α (k) corresponding to the largest λ.

The U dependence of the largest λ for each pairing sym-
metry is shown in Fig. 3(b) for a typical doping x = 10%.
Obviously, λ enhances promptly with the growth of U due
to the enhancement of spin fluctuations. The leading pairing
symmetry turns out to be the s wave. In Fig. 3(c), the doping
dependence of the largest λ for each pairing symmetry is
shown for a typical U = 1.8t1. After a prompt drop near the
critical doping (about ±5%), the λ for the four pairing symme-
tries vary smoothly for a wide doping range up to 20%, where
the s-wave SC dominates all the other pairings. Figures 3(b)
and 3(c) illustrate the robustness of the s-wave SC against
parameters variation. The C4v-symmetric distribution of the
pairing gap function �(k) of the obtained s-wave SC is shown
on the FS in Fig. 3(d). Remarkably, this gap function keeps the
same sign within each pocket and changes sign between the
two pockets. Therefore, we have established here a one-orbital
realization of the standard s± SC, which used to be realized in
the multi-orbital Fe-based superconductor family.

Note that the interaction parameter U = 1.8t1 ≈ 4.5 eV
adopted here is considerably weaker than realistic value of
U ≈ 10 eV [36], and due to the weak-coupling perturbative
character of RPA, it is unreasonable to adopt a stronger U . In
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the next section, we adopt the SBMF approach to treat with
the strong-coupling limit.

B. The slave-boson mean-field results

We start from the following effective t-J model to study
the strong-coupling limit of the Hubbard-model (2),

H = HTB + J1

∑
〈i, j〉

Ŝi · Ŝ j + J2

∑
[i, j]

Ŝi · Ŝ j . (6)

Here the intrasquare NN (J1) and intersquare NN (J2) ef-
fective superexchange coupling constants are generated in
the strong-coupling limit, which roughly satisfy J2/J1 ≈
(t2/t1)2 ≈ 1.4. In the following, we adopt J1 = 0.5t1 and J2 =
0.7t1. This Hamiltonian should be understood as acting on the
subspace of empty (double-occupancy) and single occupied
sites for the hole-doped (electron-doped) system.

In the SBMF approach [49], we decompose the electron
operator ciσ into ciσ → fiσ b†

i , with the bosonic holon (dou-
blon) operator b†

i and the fermionic spinon operator fiσ subject
to the no-double-occupancy constraint b†

i bi + ∑
σ f †

iσ fiσ = 1.
This constraint is treated in the mean-field level in SBMF, and
at zero temperature the condensation of bosonic b†

i leads to
b†

i → √
x and we are left with only the fermionic fiσ degree

of freedom. The quartic term of fiσ in H is further mean-field
decomposed with the following two order parameter channels:

κ(i, j) = 〈 f †
j↑ fi↑〉 = 〈 f †

j↓ fi↓〉,
(7)

�(i, j) = 〈 f j↓ fi↑ − f j↑ fi↓〉.
Here we actually have two mean-field κ(i, j) (�(i, j)) parame-
ters, i.e., κ1 (�1) for intrasquare NN and κ2 (�2) for inter-
square NN (i, j), respectively, which are obtained by solving
the mean-field equation self-consistently.

Our SBMF results are shown in Fig. 4. Here we have
tried two different pairing symmetries, i.e., the s wave and d
wave, with their total energy difference �E ≡ Es − Ed shown
in Fig. 4(a), where the s-wave SC gains more energy and
becomes the ground state. The doping dependence of the
four order parameters κ1,2 and �1,2 for the s-wave pairing is
shown in Fig. 4(b), where the intersquare order parameters
obviously dominate the intrasquare ones. Figure 4(c) shows
the projection of the gap function onto the FS, where one
clearly verifies the standard s±-pairing state, which is well
consistent with the gap function obtained by RPA shown in
Fig. 3(d).

The doping-dependence of the superconducting order
parameter �

(c)
(i, j) = 〈c j↓ci↑ − c j↑ci↓〉 = x�(i, j) is shown in

Fig. 4(d), which illustrates a dome-shape similar to the
cuprates. If we use the BCS relation 2J�(c)/Tc ≈ 3.53 to
roughly estimate Tc, we get the highest Tc ≈ 180 K near
x = 10% for our choice of J1 and J2. However, as the effective
superexchange parameters J1 and J2 for real material with
intermediate U is hard to estimate, the Tc obtained here might
not be accurate. In the following, we adopt the VMC approach
to study the problem.

C. The variational Monte Carlo results

The above weak-coupling RPA and strong-coupling SBMF
approaches consistently yield the s±-wave pairing. However,

(a) (b)

(c) (d)

FIG. 4. The SBMF results. (a) Doping dependence of the energy
(per unit cell) difference between the s-wave pairing and the d-wave
one, �E ≡ Es − Ed , in units of t1. (b) Doping dependence of the
four SBMF order parameters for the s-wave solution. (c) The s-wave
gap function projected on the FS. (d) Doping dependence of the
superconducting order parameter.

to obtain a more reasonable estimation of Tc, we should adopt
a realistic interaction parameter U . The realistic U ≈ 10 eV
is comparable with the total bandwidth, thus it belongs to
intermediate coupling strength. We adopt the VMC approach
here, which is suitable for the intermediate coupling strength.

We adopt the following partially Gutzwiller-projected BCS
wave function [50] in our VMC study,

|G〉 = g
∑

i ni↑ni↓

(∑
kα

vα
k

uα
k

c†
kα↑c†

−kα↓

) Ne
2

|0〉. (8)

Here g ∈ (0, 1) is the penalty factor of the double occupancy,
Ne is the total number of electrons, and

vα
k

uα
k

= �α
k

εα (k) +
√

ε2
α (k) + ∣∣�α

k

∣∣2
,

where �α
k = �α f (k) is the superconducting gap function.

Here we only consider intraband pairing on the α = 2, 3 bands
crossing the FS, with �2 = �3 ≡ �. The following four
different form factors f (k) are considered in our calculations:

f (k) =

⎧⎪⎨⎪⎩
cos kx + cos ky (s±)
cos kx cos ky (s++)
cos kx − cos ky (dx2−y2 )
sin kx sin ky (dxy).

(9)

There are three variational parameters, i.e., g, μc, and � for
each pairing channel in our trial wave function.

We employ the VMC approach to calculate the expectation
value E of the Hubbard Hamiltonian (2) [50] and optimize
the variational parameters. The � dependence of the energy
per unit cell for each form factor is shown in Fig. 5(a) for
U = 4t1 = 10 eV for a typical doping x = 10%, with g and
μc optimized for each �. Note that the optimized g = 0.5475
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(a) (b)

FIG. 5. (a) The VMC results for the energy per unit cell as
function of � for the four different gap form factors s±, s++, dx2−y2 ,
and dxy with g and μc optimized for each �. (b) The k-dependent
superconducting order parameter �(k) projected on the FS for the
10% electron-doped compound. The interaction parameter is U =
4t1 = 10 eV.

is almost equal to the optimized value without SC, and that
μc is almost equal to the value obtained in the mean-field
calculation. From Fig. 5(a), one finds that the s±-wave pairing
causes the most energy gain among the four gap form factors,
with the optimized gap amplitude at � = 0.022t1 ≈ 50 meV,
comparable with the cuprates, implying similar Tc between
them. The gap function of the s±-wave SC obtained is shown
on the FS in Fig. 5(b), which is well consistent with that
obtained in the RPA calculation.

Note that we have not included antiferromagnetic order
in our trial wave function as we mainly focus on SC here.
Generally, such antiferromagnetic order will be favored at low
dopings and decay with further doping. In the framework of
VMC, the antiferromagnetic order possibly coexists with SC
at low dopings. We leave this topic for future studies.

IV. DISCUSSION AND CONCLUSION

The synthesis of octagraphene is on the way. Recently,
graphene-like nanoribbons periodically embedded with four-
and eight-membered rings have been synthesized [51]. A
scanning tunneling microscopy and atomic force microscopy
study revealed that four- and eight-membered rings are

formed between adjacent perylene backbones with a planar
configuration. This 2D material can be taken as an intermedi-
ate between the graphene and the octagraphene studied here.
Most probably, the octagraphene might be synthesized in the
near future, which will provide a material basis for the study
here.

In conclusion, we have studied possible pairing states
in the single-orbital Hubbard model on the square-octagon
lattice with only nearest-neighbor hopping terms. Due to
the perfect FS nesting in the undoped system, slight doping
would induce HTCS, driven by strong incommensurate SDW
fluctuations. Our combined RPA-, SBMF-, and VMC-based
calculations suitable for the weak, strong, and intermediate
couplings strengths, respectively, consistently yield standard
s±-wave SC in this simple one-orbital system. The smoking-
gun evidence of this intriguing pairing state would be the
pronounced subgap spin resonance mode emerging upon the
superconducting transition, which can be detected by inelastic
neutron scattering. We propose octagraphene as a possible
material realization of the model, and our VMC calculations
adopting realistic interaction parameter for this material yield
a pairing gap amplitude of about 50 meV, comparable with
that of the cuprates, which implies comparable Tc between the
two systems. Our study will also apply to other materials with
similar lattice structure. Our results, if confirmed, would start
a new stage in the discovery of high-Tc SC.
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