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Exact surface-wave spectrum of a dilute quantum liquid
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We consider a dilute gas of bosons with repulsive contact interactions, described on the mean-field level by the
Gross-Pitaevskiı̌ equation, and bounded by an impenetrable “hard” wall (either rigid or flexible). We solve the
Bogoliubov-de Gennes equations for excitations on top of the Bose-Einstein condensate analytically, by using
matrix-valued hypergeometric functions. This leads to the exact spectrum of gapless Bogoliubov excitations
localized near the boundary. The dispersion relation for the surface excitations represents for small wave numbers
k a ripplon mode with fractional power law dispersion for a flexible wall, and a phonon mode (linear dispersion)
for a rigid wall. For both types of excitation we provide, for the first time, the exact dispersion relations of the
dilute quantum liquid for all k along the surface, extending to k → ∞. The small wavelength excitations are
shown to be bound to the surface with a maximal binding energy � = 1

8 (
√

17 − 3)2mc2 � 0.158 mc2, which
both types of excitation asymptotically approach, where m is mass of bosons and c bulk speed of sound. We
demonstrate that this binding energy is close to the experimental value obtained for surface excitations of
helium II confined in nanopores, reported in Phys. Rev. B 88, 014521 (2013).

DOI: 10.1103/PhysRevB.99.184504

I. INTRODUCTION

Initially, the Gross-Pitaevskiı̌ equation (GPE) was intended
as a model to describe structures and excitations in superfluid
helium [1,2]. Being a nonlinear Schrödinger equation, it was
however recognized later on that it possesses a variety of
applications for various nonlinear processes in condensed
matter such as bright and dark solitons in dilute Bose-Einstein
condensates (BECs, for which the GPE is accurate on the
mean-field level) [3] and nonlinear optics [4], as well as finite
amplitude waves on the surface of a liquid [5]. Excitations
on top of the mean-field ground state representing the BEC,
known as Bogoliubov excitations [6], are described by the
eigenmodes of the matrix Bogoliubov-de Gennes equations
(BdGE). The associated quanta of the perturbation field
have become the archetype of quasiparticle excitations in
superconductivity [7–9] and the theory of dilute quantum
gases [10], inter alia also for the formulation of the
propagation of quantum fields on effective curved space-times
[11]. The ubiquitous nature of the BdGE makes rigorous
analytical solutions highly desirable, but very few, and only
in limiting cases, have been obtained.

Domain wall solutions of the GPE such as 2D dark solitons
are known to be unstable except for those in the presence
of a hard wall. However the case of a hard wall deserves
investigation in particular because it is connected with the
generic topic of edge excitations in topological phases.
Specifically, the corresponding physical situation bears some
resemblance to two-band models with Majorana bound states
that arise as solutions to a BdG approach. The gapless modes
that propagate along a physical boundary, while they are
exponentially decaying away from the physical boundary, are
gapless boundary modes or edge states [12].

Examples for the occurrence of surface excitations in
bounded BECs comprise, for example, superfluid 4He

(helium II) confined in pores [13], self-bound condensates at
the low-density surface of superfluid helium [14], as well as
surface states of a BEC trapped in an external potential [15],
or surface states of other media with a defocusing nonlinearity
[16]. They are of fundamental interest since they reveal the
role of quantum effects on the excitation character (i.e., effects
which are not existing on the classical level) in restricted
geometries.

Considering the boundary condition of a hard wall for the
surface of a trapped BEC, the stability of surface bound states
was examined in Ref. [16], by imposing that the wave function
vanishes at the wall. The corresponding surface potentials,
much steeper than harmonic, have been prepared by using
laser sheets to trap the dilute quantum gas (for example, in
Ref. [17]). An inhomogeneous stationary solution of the GPE
(the “domain wall”) which coincides with the half of the dark
soliton (kink) at rest [3], may have as one of its physical real-
izations a hard wall [16] where localized Bogoliubov excita-
tions were proposed to exist [18]. However, the full analytical
solution for the corresponding surface-bound excitations has
not been found before. At large wavelengths, one class of
these excitations represents a surface phonon and the other
a ripplon. Our approach is inherently quantum, as it operates
near the node plane of the domain wall soliton, and is hence
based on an inherently nonclassical (vector-valued) wave
function, and is not restricted to large wavelengths, where the
(essentially quantum) kinetic terms are small. We note that the
existence of a short-wavelength surface excitation (a “surface
roton”) was previously conjectured [19], but its possible con-
nection to capillary waves was then stated as being doubtful.
We will see below that for both classes of excitations, starting
either from surface phonon or ripplon at large wavelengths,
small-wavelength surface excitations exist, with a binding en-
ergy approached by both types of excitation at large momenta.
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The hard wall boundary condition approximates the steep-
ness of the effective potential at the free surface of liquid
helium, which was proven to be composed of a nearly pure
condensate of dilute bosonic gas that satisfies the GPE [14].
The wave function of the BEC is a quantum order parameter
that approximately describes the condensate in real liquid
helium below the superfluid transition. The helium back-
ground (including a well-defined surface) fixes the natural
boundary conditions for the BEC. Therefore the BEC concept
accomodates both liquid helium II and a dilute superfluid Bose
gas bounded by an external wall.

One may consider the free kink wall with profile ψ0 =
tanh(x) extending into the bulk of the liquid (x � 0) to model
the free surface, demanding only the topological stability of
such a solution for which its nodal surface undergoes weak
flexural oscillations. Then the position of the hard wall is
flexible (like an impenetrable membrane on the surface of
helium II) and imitates the free surface of the liquid. The
liquid surface of helium II is under these provisos equivalent
to a hard wall container.

Here we consider the problem of localized gapless ex-
citation modes by finding analytical solutions of a matrix
Schrödinger equation, which we show to be equivalent to
the BdGE [16,18,20,21]. While recently, Ref. [22] obtained
such an analytical solution in the presence of a domain wall,
it is restricted to large wavelengths, and furthermore faces
the difficulty of extrapolation to the case of an infinite-size
surface. We stress that even the classical ripplon (fractional
power law) spectrum at small wave numbers is not trivially
obtained from the BdGE, where no classical (phenomenolog-
ical) surface tension is assumed a priori. In a BEC, the surface
tension itself is expressed using Planck’s constant and thus is
of an inherently quantum nature.

The binding energy of localized excitations is a primary
quantity of interest. Recent experiments that prove the com-
mon physical origin of the Landau description of a super-
fluid and the BEC description [23] support the view that
this binding energy is relevant. Furthermore, neutron scat-
tering experiments in helium II [24] reveal a surface exci-
tation that directly gives the binding energy. Remarkably,
we show that the spectrum of surface excitations can be
calculated analytically for any wave vector k, reproducing
the numerical results and with the analytical results ob-
tained for the limiting cases k → 0 and k → ∞. We have
solved the BdGE for the case of the domain wall (see
Eqs. (4.16)–(4.19) in Ref. [22]). The limit of k → ∞,
which in the bulk BEC results in the energy spectrum ε =
h̄2k2/2m + μ where m is the mass of the boson and μ = gn0

is the chemical potential while g and n0 are the coupling
constant and the BEC particle density, respectively, then leads
to ε = h̄2k2/2m + μ − �.

II. BOGOLIUBOV-DE GENNES EQUATIONS

A. Basic setup

The GPE of a scalar quantum gas can be written as [25]

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + gn0(|ψ |2 − 1)ψ. (1)

We introduce dimensionless quantities by measuring dis-
tances in units of the healing length ξ = h̄/mc and energies
in units of the “rest mass energy” gn0 = mc2, where c =√

gn0/m is the sound velocity. The stationary version of
Eq. (1) for a kink with node at the position x = 0 gives the
wave function ψ0 = tanh(x) of the soliton. We will impose
perturbations on this solution to investigate its Bogoliubov ex-
citations by representing ψ of Eq. (1) as a sum of plane waves
[2]: ψ = ψ0(x) + ϑ (�r, t ) with ϑ (�r, t ) = a

ω,�k (x) exp(i�k · �	 −
iωt ) + b∗

ω,�k (x) exp(−i�k · �	 + iωt ), where �r = (x, �	), �	 lies in
the plane orthogonal to the x direction (we consider the situa-
tion that all functions decay exponentially with increasingly
larger positive x), �k is the wave vector along this plane,
and * denotes complex conjugation. We will suppress the
indices and simplify the notation by using a and b instead of
a

ω,�k (x) and b
ω,�k (x). Introducing the functions ψ1 = a + b and

ψ2 = a − b, after linearizing Eq. (1) we get a pair of coupled
Schrödinger equations [18]:

−1

2

d2

dx2
ψ1 + (

3ψ2
0 − 1 + κ2

)
ψ1 = εψ2, (2)

−1

2

d2

dx2
ψ2 + (

ψ2
0 − 1 + κ2

)
ψ2 = εψ1, (3)

where κ = |�k|ξ/
√

2 = kξ/
√

2 and ε = ω. This pair of equa-
tions is identical to the corresponding Bogoliubov-de Gennes
equations (see Refs. [20,26]) if one rewrites them for the
functions a and b. To the best of our knowledge, Eqs. (2)
and (3) have never been solved exactly before for arbitrary
nonzero κ and ε. We find a formal general solution for these
equations and illustrate its viability by obtaining a rigorous
expression for the spectrum of localized phonons.

The spectrum of bulk excitations can be easily found from
(2) and (3) when neglecting the derivative terms far from the
boundary x = 0 to obtain the well-known Bogoliubov spec-
trum εb = κ

√
2 + κ2. For κ → 0 this gives the bulk phonon

dispersion εb � √
2κ + κ3/2

√
2 and for κ → ∞ it reads εb �

κ2 + 1, which represents a free boson plus chemical potential.
The localized excitations to be derived, by definition, have an
energy spectrum lying lower than the bulk one.

B. Supersymmetry at an exceptional point

We first remark that at the exceptional point of symmetry
ε = 0 and κ = 0, Eqs. (2) and (3) are the parts of a supersym-
metric Hamiltonian with zero ground-state energy. Indeed, on
introducing the matrix operator

Â =
(− 1√

2
d
dx − √

2ψ0 0

0 − 1√
2

d
dx + 1√

2

1−ψ2
0

ψ0

)
(4)

so that the left-hand side of Eqs. (2) and (3) takes the form of
a matrix Hamiltonian

Ĥ− = Â†Â =
(

− 1
2

d2

dx2 + 3ψ2
0 − 1 0

0 − 1
2

d2

dx2 + ψ2
0 − 1

)

(5)
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with its partner Hamiltonian

Ĥ+ = ÂÂ† =
(

− 1
2

d2

dx2 + ψ2
0 + 1 0

0 − 1
2

d2

dx2 + 1−ψ2
0

ψ2
0

)
, (6)

we produce a supersymmetric (SUSY) Hamiltonian

ĤSUSY =
(

Ĥ− 0
0 Ĥ+

)
(7)

that may canonically be expressed through the supercharges

Q̂ =
(

0 0
Â 0

)
, Q̂† =

(
0 Â†

0 0

)
(8)

as an anticommutator

ĤSUSY = {Q, Q†}; Q̂2 = 0, (Q̂†)2 = 0. (9)

The supersymmetry is explicitly broken when either ε or κ

(or both) are not zero which, as we will discuss in detail
below, leads to a splitting of the SUSY-degenerate ground
state into two gapless excitations (a “light” one with ε ∝ κ

and a “heavy” one with ε ∝ κ3/2), both bound to the wall [18].

C. Boundary conditions

The boundary conditions for ψ1 and ψ2 in (2) and (3) form
two distinct classes. At the node of the kink ψ = 0, that is
both Reψ = 0 and Imψ = 0, and therefore also ψ1 = 0 and
ψ2 = 0. However, an additional possibility exists: For ε = 0
and κ = 0, Eqs. (2) and (3) have the solutions ψ

(0)
1 = 1 − ψ2

0

and ψ
(0)
2 = ψ0, the first of which is the so-called “zero mode”

[18,26], which leads to Goldstone gapless modes (ripplons
and phonons) when the SUSY is broken. This corresponds to
a translation of the kink ψ0 as a whole along x, resulting in the
displaced kink ψ0 to read as follows: ψ0(x + δx) � ψ0(x) +
ψ

(0)
1 δx. Thus the condition Re ψ = 0 turns into ψ ′

0δx(�	, t ) +
Re ϑ (�r, t ) = 0 which determines the shape of the loci of
nodes δx(�	, t ) (the shape of the surface). The derivative of
such a mode with respect to x is zero at x = 0. The mode with
the mixed boundary conditions d

dx ψ1 |x=0= 0 and ψ2 |x=0= 0
allows the “rippling” of the soliton and is thus called ripplon
mode [18]. As we shall see below, its energy spectrum at
low κ coincides with the one for a classical capillary wave.
The mode with “zero” boundary conditions ψ1 |x=0= 0 and
ψ2 |x=0= 0, which correspond to a flat hard wall will be
called surface phonon mode (with a spectrum starting linear)
[18]. Finally, the flat hard wall excludes the possible solution
xψ0 − 1 [21] of Eq. (3) at κ = 0, ε = 0, which could lead
to the so-called snake instability1 [16,21]. This latter solution
does not satisfy zero boundary conditions.

III. ASYMPTOTIC SOLUTIONS

We first derive the large and small wavelength solutions of
the BdGE, noting that solely the large wavelength case has
been considered before [18,22].

1The snake instability amounts to a moving wall (a nodal plane)
with its transverse parts moving at different velocities, which is hence
acting to destroy the wall

A. Large wavelengths

First consider the case of κ → 0. For the ripplon spectrum,
we make an ansatz for ψ1,2 in the form of a series in ε:
ψ1 � ψ

(0)
1 + εψ

(1)
1 + O(ε2) and ψ2 � ψ

(0)
2 + εψ

(1)
2 + O(ε2).

A zeroth-order approximation is the solution of the homoge-
neous equations Eqs. (2) and (3) with ε = 0. This solution can
be found for any κ (which is verified by direct substitution):

ψ
(0)
1 = A exp(−α1x)

(
α2

1 − 1

3
+ α1ψ0 + ψ2

0

)
, (10)

ψ
(0)
2 = B exp(−α2x)(ψ0 + α2), (11)

where α1 = √
2
√

2 + κ2 and α2 = √
2κ . To determine ψ

(1)
1

and ψ
(1)
2 , we have to solve the inhomogeneous equations that

follow from Eqs. (2) and (3) when κ = 0:

−1

2

d2

dx2
ψ

(1)
1 + (

3ψ2
0 − 1

)
ψ

(1)
1 = Bψ0, (12)

−1

2

d2

dx2
ψ

(1)
2 + (

ψ2
0 − 1

)
ψ

(1)
2 = A

(
1 − ψ2

0

)
. (13)

With the help of the Green functions of the homogeneous
equations the inhomogeneous solutions are found as

ψ
(1)
1 = 1

2
B
[
ψ0 + x

(
1 − ψ2

0

)]
, (14)

ψ
(1)
2 = −A. (15)

Finally, the derivative with respect to x of ψ1 at x = 0 is
found from Eqs. (10) and (14) to be ψ ′

1 = Aα1(2 − α1)(2 +
α1)/3 + Bε, which according to the mixed boundary condi-
tions should be zero together with ψ2 = −Aε + Bα2, accord-
ing to Eqs. (11) and (15). A vanishing determinant of the A, B
linear equations matrix

det

(
α1(2 − α1)(2 + α1)/3 ε

−ε α2

)
= 0 (16)

gives the ripplon spectrum. Taking into account that α1 � 2 +
κ2/2 for κ → 0 and retaining only the lowest power of κ , we
obtain the fractional dispersion

ε =
√

4
√

2

3
κ3/2. (17)

The spectrum (17) is shown in Fig. 1. Note that the localiza-
tion of the ripplon at low κ is governed by α2 = √

2κ . The
spectrum (17) coincides with the well-known expression for
the frequency of capillary waves (in the deep-water limit),
which reads in dimensionful form ε = h̄

√
σ/mn0 k3/2 where

σ = 2
3 h̄cn0 is the surface energy density of the stationary

soliton ψ0 [25]. We note that σ is exactly half of the energy of
the dark soliton at rest (see Eq. (5.59) in Ref. [3]).

Zero boundary conditions lead to surface phonons, for
which we obtain the whole spectrum analytically in Sec. IV A
below. We here only mention in connection to the above
discussion that α2 for phonons at low κ is proportional to
κ2, indicating a much weaker localization as compared to the
ripplons.
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FIG. 1. The small momentum part of the dimensionless spectra
of elementary excitations vs dimensionless wave number, together
with surface phonon (≡ flat hard wall) and ripplon (≡ flexible wall)
wave functions at larger momenta. (a) The solid black line is the
Bogoliubov bulk excitation spectrum and the black dashed line is the
capillary wave spectrum (17). The circles mark the spectrum of the
ripplon calculated by numerically solving Eqs. (2) and (3), and the
blue line shows the first approximation represented by Eqs. (36) and
(37). Finally, the stars mark the numerical spectrum of the surface
phonon, and the red line is the exact solution (32). (b) The numerical
wave functions of the surface phonon at κ = 3.5 are shown with
dashed (ψ1) and dotted (ψ2) lines together with ψ∞ (solid line) which
they approach at large x. (c) The numerical wave functions of the
ripplon mode at κ = 5. It is seen that ψ1 (thick solid line) lies very
close to ψ2 except the coordinate origin where ψ1 has zero derivative.
The dashed purple and dotted dark green lines show the asymptotic
behavior ∝ exp(−α2x) for ψ1,2.

B. Small wavelengths

When κ → ∞, we introduce the function χ and constant
� so that ψ1 = ψ2 + χ/k2, ψ2 = ψ∞ and ε = κ

√
κ2 + 2 −

� � κ2 + 1 − �. Then Eqs. (2) and (3) turn into

−1

2

d2

dx2
ψ∞ + (

3ψ2
0 − 2 + �

)
ψ∞ = −χ, (18)

−1

2

d2

dx2
ψ∞ + (

ψ2
0 − 2 + �

)
ψ∞ = χ, (19)

with χ = −ψ2
0 ψ∞, which after adding and subtracting both

equations leads to

ψ∞ = (
1 − ψ2

0

)α∞/2

× 2F1

(
α∞ − s, α∞ + s + 1, α∞ + 1,

1 − ψ0

2

)
, (20)

where the hypergeometric function contains α∞ = √
2� and

s = (
√

17 − 1)/2 is one of the solutions of the equation s(s +
1) = 4 (see Ref. [27]). The second solution leads to the same
result. The boundary condition ψ2 = 0 at x = 0 imposes the
following identity:

2F1

(
α∞ − s, α∞ + s + 1, α∞ + 1,

1

2

)

= �
(

1
2

)
�(α∞ + 1)

�
(

1
2 [1 + α∞ − s]

)
�

(
1
2 [2 + α∞ + s]

) = 0, (21)

which demands (for fixed s) 1 + α∞ − s = 0 in order to
obtain infinity in the denominator from the corresponding
Gamma function, and therefore α∞ = (

√
17 − 3)/2 � 0.562

while � = α2
∞/2 � 0.158. Finally, the hypergeometric

function in (20) reduces to ψ0 so that ψ∞ = ψ0(1 −
ψ2

0 )α∞/2 = tanh(x)/ cosh(x)α∞ [see Fig. 1(b)] and χ =
−ψ3

0 (1 − ψ2
0 )α∞/2. Therefore both ψ2 and ψ1 satisfy the zero

boundary conditions. Analogously, one can show2 that the
function ψ∞ is also the limiting function for large κ in the case
of mixed boundary conditions, so that the difference between
the functions appears only in close proximity to the boundary
x = 0, at a typical distance 1/κ [see Fig. 1(c); ψ1 deviates
from ψ2 and hits the ψ axis with zero derivative]. Thus the
dimensionful binding energy of the excitation localized near
the surface depends only on the bulk parameter mc2.

IV. EXACT SOLUTION OF THE FULL BDGE

It is well established that many exact solutions of
Schrödinger equations with various types of potentials can be
directly related to solutions of hypergeometric equations (see,
e.g., Ref. [28] for a list); hence factorizations used in quantum
mechanics can be obtained from factorizations employing
hypergeometric operators [29]. Here, using hypergeometric
matrices (which we discuss in detail in the Appendix), we
derive below an exact solution of the BdGE.

We aim at finding the exact solution of Eqs. (2) and (3) at
arbitrary nondimensionalized momentum κ . To do so, let us
transform these equations into a single matrix hypergeometric
equation, where we employ the fact that matrix generaliza-
tions of both hypergeometric function and Gamma function
were previously shown to be mathematically viable tools
[30,31]. We introduce a wave-function ansatz by analogy with
Eq. (20):

ψ1,2 = (
1 − ψ2

0

)α/2
φ1,2, z = 1 − ψ0

2
, (22)

with a formal parameter α. Below this single scalar parameter
will be replaced with a matrix, which constitutes the key
starting point of finding our exact solution. We now rewrite
Eqs. (2) and (3) as

z(1 − z)
d2φ1

dz2
+ [α + 1 − 2(α + 1)z]

dφ1

dz

+ [6 − α(α + 1)]φ1 + 1

2z(1 − z)

(
α2

2
− 2 − κ2

)
φ1

= ε
φ2

2z(1 − z)
,

z(1 − z)
d2φ2

dz2
+ [α + 1 − 2(α + 1)z]

dφ2

dz

+ [2 − α(α + 1)]φ2 + 1

2z(1 − z)

(
α2

2
− κ2

)
φ2

= ε
φ1

2z(1 − z)
. (23)

2By making use of the known solutions of the homogeneous
equations (10) and (11) to satisfy the boundary conditions.
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To turn (23) into a matrix hypergeometric equation, we intro-
duce the vector function �̂, the identity matrix 1̂, the matrix
α̂, and matrices â, b̂, ĉ derived from it, as follows:

�̂ =
(

φ1

φ2

)
, (24)

α̂2 = 2

(
2 + κ2 ε

ε κ2

)
, (25)

ĉ = α̂ + 1̂, (26)

1̂ + â + b̂ = 2(α̂ + 1̂), (27)

−âb̂ =
(

6 0
0 2

)
− α̂2 − α̂. (28)

Taking the square root of the matrix α̂2 gives, choosing the
positive sign,

α̂ = 2

(
r l
l p

)
, (29)

where r =
√

1 + κ2/2 − l2, p =
√

κ2/2 − l2, and
l = ε

√
κ2 + 1 − (κ2(κ2 + 2) − ε2)1/2/2

√
ε2 + 1. The two

positive eigenvalues of the matrix α̂ are

α1,2 =
√

2

√
1 + κ2 ±

√
ε2 + 1 (30)

and exp(−α2x) determines the asymptotic decay of ψ1 and
ψ2 as x → ∞ (corresponding to the lower sign above). After
introducing the matrices, Eq. (23) becomes the canonical
Gauss hypergeometric equation in matrix form

z(1 − z)�̂′′ + (ĉ − (1̂ + â + b̂)z)�̂′ − âb̂�̂ = 0, (31)

where primes mean differentiation with respect to z.

A. Surface phonons

Equation (31) is formally solved by Eq. (A1) contained
in the Appendix. We can then obtain the spectrum of the
surface phonon localized near a flat hard wall as follows.
The boundary condition at x = 0 (that is at z = 1/2) will be
fulfilled when �̂ = 0, which demands that the determinant of
matrix function (A3) be zero. The spectrum is then given by
the equation

det P̂ = (3r + κ2)(3p + κ2) − (3l + ε)2 = 0, (32)

where the matrix P̂ is derived in the Appendix, see Eq. (A5).
Equation (32) reproduces the spectrum calculated before for
the two limiting cases κ → 0 and κ → ∞ in Sec. III. When
κ → 0 the spectrum is ε = √

2κ + O(κ5), so that the κ3 term
is missing, while the bulk phonon starts with higher energy
as εb = √

2κ + κ3/2
√

2 + O(κ5). Let us define the binding
energy as δε = εb − ε. Then the latter starts as κ3/2

√
2 [see

Fig. 2(c)]. Now let us consider the other limit κ → ∞. It
is easy to see that seeking the solution in the form ε �
κ2 + 1 − � leads to r = p � κ/2 + √

2�/4 and l � κ/2 −√
2�/4, which after substitution into Eq. (32) give 2� +

3
√

2� − 2 = 0. This has the same root as found before from
Eq. (21),

√
2� = (

√
17 − 3)/2 = α∞ � 0.562 and therefore

δε∞ = � = α2
∞/2 � 0.158.
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FIG. 2. Surface phonon. (a) Binding energy vs wave number. The
solid line is the result of the exact dispersion given by Eq. (32). The
solid squares in (a) and (b) show the results of the numerical solution
of Eqs. (2) and (3) with zero boundary conditions. The horizontal
line is at �; the dashed line is κ3/2

√
2 from the small κ behavior.

(b) Solid line: exact solution for α2 as given by Eqs. (30) and (32).
The horizontal line is at α∞; the dashed line is κ2.

The coincidence with the exact asymptotic results obtained
in Sec. III confirms the correctness of Eq. (32). Note that the
slower decay exponent α2 can be approximated by a simple
expression α2 = κ2/(1 + κ2/α∞) that fits the exact expres-
sion of Eq. (30) with ε from the exact solution of Eq. (32)
within 0.2%. We plot the decay exponential in Fig. 2(d) in a
broad range of wave numbers.

Finally, it is interesting to note that the first order approx-
imation in powers of z = 1/2 in the case of the flat hard wall
boundary conditions for surface phonons can be represented
by the equation

(
1̂ + Û1

2

)
0,0

(
1̂ + Û1

2

)
1,1

−
(

1̂ + Û1

2

)
0,1

(
1̂ + Û1

2

)
1,0

= 0,

(33)

which, distinct from the case of ripplons discussed below,
accidentally gives the exact spectrum of Eq. (32), where Û1

is defined below in Eq. (37).

B. Ripplons

Now consider the case of mixed boundary conditions cor-
responding to ripplons. Let us first rephrase the general form
of the solution (A1) provided in the Appendix in the form of
a vector function. With the help of (A3), we get(

φ1

φ2

)
= 2F1(a, b, c, z)

(
A
B

)
, (34)

where A and B are arbitrary constants.
Writing the surface phonon boundary conditions explicitly,

φ1 = [2F1(a, b, c, z)]0,0 A + [2F1(a, b, c, z)]0,1B = 0,

φ2 = [2F1(a, b, c, z)]1,0 A + [2F1(a, b, c, z)]1,1B = 0, (35)

the spectrum for surface phonons is obtained after equating
the determinant of the above equation for A, B to zero at
z = 1/2. We then proceed analogously as for this case of the
flat wall for the rippled wall, except that we differentiate with
respect to z the first equation for φ1.
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FIG. 3. Ripplon. (a) Dimensionless binding energy vs the dimen-
sionless wave number. The solid squares in (a) and (b) show the
results of the numerical solution of Eqs. (2) and (3) with mixed
boundary conditions. The solid line is the result of using the ap-
proximation given by Eqs. (36) and (37). The horizontal line is at
energy � = 0.158. (b) The squares show the decay parameter α2

obtained with Eq. (30). The solid line is again the result of using
the approximation provided by Eqs. (36) and (37). The horizontal
line is at α∞ = 0.568. The analytical relation α � √

2κ at small κ is
shown by the dashed line.

Expanding the hypergeometric function of Eq. (A1) and its
z derivative to first order in z = 1/2, one gets from Eq. (35)

(
Û1 + Û2

2

)
0,0

(
1̂ + Û1

2

)
1,1

−
(

Û1 + Û2

2

)
0,1

(
1̂ + Û1

2

)
1,0

= 0,

(36)

where Û1 and Û2 are calculated according to Eq. (A2) for m =
0, 1 with α̂ and âb̂ taken from Eqs. (29) and (28), respectively,

Û2 = (α̂ + 21̂)−1(âb̂ + 2(α̂ + 1̂))U1,

Û1 = (α̂ + 1̂)−1âb̂.
(37)

C. Comparison to numerics

The energy spectrum and binding energy–decay parameter
for ripplons in a broad range of wave numbers are shown
in Figs. 3(a) and 3(b), respectively, in comparison to their
values obtained with numerical solutions of the differential
equations Eqs. (2) and (3), represented by the symbols. For
the numerics, we used PTC’s MATHCAD 11, applying proper
boundary conditions at the surface, imposing an exponentially
fast decay at infinity (the latter leads to underestimate the
binding energy values, see for a discussion below). One can
see that even to lowest nontrivial order in the series on z = 1/2
[see Eq. (36)], the results shown by solid lines in Figs. 3(a) and
3(b) are rather close to the numerical solutions.

On the other hand, for the surface phonon, the numerical
results can be rendered closer to the exact spectrum from
(32), as displayed in Figs. 2(a) and 2(b), although a slight
systematic deviation is still noticeable. These deviations stem
from the fact that the numerical solution of the differential
equations relies on the criterium of localization: the solution
should decay into the bulk, implying that another boundary
condition is that the wave function should approach zero
at infinity. Numerical calculations are imposing boundary
conditions at a finite distance, however large. The numerics

therefore slightly exaggerates the decay; hence the numerical
energy is slightly lower than the exact energy at a given wave
number.

V. CONCLUSION

In summary, starting from the matrix hypergeometric equa-
tion (31), we obtained its formally exact solution at the
boundary (A3). Many exactly solvable Schrödinger equations
with various potentials have solutions of the hypergeometric
variety. Often there are also supersymmetric partners in the
Hamiltonian operator, as in the case of a hydrogen atom with
its Coulomb potential. When a continuous wave number is
present, creating a band-gap structure, gapless states that stem
from (or are accompanied by) Goldstone zero energy modes
may exist [12]. In the case of the BdGE that we considered
here, we were not only able to obtain an exact solution,
but also to express the dispersion relation of the Bogoliubov
surface excitations for surface phonons in the closed form
of the algebraic equation (32). We have furthermore shown
that for ripplons, even a lowest nontrivial order truncation of
the hypergeometric series produces results close to numerical
solutions of the BdGE.

We now discuss the relation of the analytically obtained
binding energy of surface phonons to the experimental finding
of Ref. [24] for helium II confined by the hard walls of
cylindrical pores. Even though the present BEC model with
contact interactions does not reproduce the roton minimum in
the bulk dispersion curve, it provides a correct estimate for
the binding energy in the low-density surface region. Indeed,
the binding energy (the difference between bulk and sur-
face excitation energies) has been measured to be 0.15 meV
at the roton-region wavevector k = 2/Å [24]. The latter corre-
sponds to κ � 1, using the estimate ξ = h̄/mc � 0.7 Å, with
the “bulklike” speed of sound c = 228 m/s at full pore [24].
We can read off Fig. 2(a) a dimensionless binding energy of
approximately 0.07 at κ � 1, which agrees to good accuracy
with the experimental value (using that mc2 � 2.2 meV).
This agreement was obtained at small wavelengths, to which
previous approaches did not apply, and which in the bulk
correspond to the roton minimum. Therefore, while the latter
bulk dispersion feature is not accurately described by our
mean-field model, we conclude that the quantum mechanism
of trapping excitations close to a surface gives the correct
magnitude of the binding energy. We note that the quantum
mechanism of binding surface excitations occurs in the solid-
state physics of electrons as well, where the bound states are
called Tamm and Shockley states [32,33].

The present method for exactly solving the Bogoliubov-de
Gennes equations is potentially also useful in more sophis-
ticated cases than the presently considered one. Further ex-
tensions of the present approach are for example conceivable
by incorporating effectively nonlocal interactions modeling
rotons, which occur in dilute quantum gases dominated by
dipole-dipole interactions [34]. Furthermore, it would be of
interest to investigate to which extent the present matrix
hypergeometric equation approach can be applied to other
physical systems of current widespread interest. For instance,
to topological insulators, superconductors, and even to exotic
topological mechanical materials [35].
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APPENDIX: THE MATRIX-VALUED
HYPERGEOMETRIC FUNCTION

Equation (31), taking the canonical form of a hyperge-
ometric equation, has a formal solution as a matrix-valued
hypergeometric function of Gauss [30]

2F1(a, b, c, z) =
∑
n�0

zn

n!
(â, b̂, ĉ)n, (A1)

where (â, b̂, ĉ)0 = 1̂, and higher matrix coefficients are

(â, b̂, ĉ)m+1 = (ĉ + m1̂)−1(â + m1̂)(b̂ + m1̂)

× (ĉ + m1̂ − 1̂)−1(â + m1̂ − 1̂)(b̂ + m1̂ − 1̂)

. . . ĉ−1âb̂. (A2)

In the above equation, the matrices are ordered in a specific
way, taking into account their generally noncommutative na-
ture. The related intricate mathematical questions have been
discussed in detail when introducing the matrix hyper-
geometric function in Ref. [30]. Yet this noncommuta-
tive nature is not important for our purpose of obtaining
the dispersion relations, inasmuch as we deal to this end
with the determinant of the matrix hypergeometric func-
tion. The latter determinant is expressed below through
products of the matrix Euler Gamma function and its in-
verse in Eq. (A3). The Euler Gamma function itself is in

turn a product of matrices and their inverse according to
Eq. (A4). The determinant of the matrix hypergeometric
function is hence independent of the order of the matrices
occurring in it.

The hypergeometric function at z = 1/2 can be expressed
through the matrix Gamma function [31] [because ĉ = (1̂ +
â + b̂)/2, see Eq. (27)], so that

2F1

(
â, b̂, ĉ,

1

2

)
= �

(
1
2

)
�(ĉ)

�
(

1
2 [1̂ + â]

)
�

(
1
2 [1̂ + b̂]

) . (A3)

Then the condition �̂ = 0 imposed for surface phonons in
Sec. IV A implies that the matrix (A3) has an eigenvalue zero
and that therefore its determinant vanishes. We then use that
matrix Gamma functions can be represented as follows [31]:

�(M̂ ) = lim
n→∞(n − 1)!nM̂[M̂(M̂ + 1̂) . . . (M̂ + n1̂)]−1. (A4)

The role of the matrix M̂ is played by either 1̂ + â or 1̂ +
b̂. Because the determinant of (A3) is required to be zero,
the determinant of a Gamma function in the denominator
should be infinite. By (A4), this is only possible if either the
determinant of 1̂ + â or that of 1̂ + b̂ is zero.

One can prove that the determinant of either 1̂ + â or 1̂ + b̂
being zero gives the same spectrum. However an analytical
solution for the matrix equations (27) and (28) for â and b̂
is difficult. To obtain analytical results we instead utilize the
product P̂ = ((1̂ + â)(1̂ + b̂))/2 = (1̂ + â + b̂ + âb̂)/2. We
readily get the matrix P̂ from Eqs. (27)–(29):

P̂ =
(

3r + κ2 3l + ε

3l + ε 3p + κ2

)
, (A5)

and taking det P̂ = 0 yields Eq. (32) of the main text.
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