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Impact of electron-electron interactions on the superfluid density of dirty superconductors
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Landau’s theory of the Fermi liquid is adapted to analyze the impact of electron-electron (interactions on the
deficit of the superfluid density ρs0 = ρs(T = 0) in dirty superconducting electron systems in which the damping
γ of single-particle excitations exceeds the zero-temperature BCS gap �0. In the dirty strong-coupling limit
γ /�0 � 1, m∗/me � 1, the formula derived for ρs0 is shown to coincide with the well-known empirical Uemura
relation provided pair-breaking contributions are nonexistent. The roles of the crystal lattice and magnetic
pair-breaking effects in the observed decline of the zero-temperature superfluid density ρs0 in overdoped
La1−xSrxCuO4 compounds are also discussed, and our procedure is applied to elucidation of results from the
pioneering experimental studies performed recently by Bozovic and collaborators in these compounds.
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I. INTRODUCTION

The phenomenon of high-temperature superconductivity,
discovered in two-dimensional (2D) electron systems of cop-
per oxides in 1986 [1], is still a subject of hot debate, defying
consistent explanation. Serious new challenges are presented
by recent experimental studies in overdoped La1−xSrxCuO4

(LSCO) compounds [2–4] that reveal an unexpected deficit of
the superfluid density ρs0.

Related discussions [5–7] of the implications of this
anomalous behavior have focused on the penetration depth

λ2
0(x) = [4πe2ρs0(x)/me]−1 (1)

associated with the Meissner effect, which is responsible for
the exponential decay of the external magnetic field at the inte-
rior surface of these compounds at doping values x lower than
the critical value xc � 0.3 at which LSCO superconductivity
terminates.

In a major portion of the phase diagram of the family
La1−xSrxCuO4, but excluding the heavily overdoped region
where xc − x � xc, one is dealing with a type-II superconduc-
tor, since the ratio of λ0(x) to the zero-temperature coherence
length ξ0(x) = vF /�0(x) markedly exceeds unity. In this case,
the relation between an electric current j and the applied
vector potential A generating the current turns out to be local
[8–11], i.e.,

j(r) = −e2ρs0

me
A(r). (2)

It is a fundamental result of the weak-coupling BCS theory
of type-II superconductors that in the clean limit where γ �
�0 the superfluid density ρs0 coincides with the total electron
density:

ρs0 = n. (3)

Importantly, more sophisticated scrutiny by Larkin and
Migdal [12] affirms that the relation (3) remains unchanged
when all interactions between particles in the normal state are
taken into account within the framework of Landau theory
[13]. The same conclusion was reached later in a different
analysis by Leggett [14].

Conversely, the ratio ρs0/n in strongly correlated super-
conducting electron systems is suppressed, as established in
multiple studies beginning with the well-known paper by
Uemura et al. [15]. Among such studies, the high-quality
measurements of Ref. [2], performed on thousands of films
of LSCO compounds, are especially valuable, since the loss
of ρs0(x) has been traced with unprecedented accuracy, war-
ranting the unambiguous conclusion that the standard BCS
approach fails to explain the new experiments. It is intriguing
that the substantial reduction of ρs0 persists even at optimal
doping xo � 0.17, where ρs0(xo) � 0.15 n [2], while upon
approach to the critical value xc � 0.3 the superfluid density
declines to zero in harmony with the critical temperature
Tc—quite as if one is dealing with Bose-Einstein condensation
(BEC) of bound electron pairs [16–20].

However, the observed loss of ρs0 does not require the BEC
phenomenon to be invoked for its explanation. Rather, in dirty
superconductors where γ > �0, such behavior of ρs0 is well
documented [21–23]. It would appear reasonable that γ (x),
which grows linearly with doping x due to its proportionality
to the impurity content, may eventually reach values compara-
ble with the gap �0, especially in the overdoped region where
Tc(x) ∝ �0(x) is known to fall off rapidly with x → xc. It is
just such a characteristic dome shape of both Tc(x) and ρs0(x)
that was uncovered recently in Nb-doped SrTiO3 [24,25].

A common objection to applicability of such a dirty-limit
scenario to the LSCO compounds is based on the fact that
angle-resolved photoemission spectroscopy (ARPES) data
[26] and numerous observations of Lifshitz-Kosevich os-
cillations support a large and well-defined Fermi surface.
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However, it follows from arguments first advanced by Landau
that the presence of a well-defined Fermi surface and appli-
cability of the dirty limit are not mutually exclusive [10,27].
In essence, by virtue of the elasticity of impurity scattering,
the problem to be solved reduces to a quantum-mechanical
one of electron motion in an external potential field, just as
in the theory of finite Fermi systems [28] developed within
the framework of Fermi-liquid (FL) methods. Observing that
the momentum p remains a good quantum number in crystals,
we thus infer that the FL formalism is applicable to dirty
superconductors as well, provided the impact of damping
effects on the structure of the pole part of the electron Green’s
function is properly taken into account.

Given these conclusions, we now analyze the impact of
electron-electron (e-e) interactions as they relate to perplexing
behavior exhibited by strongly correlated electron systems,
assuming the onset of superconductivity to be caused by
Cooper pairing with total momentum P = 0. Accordingly, in
calculation of the superfluid density ρs, we adopt the BCS
formalism without recourse to any alternative propositions.
We concentrate on the dirty-limit situation ε0

F � γ > �0 as
described by the Abrikosov-Gor’kov (AG) theory of super-
conducting alloys [9,10,21]. As opposed to the clean-limit
result (3), the superfluid density is predicted to behave as

ρs0(x) ∝ n
�0(x)

γ
. (4)

This implies a corresponding penetration depth of the form

λ2
0 = (4πe2ns/me)−1, (5)

with the AG effective density ns ∝ n�0/γ of superfluid elec-
trons appearing in place of the electron density n in the famous
London formula.

We shall demonstrate that incorporation of the e-e interac-
tions leads to further loss of superfluid density and growth
of the penetration depth. This effect has its origin in the
presence of a velocity-dependent component in the amplitude
of the effective interaction between quasiparticles, which is
responsible for the enhancement of the effective mass m∗ in
strongly correlated electron systems. The result so obtained
is shown to be in agreement with the empirical Uemura
relation [15]:

λ2
0 = (4πe2ns/m∗)−1. (6)

We shall also discuss the pros and cons of the AG pair-
breaking scenario in attempting to explain the observed
change from linear ρs0 ∝ �0 (4) to bilinear ρs0 ∝ �2

0 behavior
of the superfluid density upon approach to the critical doping
xc at which superconductivity terminates.

II. GENERIC FORMULAS FOR CONVENTIONAL
FERMI LIQUIDS

We begin by recalling that in BCS theory the electric
current j(k) is connected with the weak vector potential A by

ji(k) = −ne2

me
Qi j (k)Aj (k), (7)

where Qi j (k) = (δi j − kik j/k2)Q(k). Henceforth we adopt
the transverse gauge satisfying the condition k jA j = 0.

Thereupon the analysis is simplified considerably, in that a
part of the tensor Qi j (k) emergent from the change of the gap
� in the external magnetic field turns out to be proportional to
the factor kik j/k2 [12]. This contribution to the current j then
vanishes identically, and we are left with Qi j (k) = Q(k)δi j .

The existing weak-coupling BCS-AG theory of supercon-
ductivity properly describes the experimental situation in con-
ventional metals. However, this theory fails in strongly corre-
lated electron systems of high-temperature superconductors.
In dealing with the superfluid density, its failure is evident
from comparison of Eqs. (5) and (27) and will clearly be
due to the neglect of so-called Fermi-liquid effects that arise
from the fact that the single-particle energy ε(p) is itself a
functional of the quasiparticle momentum distribution n(p).

The magnitude of these FL effects is determined by the
variational derivative f (p, p1) = δε[p, n(p1)]/δn(p1), known
in FL theory as the Landau interaction function. In homo-
geneous matter, this phenomenological quantity is identified
by a set of parameters, namely, dimensionless harmonics of
its Legendre polynomial expansion. In strongly correlated
Fermi systems, their magnitudes are of order 1; hence their
inclusion is imperative. This can be accomplished in different
ways (see, for example, Ref. [29]); however, as we shall
see, application of FL methods to evaluation of the tensor
Qi j is advantageous in allowing us to obtain final results in
analytical and persuasive form.

In conventional three-dimensional Fermi liquids where
the damping of single-particle excitations is immaterial, the
original FL formula for the tensor Qi j reads (for details, see
Ref. [12])

Qi j (k) = δi j + 2

nme

∫
piL(p, k)T (p j ; k)

dp
(2π )3

, (8)

the particle-hole propagator L being given by the integral

L(p, k) =
∫

[Gs(p + k, ε)Gs(p, ε)

+ F (p + k, ε)F (p, ε)]
dε

2π i
, (9)

where Gs and F are the Gor’kov quasiparticle propagators

Gs(p, ε) = ε + ε(p)

ε2 − ε2(p) − �2(p)
,

F (p, ε) = − �(p)

ε2 − ε2(p) − �2(p)
. (10)

For convenience, the factor z identifying the quasiparticle
weight in single-particle states is absorbed into the definition
of the quasiparticle propagators Gs and F , and likewise for
the vertex part T (p, k), which incorporates FL effects in
satisfying the equation [9,10]

T (p, k) = p + 2
∫

f (n, n′)L(p′, k)T (p′; k)
dp′

(2π )3
, (11)

where n = p/pF . For the homogeneous electron liquid, only
the first harmonic f1 of the Landau interaction function f
enters this equation.

Throughout the whole T − x phase diagram, except for
the heavily overdoped region |x − xc| � xc, the London case
k = 0 applies. Accordingly, straightforward calculation of the
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integral (9) establishes that the function L(ε) = L(p; k = 0)
vanishes identically at any momentum p and for any form of the
single-particle spectrum ε(p) [28]. Such a conclusion remains
valid for the tight-binding model spectrum ε(p) employed in
the calculations of ρs0 by Lee-Hone et al. [6], to guarantee
the property

Q(0) = 1. (12)

This result immediately triggers recovery of the BCS-FL
relation (3) in superconducting electron systems of solids,
provided damping of single-particle excitations is nonexistent
(more details are provided below).

III. FERMI-LIQUID EFFECTS IN DIRTY
SUPERCONDUCTORS

A. Incorporation of e-e interactions

From the forgoing developments we infer that in the
London limit the underlying cause of the reduction of ρs0

is the damping of single-particle excitations in a correlated
electron system. To facilitate analysis of the impact of FL
effects on this reduction, we first address the case of ordinary
impurities where the Anderson theorem [30] holds, i.e., the
critical temperature Tc is not changed by the presence of im-
purities. The textbook dirty-limit formulas, written for homo-
geneous matter in the Matsubara representation, then take the
forms [9,10]

Gs(ε, ζ ) = − iζη(ζ ) + ε(
ζ 2 + �2

0

)
η2(ζ ) + ε2

,

F (ε, ζ ) = �0η(ζ )(
ζ 2 + �2

0

)
η2(ζ ) + ε2

, (13)

where

η(ζ ) = 1 + γ

2
(
ζ 2 + �2

0

)1/2 . (14)

It is easily verified that in dirty superconductors the function
L(ε, k = 0), given by Eq. (9) with dirty-limit propagators
(13), no longer vanishes, thus destroying the coincidence
between ρs0 and n that occurs in the London limit at γ = 0.

In a dirty homogeneous system of interacting electrons, the
solution of Eq. (8), rewritten in the form

Q(γ ) = 1 + pF

3men
T1(pF , 0)L(γ ), (15)

is expressed in terms of two quantities: the particle-hole
propagator L of Eq. (9) and the first harmonic T1 of vertex
part T , determined by Eq. (11). Their explicit forms are
as follows:

L(γ ) = p2
F

∫
[Gs(ε, ζ )Gs(ε, ζ )

+ F (ε, ζ )F (ε, ζ )]
dζdεd

(2π )4v(ε)
, (16)

with the group velocity v(ε) = dε(p)/d p expressed in terms
of the energy ε itself, and

T1(pF , 0) = pF [1 − f1L(γ )/3]−1, (17)

where f1 is the first harmonic of the Landau interaction
function.

An inherent problem associated with calculation of L(γ )
by Eq. (16) is the poor convergence of the integral, an obstacle
usually overcome by subtracting the corresponding result
for normal metals, where Q(k) vanishes [9,29]. However,
this procedure works flawlessly only in the weak-coupling
limit where the vertex part T remains the same in both
superconducting and normal states. Otherwise, an additional
contribution proportional to the corresponding difference of
the vertex parts comes into play, introducing complications.

This obstacle can be surmounted in a different way, aided
by the relation

∂Gs(ε, ζ )

∂ε
= Gs(ε, ζ )Gs(ε, ζ ) − F (ε, ζ )F (ε, ζ ). (18)

Indeed, upon inserting Eq. (18) into Eq. (16) and performing
some manipulations, we are led to

L(γ ) = 2p2
F

(2π )3

(∫
∂n(ε)

∂ε

dεd

v(ε)

+ 2
∫∫

F 2(ε, ζ )
dζdεd

2πv(ε)

)
. (19)

Both of the integrals involved converge rapidly in the energy
interval of order �0 adjacent to the Fermi surface. Therefore
the group velocity v(ε) can be freely replaced by the Fermi
velocity vF , to arrive finally at

L(γ ,�0) = − pF m∗

π2
[1 − I (γ ,�0)], (20)

where

I (γ ,�0) = 2
∫ ∞

−∞

∫ ∞

−∞
F 2(ε, ζ )

dζdε

2π

= �2
0

∫ ∞

0

dζ[
ζ 2 + �2

0

][(
ζ 2 + �2

0

)1/2 + γ /2
] .

(21)

At small �0, the integrand diverges as 1/�2
0, which implies

that the integral I (�0) varies linearly with the gap value as
�0 → 0.

It is straightforward to show that accounting for impurity-
induced effects in these equations (as well as those that
follow) reduces to the replacement of the total damping γ by
its transport version γtr .

With Eqs. (20) and (21) in hand, Eq. (15) takes the form

Q(γ , α) = 1 − α[1 − I (γ )]

1 + αF 0
1 [1 − I (γ )]/3

, (22)

where α = m∗/me and F 0
1 = f1 pF me/π

2. Invoking the FL
relation [9,10]

me/m∗ = 1 − F 0
1 /3, (23)

the constant F 0
1 may be eliminated from Eq. (22) to yield

ρs0(z, α)

n
≡ Q(z, α) = I (z)

1 + (α−1)[1 − I (z)]
, (24)
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FIG. 1. (a) Ratio ρs0/n vs m∗/me evaluated from Eq. (24) at
γ = 2�0 (blue line), γ = 5�0 (green line), and γ = 8�0 (red line).
(b) Ratio ρs0/n vs γ /�0 evaluated from Eq. (24) at m∗/me = 1
and 10 for the S-wave gap � = �0 (blue lines) and D-wave gap
� = �0 cos 2ϕ (red lines).

where z = γ /�0. The function I (z) can in fact be evaluated
explicitly, with the results [31]

I (z) = π

z

(
1 +

8 arctan z−2√
4−z2

π
√

4 − z2

)
, z � 2,

I (z) = π

z

(
1 +

8 arctanh 2−z√
z2−4

π
√

z2 − 4

)
, z > 2. (25)

Importantly, Eq. (24) simplifies in the dirty strong-coupling
limit γtr/�0 � 1, α � 1, becoming

ρs0

n
= I (z � 1)

α
� π

zα
= π

�0

γtr

( me

m∗
)
. (26)

We conclude that the linear relation between the superfluid
density ρs0(x) and the gap value �0(x), emergent in the dirty
limit, comes from the presence of the damping γ in the
denominator of the integrand of Eq. (21), while incorporation
of e-e interactions leads to a further decline of superfluid
density ∝ me/m∗ relative to the AG result [21], as documented
in Fig. 1.

It is significant that in the strong-coupling dirty limit
defined by z � 1 and m∗/me � 1, the FL penetration depth,
determined by Eq. (1), can be rewritten in the Uemura

form [15,32]:

λ2
0 = (4πe2ns/m∗)−1. (27)

Here ns stands for the AG superfluid density evaluated with
the aid of Eq. (25) in the dirty limit z � 1, while the additional
dependence of λ2

0 on the effective mass m∗ comes from the
e-e interactions. Thus, in the strong-coupling dirty limit, the
penetration depth λ0 diverges at the quantum critical point, in
tandem with the effective mass.

Let us now turn to the issue of Cooper pairing in copper
oxides, where the gap �(φ) has D-wave structure. First of
all, we observe that upon keeping the transverse gauge of
the vector potential A and restricting attention to the first
harmonic f1 of the Landau interaction, the structure of the
vertex part T itself remains unchanged, i.e., T (ni ) = T1ni.
In this situation, the Larkin-Migdal analysis [12] informs us
that the correction to T1 coming from variation of the gap in
the external magnetic field is necessarily proportional to the
product ki(kn)/k2 (other contributions of this variation yield-
ing zero upon multiplication with the vector n and angular
integration). However, the contribution of this correction to
the electric current vanishes identically with the gauge chosen
for the vector potential A. In the case of the D-wave gap,
evaluation of Eq. (21) with the aid of a mean-value theorem
for integrals yields

ID(γav)= 1

π

∫ ∞

0

∫ π

0

�2
D(φ)dζdφ[

ζ 2+�2
D(φ)

]{[
ζ 2+�2

D(φ)
]1/2+γav/2

} ,

(28)

where γav stands for an averaged damping value in the inte-
gration interval.

B. Impact of paramagnetic impurities
on the relation between ρs0(x) and �0(x)

A comprehensive analysis of this problem, including dis-
cussion of non-Born-limit corrections to the damping γs (see
Refs. [33,34]) and the interplay between Kondo screening
and Cooper pairing (see Ref. [35] and works cited therein),
is beyond the scope of the present paper, as its primary aim
has been to demonstrate the importance of e-e interactions in
quenching the superfluid density in copper oxides. In what
follows, we focus on the role of magnetic effects in the
profound change of the dirty-limit linear relation (24) between
the superfluid density ρs0(x) and the gap value �0(x), which
prevails over a substantial portion of the LSCO phase diagram,
but yields to bilinear behavior, ρso ∝ �2

0, near the critical
doping xc at which superconductivity terminates.

A key point underlying this rearrangement is that in over-
doped La1−xSrxCuO4 compounds the Anderson theorem [30],
which establishes that the gap value is insensitive to the
presence of impurities, and has been substantially involved in
the preceding calculations, no longer holds. This breakdown
is caused by the appearance of a magnetic component γs in the
damping of single-particle excitations due to electron scatter-
ing on localized Sr magnetic moments [36,37]. Such an effect
cannot be absorbed into the chemical potential, as is done
in treating ordinary impurities associated with the formulas
(13). As a result, each of the denominators of the two Gor’kov
propagators F involved in the integrand of Eq. (21) acquires
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an additive term proportional to the damping γs, which renders
them finite along with the resulting integral. Consequently,
instead of the linear relation (21), a new behavior applies,
namely,

I (γ ,�0) ∝ �2
0

γsγtr
. (29)

Accordingly, inclusion of the effects of e-e interactions mod-
ifies the result for I (γ ,�0) in the same way as it does for
ordinary impurities [see Eq. (6)], implying that

ρs0

n
∝ �2

0

γsγtrα
, (30)

also exploiting the fact that I � 1 is valid in the relevant
region of the LSCO phase diagram.

IV. MODIFICATION OF THE FL
FORMALISM IN CRYSTALS

We next consider how the modified FL approach, adapted
above for the description of damping effects in strongly cor-
related homogeneous superconducting electron systems, must
be extended to accommodate lattice-induced phenomena.

A. Preservation of ρs0 = n equality in the absence of damping

It instructive to begin the analysis of crystal-lattice effects
with a validation of the BCS-FL result (3) in crystals for the
conventional FL situation in which the damping γ vanishes.
In this case, the bare Green’s function associated with prop-
agation of electrons in the external field of the crystal lattice
has the common form

G(r1, r2, ε) =
∑ ψp(r1)ψp(r2)

ε − ε(p) + iδ sgn(ε)
(31)

in terms of the corresponding Bloch wave functions ψp(r).
Analogous expressions apply to the Gor’kov propagators Gs

and F , with matrix elements Gs(p, ε) and F (p, ε) given by
Eq. (10). Calculations in which integration is performed in
coordinate space are greatly simplified in the London limit,
where only matrix elements of propagators Gs and F evalu-
ated at the same momentum p produce a nonzero result, which
in fact coincides with Eq. (10) by virtue of the orthogonality
of different Bloch wave functions. Moreover, as before, inte-
gration over ε leads to nullification of the propagator L, thus
again yielding Qi j (0) = δi j . Accordingly, the BCS-FL result
ρs0 = n is recovered in the standard FL case γ = 0.

B. FL prescription for the crystal-lattice case

Explicit treatment of the effects of damping within the
crystal-lattice system may proceed as follows, focusing on
2D electron systems and employing the formula d2 p =
d pt d pn = pF dεdφ/v(φ, ε), with v = |∇ε|. Since the prop-
agators Gs and F depend just on ζ and ε, integrations over ε

and φ may be separated, facilitating calculation. In particular,
consider evaluation of the first contribution

L(1)(z) = 1

2

∫ ∫
∂n(ε)

∂ε

pF dφ dε

v(φ, ε)
(32)

to the 2D propagator L(z), which has a form analogous to
Eqs. (20) and (21). Since the derivative ∂n(ε)/∂ε is peaked at
the Fermi surface, the group velocity v(φ, ε) can be replaced
by the Fermi velocity vF (φ) = v(φ, ε = 0) to yield

L(1)(z) = −N (0)/2, (33)

where

N (0) = pF

∫
dφ

vF (φ)
(34)

is the real 2D density of states. Similarly, one finds

L(z) = −N (0)[1 − I (z)]/2, (35)

the function I (z) being given by Eq. (21).
Further, observing that in the major share of the T − x

phase diagram of the LSCO compounds the Fermi line has
approximately circular shape [26], the relation (17) remains
unchanged, leading after the requisite manipulations to the
following result:

ρs0(z, αc, x)

n
= I (z)

1 + (αc(x) − 1)[1 − I (z)]
, (36)

in which αc(x) = N (0, x)/N0
FL(0) with N0

FL(0) = me/π .
The integrand in Eq. (34) determining the total density of

states N (0) is calculated on the basis of a modified Pitaevskii
equation [9,38]

v(n) = v0(n) + 2
∫

f (n, n1)
∂n(p1)

∂p1

d2p1

(2π )2
(37)

for the group velocity v(p) = ∇ε(p), adapted to the 2D case.
The free term v0(n) is the sum of the gradient of a lattice-
induced electric field and the so-called ω limit of the vertex
part, determined as T (p, ω → 0, k → 0, kvF /ω → 0). In the
homogeneous liquid, where the momentum p commutes with
the total Hamiltonian of the problem, this term coincides
with the corresponding Landau result p/me [28,38]. In LSCO
compounds, v0(n) is replaced by ∇εARPES(p) [6], the param-
eters of which are extracted from available ARPES data [26].
Evidently, by virtue of the presence of the crystal lattice, the
momentum p ceases to commute with the total Hamiltonian,
which, strictly speaking, leads to the occurrence of gradients
of the external potential in the right side of Eq. (37), and hence
to some renormalization of the term p/me appearing in the
corresponding Landau equation. To avoid further complica-
tions, such contributions are hereafter neglected.

The second term of Eq. (37), the integrand of which
contains the Landau interaction function f , accounts for the
functional dependence of the single-particle spectrum ε(p) on
the quasiparticle momentum distribution n(p). Comparison of
Eqs. (26) and (36) demonstrates that in solids the structure
of the Uemura relation remains unchanged, with the real
density of states N (0) absorbing both the lattice-induced and
interaction-induced effects.

There is a widespread belief that elucidation of the elec-
tronic properties of crystals within FL theory is impossible,
since its basic equation relating the single-particle spectrum
and the quasiparticle momentum distribution was derived by
Landau under the assumption of Galilean invariance, which
breaks down for electrons inhabiting crystals. We observe,
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however, that Eq. (37) is almost identical to the original Lan-
dau equation [9]. The crucial distinction is that this equation
has instead been derived on the basis of gauge invariance,
which is known to hold in crystals as well as homogeneous
systems. Accordingly, it is the Pitaevskii equation that should
be employed in calculations of the real density of states N (0),
which is responsible for renormalization of the AG results in
interacting electron systems of solids.

V. DISCUSSION AND SUMMARY

Let us first consider the situation that prevails in the
London limit for conventional Fermi liquids in which the
damping γ of single-particle excitations is negligible. In this
case, it follows from our analysis that the superfluid density
ρs0 must coincide with the total electron density n, irrespective
of the form of the single-particle spectrum, which is naturally
quite complicated due to lattice effects and the character of
the interactions between particles, sometimes giving rise to
the occurrence of flat portions in ε(p).

In the case of dirty homogeneous superconductors with the
conventional FL ground state, introduction of e-e interactions
has been shown to alter the elementary AG behavior, in which
the loss of superfluid density ρs0 depends solely on the AG pa-
rameter z = γ /�0 [21,31]. As illustrated in panel (a) of Fig. 1,
an additional decline of ρs0 is found to be triggered by the
presence of effective velocity-dependent interactions between
quasiparticles that produce an enhancement of the density
of states N (0) associated with the ratio m∗/me. We have
demonstrated that the Uemura relation λ2

0 = (4πe2ns/m∗)−1

does in fact apply in the strong-coupling dirty limit z � 1,

m∗/me � 1, with (i) the effective mass m∗ characterizing the
interaction-induced contribution to ρs0 and (ii) the Uemura pa-
rameter ns representing the AG superfluid density associated
with the function I (z) given by Eq. (25).

In connection with these results, it is worth noting that in
their first paper [6] devoted to evaluation of the superfluid den-
sity of overdoped LSCO compounds the authors have sought
to explain the unorthodox behavior of the superfluid density
of LSCO compounds uncovered by Bozovic et al. [2] within
the so-called semiclassical scheme [39,40]. In this procedure,
the magnetic field is incorporated by making the replacement
p → p − eA solely in the assumed single-particle spectrum,
the parameters of which are determined from the available
ARPES data. In so doing, FL effects associated with the
variation of the single-particle energy ε(p) due to the change
of the quasiparticle momentum distribution n(p)—which are
naturally incorporated for the homogeneous electron liquid
in Secs. II and III above—are completely ignored within
the framework of the semiclassical scheme. Without taking
proper account of these effects, the magnitude of which
increases with growth of the ratio m∗/me, elucidation of the
Uemura relation (6) becomes impossible, because the decisive
factor m∗/me is lost.

Clearly, this deficiency of the semiclassical approach per-
sists in dealing with strongly correlated electron systems of
high-Tc superconductors moving in the external field of their
crystal lattice. [As seen from Eq. (37), it persists irrespective
of whether proper treatment has been given to the loga-
rithmiclike divergence of the tight-binding density of LSCO

states [26,41], which is exhibited in the doping region where
the Fermi line touches the zone boundary.] Furthermore, as
seen from Eq. (37), the effects of the lattice and interaction,
working in tandem, change the group velocity profoundly, and
hence the density of states N (0) itself. Consequently, the only
way to proceed without extensive and problematic numerical
calculations based on Eq. (37) is phenomenological. Within
the modified FL theory presented here, these effects are natu-
rally absorbed into a single density-of-states parameter αc, and
the same is true for the Sommerfeld coefficient in the specific
heat C(T ). We refer to the available experimental information
on the LSCO compounds [42–44] to extract the parameter αc.

In comparing our results with experimental data on the
LSCO superfluid density ρs0(x), we focus on the overdoped
region 0.20 < x < 0.25, which is free of pseudogap influence
[26] and where experimental values of the key input param-
eter γ (x) are available [4]. As is known, the experimental
curve Tc(ρs0) consists of a dominant linear portion and, in
a relatively small region adjacent to the origin, Tc behaves
as

√
ρs0 [2,3]. The linear segment of the curve is associated

with the Uemura-like portion given by the theory as expressed
in Eq. (26) and characterized by its slope dTc/dρs0 = (2.5 ±
0.1) × 102 K [2,3]. In accord with Eq. (26), the slope depends
on the product of the damping γ and the density-of-states
factor α. Since the doping region involved is quite narrow, one
might expect that the x variations of the two input parameters
involved can be neglected. If so, at the midpoint x = 0.22 of
the doping interval implicated, where γ = 75 K [4] is known
from experimental data, simple numerical calculations based
on Eq. (28) derived for D pairing, as appropriate for the LSCO
compounds, yield a theoretical slope of 2.2 × 102 K. This is
close to the experimental value (2.5 ± 0.1) × 102 K, provided
the BCS relation 2�0 = 4.28Tc is adopted and the effective
mass value is chosen to be m∗ = 12me, in accordance with
the relevant experimental data [43].

However, the issues raised by the hypothetical assumption
of permanent input parameters as functions of doping are
more involved. In the doping range under consideration, the
damping γ (x) is doubled, increasing linearly toward xc [4].
Moreover, the change of αc(x) associated with the afore-
mentioned logarithmic divergence of the tight-binding density
of states on the left edge on the doping interval, occurring
at a critical value xt � 0.2 [26], is even more profound.
Fortunately, the variations of γ (x) and αc(x) swing in opposite
directions, thereby suppressing the net change of ρs0(x) and
allowing it to be neglected in a first approximation. The next
step toward improving the reliability of the results obtained
within the extended FL approach would involve numerical
solution of Eq. (37) to obtain a realistic quasiparticle group
velocity v(p) for insertion into the integral (21). The energy
dependence of the damping γ , known from experiment [2],
should be properly taken into account as well.

In explanation of the second segment of ρs0(x), character-
ized by its bilinear dependence on �0 and situated adjacent
to the critical doping xc, an idea advanced many years ago
by Abrikosov and Gor’kov [36] has been invoked to attribute
the rearrangement of the linear regime to the presence of a
magnetic part γs of the damping of single-particle excitations.
In their original model, the authors of Ref. [36] considered a
pair-breaking mechanism associated with electron scattering

184503-6



IMPACT OF ELECTRON-ELECTRON INTERACTIONS ON … PHYSICAL REVIEW B 99, 184503 (2019)

by impurity magnetic moments. Within this model, a par-
ticular behavior T 2

c (x) ∝ xc − x observed experimentally is
reproduced.

However, the application of this idea to elucidation of
the available LSCO experimental data [2–4] encounters some
difficulties. For example, these experiments have shown no
trace of gapless superconductivity, which is an integral feature
of the AG pair-breaking mechanism. Moreover, the BCS
approach fails to explain basic features of high-temperature
superconductivity, including the enhancement of the critical
temperature Tc itself. In this situation, results from appli-
cation of the BCS gap equation to the problem appear to
be inconsistent. Given these considerations, the version of
the AG paramagnetic scenario adopted in Ref. [6] becomes
questionable.

A potential source of the observed discrepancy of predic-
tions of extended FL theory applied here from the experimen-
tally established behavior of the superfluid density ρs0 ∝ T 2

c
upon approach to critical doping, as well as the challenging
temperature dependence of the superfluid density ρs(T ) [2,3],
may be related to a rearrangement of normal states of strongly
correlated electron systems associated with violation of their
topological stability [45]. Such a phenomenon is now actively
discussed following publication of a series of papers devoted
to the occurrence of flat bands in magic-angle twisted bilayer
graphene [46–49]. In the same vein, we may point to the

recent observation [50] of a magnetic-field dependent elec-
tronic gap in the point-contact spectrum of dirty graphite. This
observation is indicative of local superconductivity having
an estimated critical temperature Tc ≈ 14 K, with possible
implication of a flat-band mechanism [51,52]. Remarkably, it
is in exactly the present case of overdoped LSCO compounds
considered here that arguments favoring the emergence and
agency of flat bands in strongly correlated electron systems
of cuprates have recently been reiterated in Ref. [53]. In
future work, we plan to investigate the role that flat bands
may have in quenching the superfluid density ρs(T ) and in
its unexpected temperature dependence.

To summarize, we have demonstrated that the basic regime
of behavior of the LSCO superfluid density ρs0(Tc), where it
changes linearly with Tc, is properly reproduced within the
AG-FL theory, the calculated slope being in agreement with
experiment. As for the second regime, operative near critical
doping xc where ρs0(Tc) ∝ T 2

c , effort toward its quantitative
explanation remains inconclusive.
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